
Automatic Reconstruction of Tree Skeletal Structures from Point Clouds
Yotam Livny1 Feilong Yan1 Matt Olson2 Baoquan Chen1 Hao Zhang2 Jihad El-Sana3

1 Shenzhen Institutes of Advanced Technology (SIAT), China 2 Simon Fraser Univ. 3 Ben-Gurion Univ.

Figure 1: A scene of five trees automatically reconstructed by our algorithm. The images show a photo of the scene, point cloud, reconstructed
trees, and textured models with leaves. The insets show the ability of our method to handle overlapping crowns and missing data.

Abstract

Trees, bushes, and other plants are ubiquitous in urban environ-
ments, and realistic models of trees can add a great deal of realism
to a digital urban scene. There has been much research on modeling
tree structures, but limited work on reconstructing the geometry of
real-world trees – even then, most works have focused on recon-
struction from photographs aided by significant user interaction. In
this paper, we perform active laser scanning of real-world vegeta-
tion and present an automatic approach that robustly reconstructs
skeletal structures of trees, from which full geometry can be gen-
erated. The core of our method is a series of global optimizations
that fit skeletal structures to the often sparse, incomplete, and noisy
point data. A significant benefit of our approach is its ability to
reconstruct multiple overlapping trees simultaneously without seg-
mentation. We demonstrate the effectiveness and robustness of our
approach on many raw scans of different tree varieties.

1 Introduction

Wild and domesticated plants are commonly found throughout the
world, and virtual worlds that lack vegetation often seem lifeless
and artificial. There has been a great deal of research on modeling
trees, predominantly using procedural approaches [Prusinkiewicz

and Lindenmayer 1990]. Works on tree reconstruction have mostly
been based on photographs [Reche-Martinez et al. 2004; Tan et al.
2007]. With recent advances in laser scanning, direct capture of 3D
data of trees has become possible. However, such captures produce
scattered points, and most applications require the reconstruction of
complete tree geometry from the captured point cloud. In this pa-
per, we are interested in reconstructing trees from point cloud data.
The problem is challenging since the input point clouds are almost
always incomplete and suffer from significant self-occlusions. The
high variance in structure between individual trees, and the complex
ways trees can overlap each other, both add to the challenge.

A natural approach to tree construction is to first reconstruct the
skeleton of the captured tree, then apply further geometry com-
pletion through appropriate rules or heuristics. Skeletal structures
are fundamental to tree geometry reconstruction. Existing meth-
ods take either an interactive [Quan et al. 2006; Tan et al. 2007]
or an empirical approach, where the latter heavily relies on heuris-
tics and manual adjustment of parameters [Xu et al. 2007]. Given
the amount of time required in both approaches, an automatic al-
ternative is desirable, especially when handling a large number of
possibly overlapping trees. Indeed, state-of-the-art laser scanners
often produce large amounts of nonsegmented point data represent-
ing hundreds of objects including trees that overlap. It is not only
tedious but also difficult for the user to segment the data into in-
dividual trees [Tan et al. 2008]. This is necessary when current
methods for tree reconstruction expect input points to come from a
single tree [Tan et al. 2007; Xu et al. 2007]. These reconstructions
also rely on local computations, leading to results that are heavily
influenced by data quality over local areas. However, local data
quality is rarely consistent in typical laser scans of real-world trees.

In this paper, we present an automatic algorithm for tree recon-
struction from laser scans. Our method employs a series of global
optimizations to consolidate a point cloud representing one or more
tree objects into skeletal structures. This optimization aims to re-
construct the major skeletal branches of the captured tree(s), result-



ing in a graph structure which we call the Branch-Structure Graph
or BSG for each tree; see Figure 2. Finer structures such as leaves
are then synthesized from the BSGs with textures added at the end
to complete the reconstruction pipeline.

The main component of the pipeline is the BSG construction step.
Our optimization is driven by a set of weak assumptions on the
length, thickness, smoothness, and density of tree branches that are
naturally expected from biological growth properties of real-world
trees [Honda 1971]. Our method can be applied to trees of vari-
ous types, from large trees to small bushes and including those with
diverse branching patterns, as long as they demonstrate significant
skeletal structures. Multiple trees of different types, possibly over-
lapping, can be handled without pre-segmentation.

The key enabling feature of our algorithm and one that distinguishes
our approach from previous methods is the use of global optimiza-
tion, which not only makes the reconstruction robust to noisy and
incomplete data, but also provides a better overall approximation
of the tree branches. Furthermore, it relieves the user from having
to wrestle with parameter tuning, as the algorithm adjusts the opti-
mization settings based on the quality of the data being processed
to arrive at the best approximation. We demonstrate the effective-
ness and robustness of our reconstruction scheme on a number of
raw scans which capture different tree varieties.

2 Related work

Existing literature on geometry reconstruction and urban scene
modeling is vast. Here we focus only on works most closely re-
lated to ours, including those on tree modeling and extraction of
skeletal structures from point clouds. Developments on generat-
ing tree models are largely classified into two categories: mod-
eling virtual trees and reconstructing trees captured from the real
world. The first predominantly uses procedural approaches, such as
L-systems [Honda 1971; Rozenberg and Salomaa 1980] and their
many variants. These approaches typically model trees by applying
branching rules in sequence to generate complex structures. More
recently, these methods have been guided by user sketches [Anasta-
cio et al. 2006; Wither et al. 2009] and enhanced through exam-
ples [Okabe et al. 2006; Chen et al. 2008]. Reconstruction of exist-
ing trees can be obtained from either photographs or point clouds;
the latter is becoming popular with the rapid development of 3D
laser scanning technology.

Photographs can also be used to extract a volumetric representa-
tion of trees [Reche-Martinez et al. 2004]. Neubert et al. [2007]
generate an approximate volumetric tree representation and fur-
ther perform a 3D flow simulation to form twigs and branches.
Photo images have also been used for extracting parameters for L-
systems [Prusinkiewicz et al. 2001]. For trees with a dense crown
area and little visibility within, Shlyakhter et al. [2001] first ex-
tract visual hulls from images, then use L-systems to synthesize
branches within the crown. For trees with dominant leaf structures,
Quan et al. [2006] use interactive sketching to generate leaf ge-
ometry, aided by sparsely reconstructed 3D points from images.
For trees with relatively small leaves but more visible branch struc-
tures, Tan et al. [2007] automatically synthesize L-system rules
from input images. In a follow-up, Tan et al. [2008] rely on user-
drawn strokes to guide the synthesis, where the input is a single
photograph. The reconstruction accuracy and efficiency from these
image-guided methods is inherently limited by the quality and den-
sity of the 3D points that can be reconstructed from the images.

3D points obtained via laser scanning provide a more direct cap-
ture of tree geometry. Most methods focus on extracting skeletons
representing tree branches, since points acquired for fine structures

Figure 2: Tree BSG reconstruction pipeline.

such as leaves are generally too noisy to allow reconstruction with
reasonable accuracy. Most curve skeleton extraction algorithms op-
erate on complete mesh models [Cornea et al. 2007]. On point
cloud data, Lazarus and Verroust [1999] use the length of edges in a
spanning tree to cluster the points and reveal the skeleton. Runions
et al. [2007] grow skeletal structures within tree envelopes by us-
ing points as local attractors. Bucksch et al. [2008; 2009] partition
points into octree cells and form a curve skeleton by connecting
local extractions in adjacent cells. To cope with significant miss-
ing data, Tagliasacchi et al. [2009] rely on a local cylindrical prior
for curve skeleton extraction from point clouds but require normal
information at each point. Recent work of Li et al. [2010] recon-
structs shapes consisting of interleaved wires using arterial snakes,
skeletal curves based on local attractors. Xu et al. [2007] propose a
heuristic-based method to reconstruct major tree branches from 3D
scans and then synthetically add small twigs and leaves to form the
crown geometry. Côté et al. [2009] also synthesize minor tree and
leaf geometry, but base their synthesis on light scattering properties
obtained from scanned sample intensities.

The main difference between our method and those previously de-
veloped for tree skeletal structure reconstruction is that we use a
global optimization, which is more robust to noise, nonuniform
point density, and missing data than local computations. These
artifacts often lead to unreliable estimated normals; however, our
method does not require normals. Moreover, our algorithm adapts
to the given point data, e.g. in clustering points during branch recon-
struction and connection. In contrast, the tree reconstruction meth-
ods of [Xu et al. 2007; Bucksch et al. 2009] both use pre-defined
clustering resolutions (0.2 meters in [Xu et al. 2007] and a preset
partitioning resolution in [Bucksch et al. 2009]), which are unreli-
able when the branches have different densities in different parts of
the tree. Finally, our method avoids heavy parameter tuning that is
typical of local approaches, relieving the user from the tedious task
of having to pre-segment large scans into individual trees.

3 Overview

Our reconstruction algorithm expects an input point scan of a set
of trees. The point cloud may be noisy and incomplete, but is as-
sumed to sample the major branch structure of the trees in the input.
Our algorithm reconstructs skeletons that faithfully resemble the
scanned trees. In order to resolve ambiguities arising from missing
data, noise, and self-occlusion, we impose several weak constraints
to guide global optimization. We aim to produce an optimized ap-
proximation while relieving the user from tedious parameter tuning,
allowing for unified processing of multiple trees of different types
without pre-segmentation.

Tree skeleton representation Each reconstructed tree is
represented by a Branch-Structure Graph (BSG), defined as a
spatially embedded and connected directed acyclic graph. The
root node of the BSG corresponds to the base of the tree.



Figure 3: The point processing and BSG refinement steps. From left to right: the input points; the initial BSG construction; the importance
weights of vertices (shown by edge color); the smooth orientation field; and the smoothed BSG structure.

BSG and two highlighted
branch chains (red and green).

BSG nodes are connected by
straight edges and all lie spa-
tially in the center of the tree
branches. A branch is simple if
it contains no branching points
and is represented by a Branch-
Chain (BC), which is a sub-
graph of the BSG given by a
chain of connected nodes and
edges; see the colored edges in
the figure to the right. We as-
sign an importance value to each
BSG node equal to the size of its
subtree (see Section 4.2), which assigns more weight in the global
optimization steps to larger branches near the root of the tree.

Optimization criteria In addition to requiring the reconstructed
BSGs to be geometrically close to the input point cloud, we impose
the following optimization objectives on the BCs that are derived
from biological growth properties of typical trees [Honda 1971].

1. The BCs are smooth, as reflected by small bending angles
between adjacent edges.

2. The BCs are longer and thicker near the root of the tree and
shorter and thinner near the crown.

3. The density of the BCs is inversely proportional to their cor-
responding thickness.

Provided that the scanned trees obey these criteria, our reconstruc-
tion algorithm is independent of specific tree morphology.

Reconstruction pipeline and optimization The reconstruc-
tion pipeline for extracting the BSGs consists of three steps, where
the first two are iterated, as shown in Figure 2.

1. Initializing BSGs from points: After detecting the ground
surface and extracting the tree roots from the input scan, we
run a multi-root Dijkstra’s algorithm to extract the disjoint ini-
tial BSGs.

2. Refining the BSG graphs: We begin by assigning impor-
tance weights to each vertex based on the sizes of their sub-
trees. Then for each BSG, we generate a smooth orientation
field by minimizing a sum of directional differences between
adjacent edges, weighted by these importance values. The
orientation field is used to optimize the spatial embedding of
the BSGs, achieving a balance between tree smoothness and
centered fitting to the point samples.

3. Inflating the BSGs into tree geometry: Finally, we compute
the thickness or skeleton radius values along the edges of the
BSGs as guided by the above optimization criteria.

Each optimization along the pipeline is formulated as a least-
squares problem; hence, the solution is exact and efficiently ob-
tained by solving a linear system. Given the input point scans
containing one or more trees, execution of the BSG reconstruction
pipeline is fully automatic and no user input is required.

4 Tree reconstruction

We begin by constructing a set of BSGs from the input point scan
using a weighted spanning-tree method. Next, we refine the points
to better approximate the geometry of the tree structures we seek,
and iterate to compensate for noise or self-occlusion. Finally, we
remove noise and build geometry around the refined BSGs.

4.1 Initializing BSGs

Given as input a laser scan of a scene with trees, we must first iden-
tify and approximate the skeletal geometry of the trees within the
scene. We begin by identifying samples at the base of each tree,
then build an initial approximation of the tree’s BSG.

Tree base identification While we accept an arbitrary number
of trees in our input point scan, we extract and refine tree geometry
on a plant-by-plant basis. Therefore, we begin by determining the
number of trees and the location of each tree in the input, identify-
ing root nodes for the BSGs representing each tree.

Since the points sampled on a typical tree are centered around its
trunk, projecting them onto a ground plane will form a cluster of
points with high density. We utilize this characteristic of trees by
projecting their samples onto the ground plane (y = 0) along the
vertical axis and measuring the density of the projected points (see
Figure 4). Then, we remove the low-density terrain points from the
dataset. The remaining points form clusters, and we select a single
point from each cluster and mark it as the root node of a BSG. We
can select either the cluster centroid or the sample closest to the
centroid as the root; we find that the smoothing process of Section
4.2 renders this choice moot.

Initial BSG construction We construct minimum-weight
spanning trees over the input point set, which we call P , from the
root nodes identified above. Over the majority of the scan, points
that are close together are likely to belong to the same branch, and
the tree structures we seek to create are likely to be those with min-
imum overall edge length. Thus, we construct a graph between



Figure 5: A tree with thin and dense branches (left). This tree has been scanned from the right side, therefore point density is higher on the
right than on the left (middle). Our reconstruction is data dependent – the right side of the output is more accurate than the left.

Figure 4: A scan of trees colored by height (top) and the color-
coded density of projected points (bottom). Low density points
(blue) form the terrain surface, while high density points (yellow
to red) indicate tree locations.

input points with edges (u, v) weighted by the Euclidean distance
‖u−v‖2 and use Dijkstra’s algorithm to extract a minimum-weight
spanning tree from this graph. To ensure that all root nodes are con-
tained in this spanning tree, we connect them with temporary zero-
weight edges, which are removed from the spanning tree to create
a forest {T1, . . . , Tn} of initial BSGs. Once the zero-weight edges
are removed, this results in an automatic segmentation of the input
points into individual trees.

4.2 Refining BSGs

As explained in Section 3, natural trees tend to have smooth
structures with relatively long branches and small angles between
branches. Previous approaches insist that the user explicitly identify
such structure in the initial graphs Ti [Neubert et al. 2007]. Instead,
we define criteria to distinguish between representative vertices and
those distorted by factors such as noise or occlusion. This process is
complicated by the fact that correct structure differs within a given
tree, for example between the trunk and the crown.

Weighting BSG vertices We assign importance weights to
the vertices of the tree graphs to guide our optimization process.
First and foremost, we want edges connecting heavily-weighted
vertices to form long, smooth branches. Short branches with low-
weight vertices near heavily-weighted samples indicate noise in the
dataset. Furthermore, vertices on branches near the crown should
have consistently low weights, resulting in the recovery of thin
branches in the crown while similar branches at the trunk will be
culled away.

To achieve these qualities, each vertex is assigned an importance
weight given by the sum of edge lengths in its subtree. While ap-
parently simple, this weight satisfies the critical properties listed
above, as illustrated in Figure 3. In this scheme, adjacent vertices
in Ti with similarly large subtrees will tend to have similar weights,

and the weight of a given vertex will be the sum of the weights of
its children. Further, as it depends on a Euclidean distance measure,
this weighting scheme is not sensitive to the density of input points.

Building the orientation field We use global least-squares op-
timization to fit the scanned geometry of each tree to the biological
constraints from Section 3. Critical to our method is the construc-
tion of an orientation field on the vertices of a BSG. Orientation
fields have been used in other works [Neubert et al. 2007] to con-
struct smooth tree graphs from point samples; we follow a similar
approach, augmented by vertex importance weights.

Given a vertex v ∈ Ti with parent vp, we attempt to find an orienta-
tion ov that minimizes the difference between (first) the orientations
of both vertices and (second) between the orientation at v and the
direction of the edge e(v, vp). We formulate the first as4O(Ti) in
Equation 1 and the second as4E(Ti) in Equation 2.

4O(Ti) =
X
v∈Ti

„
cvp + cv

2

‚‚ovp − ov

‚‚«2 (1)

4E(Ti) =
X
v∈Ti

„
cv

˛̨̨˛̨̨
ov −

e(vp, v)

‖e(vp, v)‖

˛̨̨˛̨̨«2
(2)

Given these constraints, we construct a smooth orientation field that
minimizes 4E(Ti) +4O(Ti). In both cases, we weight the ori-
entation contributions by the importance weights cv , cvp of the ver-
tices involved. This ensures that short, noisy branches do not distort
the orientation field near the trunk of the tree (see Figure 3).

Global BSG refinement Having constructed a smooth orien-
tation field over the vertices in Ti, we update the positions of those
vertices to reflect their orientations. Again, we perform this op-
timization by minimizing error functions. We smooth the graph
by minimizing4A(Ti), the difference between the direction of an
edge e(u, v) and the orientations of incident vertices. To ensure that
the original geometry is not lost, we constrain this optimization by
4F (Ti), the difference between original and final edge centers.

4A(Ti) =
X

e(u,v)∈Ti

„
cu + cv

2

˛̨̨˛̨̨
(u′−v′)− ‖u− v‖ (ou+ ov)

‖ou+ ov‖

˛̨̨˛̨̨«2
(3)

4F (Ti) =
X

e(u,v)∈Ti

„
cv

˛̨̨˛̨̨
u′ + v′

2
− u + v

2

˛̨̨˛̨̨«2
(4)



Figure 7: Steps of the geometry construction process. From left to right: generalized cylinders represent the geometry of the BSG; neighbor-
ing cylinders (green) that overlap by more than 50% are clustered together (blue); clustering is performed using the edge-collapse operator
(we show two possible edge collapses from the same starting configuration – grey points collapse to blue indicated by the red arrows).

Figure 6: Several iterations on the data from Figure 5. The images
show the BSG generated after 1, 2, and 3 (convergence) iterations.
Cluttered geometry in iteration 1 resolves to distinct skeletal struc-
ture in iteration 3. Improvements to the structure can be seen in the
bottom of the tree.

We find the updated vertex positions v′ by minimizing 4A(Ti) +
4F (Ti), and again we incorporate the importance weights de-
scribed above. The resulting graph T ′i exhibits a smooth structure
that satisfies our assumptions from Section 3, and minimizes dis-
tances between original and consolidated sample points. Figure 3
(right) shows the result of the consolidation step.

Iterated BSG construction Sparsity and occlusions in the
data set may yield suboptimal results from a single pass, as in
Figure 6 (left). After constructing and refining a tree’s BSG, we
may repeat the process and build a new initial BSG using informa-
tion from the previous iteration. We use a method similar to the
mean-shift belief propagation method [Minwoo et al. 2008] to up-
date the squared-distance weights used by Dijkstra’s algorithm (see
Section 4.1). This allows us to incorporate information from the
refined BSG T ′i into the next iteration.

For each edge e = (u′, v′) in T ′i , we find the edge eP = (Pu′ , Pv′)
in the complete graph on P whose vertices are closest to those of e.
We then scale the weight of eP by e

‖e‖ ·
eP
‖eP ‖

. We proceed as before,
applying Dijkstra’s algorithm to the reweighted graph to construct
another initial BSG. If this spanning tree differs from the tree from
the previous iteration, we repeat the consolidation and refinement
process on the new initial BSG. In practice, we find that this process
converges in 2 or 3 iterations; see Figure 6.

4.3 Inflating BSGs

We have now constructed a BSG for each tree with vertices
weighted by importance and optimized to produce long, smooth
branches. Next, we reconstruct the tree geometry.

Geometry construction We begin by computing a radius for
each vertex in T ′i . Using allometric theory [Tan et al. 2007; Xu

et al. 2007], we assign to each vertex a radius proportional to its
importance weight. The radii of adjacent vertices are constrained by
the ratio expressed in Equation 5; this ensures continuity between
the radii of parent and children vertices. Over the whole tree, this
is represented by the constraint4R(T ′i ) in Equation 6.

ru′ =

„
cu

cv

«2.5

rv′ (5)

To ensure that neither occlusions nor the distribution of points in
the input produce artifacts in the computed radii, we constrain the
vertex radii with 4D(T ′i ) (Equation 7). Here we insist that the
average radius be close to davg, the average distance between the
samples and the edges in T ′i .

4R(T ′i ) =
X

u′,v′∈T ′
i

˛̨̨
ru′ −

„
cu

cv

«2.5

rv′

˛̨̨2
(6)

4D(T ′i ) =
“ X

v′∈T ′
i

cvrv′

”2
−
“
davg

X
v′∈T ′

i

cv

”2
(7)

As before, we assign radii by minimizing4R(T ′i )+4D(T ′i ), and
again the contribution of each vertex is weighted by its importance
weight. This results in small radii on spurious branches near the
root of the tree; we use this property to cull such vertices.

Edge removal The geometry obtained by this step is repre-
sented by a set of generalized cylinders, shown in Figure 7. Once
we obtain these cylinders, we remove edges with negligible contri-
bution by computing the intersection of their generalized cylinders
with those of other edges on the same parent vertex. If the volume
of this intersection exceeds 50% of the volume of the edge’s cylin-
der, we simply collapse the offending edge; see Figure 7 (second
and third images).

Similarly, we remove vertices of degree 2 when their adjacent edges
share similar orientations and radii. If v is a vertex with parent u
and one child w, we collapse the edge (v, w) if the volume of a new
edge (u, v + (v − u)) intersects more than half of (v, w). In either
case, we collapse an edge by inserting a new vertex at the weighted
midpoint (cuu + cvv)/(cu + cv), as in Figure 7 (right). Clustering
stops when no further edges can be collapsed; see Figure 8.

Note that when the radii of cylinders are small, as at the crown of the
BSG, little overlap occurs even when the edges are dense. However,
at the trunk where radii are large, trunk geometry intersects spurious
edges in dense regions and only main branches survive clustering.



Figure 8: Snapshots of the edge-removal process. Left to right:
the smoothed BSG; generalized cylinders; edge removal; final re-
sult. Green cylinders represent candidates for orientation-based
edge removal; blue cylinders indicate edges that may be redundant.

Figure 9: Robust tree reconstruction under varying point density.
From left to right: the resulting BSG using 100%, 50%, and 25%
of data points.

Fine geometry synthesis Having reconstructed the major
components of the tree, we now synthesize fine branches, populate
the branches with leaves, and add textures. To grow fine branches,
we extract and use L-system rules from the BSG as in [Tan et al.
2007]. Leaves are created next to each leaf node ` in the BSG.
We generate a random number of leaves (between 20 and 50), with
positions randomly chosen in a sphere centered on `. At the end,
we add textures to our geometry to enhance visual appeal.

5 Results

We employed Optech’s Lynx mobile
scanning system to acquire the data
used in this paper. Scanning was per-
formed atop a moving vehicle at nor-
mal driving speed (acquisition rate is
100K points per second); thus, each sample is part of a continuous
scan and the example scans are obtained within a span of a few sec-
onds. We perform reconstruction directly on these scans without
preprocessing.

The first dataset we processed is a typical street scene with five
trees in a row (Figure 1). The trees touch or overlap with each
other at their crowns, making them difficult to segment manually.
Our method automatically reconstructs the five trees with results
that convincingly approximate the real scene, as visible in the pho-
tograph. We show the trees in different colors to demonstrate the
effectiveness of tree separation during reconstruction. The accu-
racy of the reconstruction can be better appreciated by viewing the
accompanying video where the scene is in motion and the recon-
structed branches are overlaid with points.

Figure 10: Reconstruction results for trees of different types. The
tall tree has a large gap at its base due to occlusion caused by
a passing vehicle. The bush data has low reconstruction quality
since the plant is only half a meter tall, and therefore it is relatively
sparsely sampled.

Our approach is data-dependent yet robust. For particularly poor
scans, the accuracy of the reconstruction is compromised; however,
we will nevertheless reconstruct the most prominent features that
are captured, i.e. branch lengths and branching angles. In Figure 5,
we show a tree with thin but dense branches. This type of tree is
difficult to reconstruct due to the noisiness and ambiguity of the
captured point clouds. The left part of the tree is especially poorly
scanned as vehicle access is limited to the right side. The recon-
structed branches on the left are less than ideal, but still capture the
basic properties shown in the photo. The right half, with more sam-
ples, is reconstructed with high fidelity. In Figure 9, we show the
results of a stress test conducted by randomly removing points from
a tree scan. Note that high-level structure is preserved even when
most of the points are discarded.

Our method can process trees of different types and sizes. Figure 10
shows our results for challenging inputs. For each tree we present
a photo, point set, reconstructed branches, and textured result from
two view points. Note that the bush in this figure is rather small
(only half a meter tall) and has few samples. Moreover, the visible
bias in the scan pattern does not affect the reconstructed branches.
Figure 11 shows reconstructed trees of various types within a large
scene containing buildings, roads, and several occluders. However,
in this experiment the user marks a few rough regions containing
the trees, viewing the scene from above, as in Figure 4.

In the final experiment, we compare our reconstruction results to
those obtained from the method of [Xu et al. 2007], which is the
closest related to ours. Their method is unable to generate high-
quality results on most of the datasets shown in this paper. This has
two main causes: First, to generate tree skeletons, the method sets
a threshold for edge length which can lead to disconnected graphs
where points are sparse. Second, a predetermined clustering reso-
lution is used, which cannot adapt to branch density and results in
few coarse branches in the crowns of the trees. In Figure 12 we
provide a side-by-side comparison of the generated tree skeletons.

Our current unoptimized implementation takes a matter of seconds
to reconstruct a single tree and a few minutes for multiple trees
from a large scan; see Table 1. The times are recorded on an AMD
Athlon 7750 2.71GHz machine with 2GB RAM.

Limitations Our approach is predominantly data-driven. While
it is able to properly connect branches that are otherwise discon-
nected in the data due to small-scale occlusions, it is not designed
to reconstruct or synthesize skeletal structures over large regions
of missing data. For trees that have very dense crowns, leading to
large-scale occlusion of the interior branches, our method is obvi-



Figure 11: An urban scene with more than 10 million points, about 200, 000 of which capture 20 trees. The trees are of various species,
some with low-quality captures. The top two images show a photo and the point scans of the trees, colored by height. Note that the trees are
not pre-segmented from the rest of the data. Our method automatically extracts the structures of the trees from the rest of the data (bottom) in
about 30 minutes.

Figure 12: The result of our method (left) and that of [Xu et al.
2007] (right) on two typical scans. The overlaid points (right) show
the differences in the quality of the results and the advantages of our
global approach.

ously unable to provide a faithful reconstruction, as in Figure 13.
In these cases, generative methods will be inevitably required.

While our method is able to reconstruct a wide variety of tree struc-
tures with compelling results, it does not attempt to reconstruct the
appearance of different types of trees. For example, leaves are
placed at random rather than from input data (samples on leaves are
particularly susceptible to noise), and textures are chosen to pro-
duce credible visual results rather than based on photographs of the
actual trees.

The branch structures of natural trees manifest clear self-similarity
patterns. These patterns usually include small sets of branching
rules (at branch splits) and nearly constant ratios in the lengths

Figure #points #Trees Time
11 10,201,034 20 30 minutes
1 301,287 5 2 minutes
5 65,419 1 30 seconds
10(upper) 14,008 1 7 seconds
10(lower) 917 1 1 seconds

Table 1: Point cloud size and tree reconstruction times for the dif-
ferent results shown in the figures. The majority of the time for
Figure 11 consists of user interaction.

of parent and child branch chains. Our method makes no direct
attempt to preserve or enforce these self-similarities. This is a
promising direction for future research.

6 Conclusion and future work

The key feature of our tree reconstruction method is its ability to
automatically reconstruct skeletal structures representing multiple
trees directly from laser scan data; no pre-segmentation is neces-
sary. The approach makes few assumptions on the properties of the
captured objects and is widely applicable to trees of various types
and sizes, as long as they demonstrate significant branching struc-
tures. The quality, versatility, and robustness of our method can
be largely attributed to the use of global optimization, in contrast to
previous works which rely on local heuristics. While global, the op-
timization problems we formulate are of the least-squares type and
efficient to solve. Experiments on many representative scenes in the
paper show that our approach is accurate, scalable, and robust.

One direction for future work is to further generalize our approach
so that it can handle a wider range of plants with equally high qual-
ity. We are also interested in handling large-scale occlusions, allow-
ing generative methods to reproduce skeletal structures over large
missing or occluded regions while maintaining the characteristics
of the well-sampled data.



Figure 13: Trees with significant leaf cover are difficult to recon-
struct. In particular, the lack of sufficient sample density on the left
side of the tree leads to sparse branching structure.

It may be possible to evaluate how closely the BSG of a tree
matches the self-similarity properties of natural trees by extract-
ing the BSG’s pattern (branching rules) and estimating its qual-
ity based on its preservation of this pattern. Small variations be-
tween the pattern and the values in different parts of the BSG in-
dicate good reconstruction quality. Cöté et al. [2009] has pre-
sented a method for comparing reconstructed trees to scanned and
procedurally-synthesized trees via simulated scanning; we may be
able to incorporate a similar approach.

Acknowledgments

We thank the anonymous reviewers for their valuable suggestions.
This work was supported in part by National Natural Science Foun-
dation of China (NSFC) for Distinguished Young Scholar, National
Natural Science Foundation of China (60902104), National High-
tech R&D Program of China (2009AA01Z302), CAS Visiting Pro-
fessorship for Senior International Scientists, CAS Fellowship for
Young International Scientists, Shenzhen Science and Technology
Foundation (GJ200807210013A),Lynn and William Frankel Center
for Computer Sciences and the Tuman Fund, and the Natural Sci-
ences and Engineering Research Council of Canada (No. 611370).
Finally, we acknowledge the scanning team of Shenzhen Institute
of Advanced Technology (SIAT) for their effort during data acqui-
sition and processing.

References

ANASTACIO, F., SOUSA, M. C., SAMAVATI, F., AND JORGE,
J. A. 2006. Modeling plant structures using concept sketches.
In Proceedings of NPAR 2006, 105–113.

ANONYMOUS. 2010. Analysis, reconstruction and manipulation
using arterial snakes. In Proceedings of SIGGRAPH ASIA 2010,
??

BUCKSCH, A., AND LINDENBERGH, R. 2008. Campino – a skele-
tonization method for point cloud processing. ISPRS journal of
photogrammetry and remote sensing 63, 1, 115–127.

BUCKSCH, A., LINDENBERGH, R., AND MENENTI, M. 2009.
Skeltre – robust skeleton extraction from imperfect point clouds.
In Proceedings of Eurographics Workshop on 3D Object Re-
trieval, 13–20.

CHEN, X., NEUBERT, B., XU, Y.-Q., DEUSSEN, O., AND KANG,
S. B. 2008. Sketch-based tree modeling using markov random
field. ACM Trans. on Graphics 27, 5, 1–9.

CORNEA, N. D., SILVER, D., AND MIN, P. 2007. Curve-skeleton
properties, applications, and algorithms. IEEE Trans. on Visual-
ization and Computer Graphics 13, 3, 530–548.

CÔTÉ, J.-F., WIDLOWSKI, J.-L., FOURNIER, R. A., AND VER-
STRAETE, M. M. 2009. The structural and radiative consistency
of three-dimensional tree reconstructions from terrestrial lidar.
Remote Sensing of Environment 113, 5, 1067 – 1081.

HONDA, H. 1971. Description of the form of trees by the param-
eters of the tree-like body: Effects of the branching angle and
the branch length on the shape of the tree-like body. Theoretical
Biology 31, 331–338.

LAZARUS, F., AND VERROUST, A. 1999. Extracting skeletal
curves from 3D scattered data. In Proceedings of IEEE Conf.
on Shape Modeling and Applications, 194–201.

MINWOO, P., YANXI, L., AND ROBERT, C. 2008. Efficient mean
shift belief propagation for vision tracking. In Proceedings of
IEEE Conf. on CVPR, 1–8.

NEUBERT, B., FRANKEN, T., AND DEUSSEN, O. 2007. Ap-
proximate image-based tree-modeling using particle flows. ACM
Trans. on Graphics 26, 3, 1–8.

OKABE, M., OWADA, S., AND IGARASHI, T. 2006. Interactive
design of botanical trees using freehand sketches and example-
based editing. Comput. Graph. Forum 24, 3, 487–496.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1990. The algo-
rithmic beauty of plants. Springer-Verlag New York, Inc.

PRUSINKIEWICZ, P., MÜNDERMANN, L., KARWOWSKI, R., AND
LANE, B. 2001. The use of positional information in the mod-
eling of plants. In SIGGRAPH 2001: Proceedings of the 28th
annual conference on Computer graphics and interactive tech-
niques, 289–300.

QUAN, L., TAN, P., ZENG, G., YUAN, L., WANG, J., AND
KANG, S. B. 2006. Image-based plant modeling. ACM Trans.
on Graphics 25, 3, 599–604.

RECHE-MARTINEZ, A., MARTIN, I., AND DRETTAKIS, G. 2004.
Volumetric reconstruction and interactive rendering of trees from
photographs. ACM Trans. on Graphics 23, 3, 720–727.

ROZENBERG, G., AND SALOMAA, A. 1980. Mathematical Theory
of L-Systems. Academic Press, Inc.

RUNIONS, A., LANE, B., AND PRUSINKIEWICZ, P. 2007. Mod-
eling trees with a space colonization algorithm. In Proceedings
of Eurographics Workshop on Natural Phenomena 2007, 63–70.

SHLYAKHTER, I., ROZENOER, M., DORSEY, J., AND TELLER,
S. 2001. Reconstructing 3d tree models from instrumented pho-
tographs. IEEE Computer Graphics Applicalion 21, 3, 53–61.

TAGLIASACCHI, A., ZHANG, H., AND COHEN-OR, D. 2009.
Curve skeleton extraction from incomplete point cloud. ACM
Trans. on Graphics 28, 3, 1–9.

TAN, P., ZENG, G., WANG, J., KANG, S. B., AND QUAN, L.
2007. Image-based tree modeling. In Proceedings of SIG-
GRAPH 2007, 87.

TAN, P., FANG, T., XIAO, J., ZHAO, P., AND QUAN, L. 2008.
Single image tree modeling. ACM Trans. on Graphics 27, 5,
1–7.

WITHER, J., BOUDON, F., CANI, M.-P., AND GODIN, C. 2009.
Structure from silhouettes: a new paradigm for fast sketch-based
design of trees. Comput. Graph. Forum 28, 2, 541–550.

XU, H., GOSSETT, N., AND CHEN, B. 2007. Knowledge and
heuristic-based modeling of laser-scanned trees. ACM Trans. on
Graphics 26, 4, 19.


