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Abstract

We formulate and apply spectral clustering to 3D mesh
segmentation for the first time and report our preliminary
findings. Given a set of mesh faces, an affinity matrix which
encodes the likelihood of each pair of faces belonging to the
same group is first constructed. Spectral methods then use
selected eigenvectors of the affinity matrix or its closely re-
lated graph Laplacian to obtain data representations that
can be more easily clustered. We develop an algorithm that
favors segmentation along concave regions, which is in-
spired by human perception. Our algorithm is theoretically
sound, efficient, simple to implement, and can achieve high-
quality segmentation results on 3D meshes.

1. Introduction

Digital 3D models will become ubiquitous in imaging
and multimedia applications in the near future. With the
rapid advances in computer hardware and our never-ending
pursuit for realism, highly detailed models obtained through
3D data capture have taken the dominant role over synthe-
sized shapes. Highly affordable 3D digitizing devices have
emerged which can produce 3D geometry data in the form
of dense triangle meshes. Digital geometry processing is
an active field of research in computer graphics, primarily
aimed at developing signal-processing style concepts and
algorithms to model, process, and analyze such mesh data.

Often as an early step in digital geometry processing, a
triangle mesh is decomposed or segmented into a number
of sub-parts. Proper segmentation of a 3D mesh into mean-
ingful parts is useful in at least two aspects. First of all,
a computation-intensive problem can often be solved more
efficiently by a divide-and-conquer strategy. This is the gen-
eral promise offered by the parallel computation paradigm,
for which the problem of graph partitioning has received a
great deal of attention [1, 8, 13, 14]. Here a network of pro-
cessors are to be partitioned to achieve load-balancing while
having only a small number of communication links be-

tween partitions. In spectral mesh compression [11] and wa-
termarking [20], a large mesh is first decomposed into many
small patches so that the cost of computing the eigenvectors
becomes manageable. Secondly, the segmented parts can re-
veal useful structural properties of a 3D shape to facilitate
further processing and analysis, e.g.,

• in geometric morphing applications [24] and for many
higher-level vision-type tasks [3], mesh segments are
used to establish shape correspondence;

• in mesh parameterization, the segmented mesh patches
are preferably flat or they can approximate simple
shapes such as cylinders or cones since this facilitates
flattening of the patches to reduce stretching [26];

• in collision detection, a proper segmentation allows ef-
ficient bounding-volume computation [17];

• and finally, meaningful decomposition of a mesh also
helps control skeleton extraction in animation [12].

Our initial interest in mesh segmentation comes from ob-
ject recognition. That is, we wish to decompose a mesh into
visually meaningful parts. To this end, we rely on the the-
ory of object recognition by partsgiven by Hoffman and
Richards [9] for our perception-based mesh segmentation.
This theory stipulates that humans perform object recog-
nition by first decomposing an object into several parts and
that such a decomposition is derived from the so-calledmin-
ima rule. The minima rule [9] states that human vision de-
fines part boundaries along negative minima of principal
curvatures, i.e.,concave creases, on surfaces. Hoffman and
Singh [10] point out further that the deeper the concavity,
the more salient the part boundaries would be.

1.1. Related work

The use of the minima rule or deep concavity for 3D
mesh segmentation is not new but rather recent [21, 24, 12].
Page et al. [21] propose a fast marching algorithm where
the height map used for their watershed algorithm impedes
climbing up negative principal curvature hills, honoring the
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Figure 1. Segmenting an L-shaped object. (a)
The base of the top part is surrounded by con-
cavity (image from [21]) and both watershed
and clustering can segment properly. (b) Wa-
tershed fails. (c) Our algorithm for 2-way clus-
tering still works.

minima rule. Shlafman et al. [24] and Katz et al. [12] define
pairwise distances between mesh faces in their clustering-
based segmentation algorithms so that faces separated by
deep concave regions are considered further apart and are
less likely to be grouped into the same patch.

In contrast, the earlier watershed-based scheme by Ma-
gan and Whitaker [18] favors partition boundaries along
high curvature regions and does not single out concavity. As
many have pointed out [24, 12], one common problem with
the watershed approach is over-segmentation. Even with a
post-processing step involving patch merging, counterintu-
itive segmentation can still result. A more serious problem
with watershed however is that although the height map def-
inition can discourage the algorithm from crossing certain
region, e.g., region of deep concavity, it is difficult to pre-
vent the algorithm from using close-by, alternative route to
just avoid the “danger zone” and flooding a region it is not
supposed to venture into. This is illustrated in Figure 1.

Other mesh segmentation algorithms include convex de-
composition [4], face merging in the context of mesh deci-
mation [6], and skeletonization and space sweep [17]. Their
pros and cons have been well documented by Katz et al. [12]
and their work seems to be able to produce the best quali-
tative result for 3D mesh segmentation to date. This algo-
rithm improves upon their earlier work [24] onK-means
clustering on mesh faces. It first defines pairwise distances
between mesh faces and iteratively refines a set ofk repre-
sentatives, one for each patch in the decomposition yet to be
constructed, wherek is determined using a heuristic. Each
face is then assigned a probability of belonging to a patch
for all patches. Thresholding these probabilities results in an
initial grouping of the faces while leaving some number of
ungrouped faces, those with fuzzy probabilities, infuzzy re-
gions, as shown in Figure 2. Precise partitioning over the
fuzzy regions are constructed using a graph min-cut proce-
dure applied to each pair of neighboring clusters in the ini-
tial grouping. This approach can be made hierarchical eas-
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Figure 2. Steps of fuzzy clustering [12] in the
binary case (images from [12]). (a) Proba-
bilities. (b) Fuzzy decomposition from initial
grouping, where red indicates fuzzy region. (c)
Final decomposition after graph min-cut.

ily via recursion. It can also accommodate very large mod-
els by performing clustering on a simplified mesh and prop-
agating the result to the full model.

Neither data clustering nor min-cut graph partitioning
is a new problem. In fact, they are closely related and
have received a great deal of attention in the computer vi-
sion [3, 23, 25], machine learning [2, 19, 22], graph draw-
ing [14], and parallel computing literature [1, 8, 13]. One
of the better known and effective approaches is spectral
clustering, where the leading eigenvectors of an affinity or
weighted graph Laplacian matrix are used to construct alow
dimensional embeddingfor which the clustering problem is
more easily solved.

Spectral embedding has been exploited by Gotsman et
al. [7] recently to solve the spherical parameterization prob-
lem. But to the best of our knowledge, it has not been seri-
ously considered for 3D mesh segmentation. The only men-
tioning of the use of spectral method for mesh segmen-
tation we have found is in [12], where they implemented
the normalized cut algorithm of Shi and Malik [23] and re-
ported varied results. Note that this algorithm uses the sec-
ond smallest generalized eigenvector of the graph Lapla-
cian and it can be considered as a special case of the general
spectral embedding approach. It has been shown that more
eigenvectors tend to produce better clustering results [1].

1.2. Our approach

In this paper, we apply spectral clustering techniques
to 3D mesh segmentation for the first time. We first con-
struct an affinity matrix which encodes the likelihood of
each pair of mesh faces belonging to the same mesh par-



tition. We utilize the distance matrix used by Katz et
al. [12] to discourage faces separated by deep concave re-
gions from being grouped together; this essentially mod-
els the minima rule [9]. Then an appropriate numberk of
the leading eigenvectors of the affinity matrix are com-
puted. Since only a small number of eigenvectors are
needed, we use ARPACK [15] for this task. These eigen-
vectors are used to obtain an embedding of the mesh
faces onto thek-dimensional unit sphere. The remain-
ing task involves straightforwardK-means clustering on
points embedded in the sphere, where we propose an ef-
fective heuristic to obtain a good starting point for faster
convergence and avoidance of bad local minima.

In hindsight, while our approach performsK-means in
the embedding space, the clustering algorithm of Katz et
al. [12] can be seen as a variation ofK-means with two
main modifications. First of all, the distance metric used is
no longer Euclidean but a combination of geodesic and an-
gular distance over the mesh surface. Moreover, the cluster
“centroid” is constrained to be one of the mesh faces — this
is the patch representative being sought for. The use of spec-
tral clustering can help accomplish two things:

1. The nontrivialK-means clustering mentioned above
is transformed into a clustering problem on the points
distributed over thek-dimensional unit sphere, ob-
tained by eigenvectors of the affinity matrix, for which
a standardK-means algorithm is applicable.

2. With this transformation, the clustering problem be-
comes easier since the embedded data points tend to
exaggerate the underlying group structures — this is
implied by the so-called Polarization Theorem [2].

In Section 2, we discuss these issues in more details,
showing from a theoretical point of view why spectral em-
bedding and clustering can be expected to work well for 3D
mesh segmentation.

1.3. Contribution and limitation of our approach

Our contribution is the realization of spectral clustering
for 3D mesh segmentation, making aware of the great po-
tential of this well-practiced approach to solve a relatively
new problem and opening the door for further investigation.
Through careful study of various existing spectral cluster-
ing techniques [1, 19, 22, 23, 25], which all vary slightly
from each other, we arrive at an algorithm appropriate for
mesh segmentation. Some advantages and features of our
spectral clustering approach are:

• Efficiency: Computing a few leading eigenvectors is
quite efficient using ARPACK. Nevertheless, it is well
known that eigenvector/eigenvalue computations can
be made significantly faster through parallelization or
multilevel approaches [8, 14]. We would like to look

(a) Toy figure. (b) Horse.

Figure 3. Some meshes to be segmented.

into this in the near future. Also, we have used the
full affinity matrix in this paper without thresholding.
Since great speedup can be achieved if the matrix can
be made sparse, we would also like to exploit this since
for spectral clustering, the precision requirement on
the eigenvectors is not very high [22].

• Simplicity: Compared to the fuzzy clustering approach
of Katz et al. [12], our algorithm is much simpler to
implement. There is no need for the sophisticated it-
erations or constrained graph min-cut, an eigensolver
and an implementation ofK-means clustering are suf-
ficient. The whole algorithm can be programmed in
Matlab with less than 100 lines of code. Our C++ im-
plementation is also very compact.

• Spectral clustering can be made hierarchical by recur-
sion and programmed to work for very large meshes
with the aid of mesh simplification.

Our current algorithm can produce high-quality mesh
segmentation on reasonably “clean” models, i.e., models
on which the visually salient segmentation boundaries are
mostly around concave regions, e.g., the toy figure model
in Figure 3(a). In these cases, our algorithm gives visu-
ally meaningful segmentation with smooth boundaries. The
more difficult situation arises when the intended partition
boundary, i.e., one that a human would pick, has to pass
through a convex or otherwise featureless region. For exam-
ple, consider the shoulder joint of a horizontally stretched
arm or the leg joint of the horse model in Figure 3(b). At
this point, our algorithm is not guaranteed to find the best
boundary, especially when a greater portion of this bound-
ary lies in featureless regions. Note that the fuzzy clustering
approach of Katz et al. [12] would only work when the best
boundary happens to be a min-cut; this is not always go-
ing to be the case however, as we shall explain later.

Finally, when the mesh model is noisy and the intended
boundary is tampered with nearby concave edge sequences,
the computed segmentation boundary would most likely be
jaggy using either our approach or that of Katz et al. [12].
In this case, one may need to perform explicit smoothing or
shortening of the boundary, e.g., using 3D snakes [16].



1.4. Organization of the paper

In the next section, we present some theoretical under-
pinnings of spectral embedding and motivate its use for
clustering. In Section 3, we give a detailed description of
the spectral mesh segmentation algorithm we use and dis-
cuss how the various parameters can be chosen. In Sec-
tion 4, we demonstrate the effectiveness of spectral cluster-
ing for mesh segmentation through numerous examples and
provide some timing analysis. We also illustrate some lim-
itations of our current algorithm. Finally, we conclude in
Section 5 and suggest possible future work.

2. Polarization: spectral clustering works

In this section, we outline the Polarization Theorem of
Brand and Huang [2], thus motivating the use of spec-
tral embedding for clustering and mesh segmentation. Con-
sider a mesh withn faces that we would like to segment.
Throughout this paper, we assume that the mesh graph is
connected. If the mesh has more than one connected com-
ponents, each component can be segmented separately. Sup-
pose that we have constructed a symmetric affinity matrix
W ∈ Rn×n, where0 ≤ Wij ≤ 1 for all i andj. ThusWij

can encode the likelihood that facei and facej can be clus-
tered into the same patch. One may view the affinity ma-
trix as the adjacency matrix of a complete (weighted) graph
whose nodes are the mesh faces.

It is customary to normalize the affinity matrixW . The
most obvious way to do this is to divide each affinity value
Wij by the total affinity, or vertex weight, at nodei. If we
denote byD the (diagonal) degree matrix whosei-th diag-
onal element is the sum of thei-th row of W , then the re-
sulting normalized affinity matrixL = D−1W ; this is the
matrix used by Shi and Malik [23] for their normalized cut
algorithm. However,L is no longer symmetric in general.
In order to obtain a symmetric normalized affinity matrix,
which would possess more desirable properties, we use

N = D−1/2WD−1/2

in the spirit of spectral graph theory [5] and other spectral
clustering approaches [19, 22, 25]. Note that then for eachi
andj, Nij = Wij/

√
DiiDjj .

Let e1, e2, . . . , en be the orthonormal eigenvectors ofN
corresponding to eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λn. De-
note by Λ the diagonal matrix whose diagonal elements
are the eigenvalues in descending order. LetV ∈ Rn×k

be formed by thek eigenvalue-scaledleading eigenvectors√
λ1e1, . . . ,

√
λkek of N . It is well known from linear alge-

bra that then×n matrixQ = V V T , whereV T is the trans-
pose ofV , is the best rank-k approximation ofN with re-
spect to the Frobenius norm; equivalently, the most energy-
preserving projection ofN to rankk.

One may view the rows ofV , each being ak-dimensional
vector, as embeddings of the original data points into ak-
dimensional feature space. Now we normalize each row
of V to unit length to obtain a new embeddinĝV . Let
Q̂ = V̂ V̂ T , which we refer to as theassociation matrix.
Clearly, the rows of̂V , v̂1, . . . , v̂n, give an embedding of
the original data points into thek-dimensional unit sphere
centered at origin. Moreover,̂Qij = v̂iv̂T

j = cosθij gives
the cosine of the angle between unit vectorsv̂i andv̂j .

The Polarization Theorem states that as the matrixN is
projected to successively lower rankk, the sum of squared
angle-cosines

∑
i,j(cosθij)2 is strictly increasing. Alge-

braically, this implies that the cosine values will be more
and more polarized towards+1 and−1. Geometrically, this
suggests that pairs of embedded points on the unitk-sphere
will either be clustered closer or repulsed further. Further-
more, a corollary of the theorem ensures that points of high
affinity, i.e., with a higher probability of being grouped to-
gether, will move toward each other ask decreases, while
other pairs will move more and more apart. This implies that
clustering in thek-dimensional embedding space would be
easier than clustering the original set of data points. In ad-
dition, clustering of the embedded pointsv̂1, . . . , v̂n can be
accomplished by the standardK-means clustering simply
using the Euclidean distance metric.

Our experiments confirm the polarization phenomena for
entries in the association matrixQ compared with entries
in the original affinity matrixN and entries in the higher-
rank approximation ofN . In practice however, we find
theeigenvalue-scaledembedded coordinateŝv1, . . . , v̂n to
work unfavorably for mesh segmentation. Rather, embed-
ded coordinates obtained without scaling the eigenvectors
by eigenvalues work better; these embeddings have also
been used by several authors [19, 22, 25] for spectral clus-
tering with success. The association matrices derived from
these also exhibit polarization, as shown in Figure 4.

Note that both the toy figure and the sword are easy to
cluster in the embedding space as the association matrix is
almost perfectly polarized. The horse model, on the other
hand, is more difficult to deal with, even in the embed-
ding space. In all cases however, clustering in the embed-
ding space is clearly easier than using the affinity matrix.

Finally, it is worth noting that only favoring a low-
dimensional embedding because of its better polarization
property is not always desirable for mesh segmentation.
This is because the less number of eigenvectors to use, the
larger the distortion associated with the embedded coordi-
nates. This may result in poor segmentation since the asso-
ciation matrix would no longer be an accurate enough ap-
proximation of the affinity matrix. In the next section, we
discuss how to choose the number of eigenvectors for em-
bedding and clustering, along with our spectral mesh seg-
mentation algorithm.
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Figure 4. Histograms of entries in the affinity
matrix vs. those in the association matrix. (a),
(b): for the toy model in Figure 3(a). (c), (d):
for the sword model given in Figure 5(e). (e),
(f): for the horse model in Figure 3(b).

3. Spectral mesh segmentation

Spectral clustering takes as input an affinity matrix and
uses its firstk largest eigenvectors to compute an embed-
ding and determine the grouping of mesh faces.

3.1. Affinity matrix

In order to partition a mesh along its edges, we group
faces instead of vertices, i.e., we construct the affinity ma-
trix with respect to the connectivity of the dual of the mesh
graph. To perform intuitive segmentation, the affinity ma-
trix W should encode mesh structural information which re-
flects how faces are grouped in accordance with human per-
ception. The pairwise face distances used by Katz et al. [12]
roughly model the minima rule and we use them to define
the affinity matrix.

In the distance definition, both geodesic and angular dis-
tances between mesh faces are accounted for. There are two
important parametersδ and η. The parameterδ is a real

number between 0 and 1 controlling the relative importance
of geodesic distance and angle distance for mesh segmen-
tation. In most of our experiments, angle distance plays a
more dominant role for visually meaningful segmentation.
Hence,δ is set close to zero, e.g.,δ ∈ [0.01, 0.05]. A smaller
value ofη gives more weight to concavity in our segmenta-
tion. As we wish to exemplify the minima rule, we often set
0.1 ≤ η ≤ 0.2.

Once the pairwise face distances are obtained, the affin-
ity matrix is formed by a Gaussian kernel as

W (i, j) = e−dist(i,j)/2σ2
.

Clearly, 0 < W (i, j) ≤ 1, and closer faces share larger
affinities between them. Nonetheless, the use of a Gaussian
introduces a practical problem of how to choose its widthσ
for proper segmentation. Ifσ is too small, it may separate
faces which should have belonged to the same cluster. Ifσ
is too large, faces that should be in different clusters may
be falsely grouped together. In our experiments, we simply
chooseσ as an average,σ = 1

n2

∑
(1≤i,j≤n) dist(i, j), and

have found it to work quite well in practice. Other weight-
ing schemes for the distances and other choices ofσ are
possible, but to judge the usefulness of a particular choice
for general mesh segmentation would require further study.

3.2. Spectral clustering for mesh segmentation

Generally speaking, all the spectral clustering algorithms
proposed so far [2, 19, 22, 25] are intrinsically similar. They
use the eigenvectors of the affinity matrix. These eigen-
vectors inherit information from the affinity matrix and en-
hance clustering of data points in the embedding space, as
we have explained in Section 2. Our spectral mesh segmen-
tation algorithm is given as follows.

1. Compute the affinity matrixW defined in Section 3.1.

2. NormalizeW to N = D− 1
2 WD− 1

2 .

3. Compute thek largest eigenvectorse1, e2, . . ., ek of
N and construct matrixV = [e1, e2, ..., ek].

4. ComputeV̂ by normalizing each row ofV to unit
length.

5. Extract an initial guess of cluster centers forK-means,
say,ω1, ω2, . . ., ωk, from Q̂ = V̂ V̂ T , wherek is the
number of clusters desired.

6. PerformK-means clustering on the coordinates given
by the rows ofV̂ to obtain grouping of corresponding
mesh faces.

Steps 5 and 6 of our algorithm differ from previous
ones [19, 22, 25]. Ng et al. [19] performK-means cluster-
ing onV̂ directly, but this can easily run into bad local min-
ima, as our experiments can confirm. Weiss [25] suggests



to threshold the association matrix̂Q by first setting its en-
tries that are sufficiently close to unity to 1. Then facesi
andj are grouped if and only if̂Qij = 1. But this proce-
dure may lead to contradictory clustering results. Note that
we can actually combine both techniques to get around their
drawbacks. That is, we first threshold̂Q to obtain an initial
guess forK-means clustering. The initial guess need not be
really accurate yet it likely provides a good starting point
for the subsequentK-means algorithm.

In practice however, thresholding would require an ex-
tra parameter andK-means is quite sensitive to the choice
of the threshold. Therefore, we have elected to use a dif-
ferent heuristic to find an initial guess forK-means. Essen-
tially, if we know the numberc of clusters to segment the
mesh into, we would usec embedded points that aremutu-
ally furthest apartas a good initial guess to startK-means
clustering. These points can be found by a greedy algorithm
which first locates the smallest entry in̂Q, say,Q̂rs. Thenr
ands are furthest apart among all pairs of embedded points.
The algorithm then iteratively finds the next point in a min-
max fashion. That is, the new point is to minimize the max-
imum association from previously found points.

We use a similar scheme to determine the number of
clusters, which relies on the affinity matrix. We note that
there will typically be a point when adding a new represen-
tative face to the mix would dramatically increase the max-
imum affinity to previously included faces. This is when we
stop adding faces and arrive at the number of clusters. In
practice and as observed by others [19, 25], the number of
eigenvectors chosen should be the same as the number of
clusters. This way we have set the last parameter needed for
our spectral mesh segmentation algorithm.

4. Experimental results

We have applied our algorithm to various 3D models and
achieved some very good segmentation results; these are
shown in Figure 5 and Figure 6. The face count for these
meshes vary from about 50 to 4000. Evidently, our algo-
rithm works quite well on relatively clean models, as we
first stated in Section 1.3. Although we did not perform hi-
erarchical decomposition, by changing the number of eigen-
vectors (same as the number of clusters), we see that the al-
gorithm tends to segment in a hierarchical fashion. Note es-
pecially results for the toy and the sword.

The horse model, shown in Figure 6(e), is more challeng-
ing. The result we obtain is about the same as fuzzy cluster-
ing [12]. The bird example in Figure 6(h) illustrates the po-
tential problem of placing too much emphasis on angle dis-
tance. Since the faces between the back and body of the bird
form a consistent sharp convex region, these two parts are
separated inappropriately. Deceasing the importance of an-
gle distance or convexity can fix this problem. Result shown

Table 1. Execution times (in seconds) for our
spectral mesh segmentation algorithm.

No. faces Affinity Eigen. Clustering Total
496 0.17 0.16 0.02 0.35
800 0.51 0.37 0.03 0.91
1200 1.7 0.52 0.09 2.31
1619 2.7 1.1 0.17 3.97
2000 4.76 1.44 0.29 6.49
4000 21.35 6.5 1.72 29.57

for the hand model in Figure 6(i) appears to be excellent,
but this is rather deceiving since at the back, see Figure 6(j),
our algorithm does not perform well at all. This is due to the
presence of a shallow concave region around the knuckles.
We believe that this is a manifestation of a common prob-
lem for all the algorithms [21, 12, 24] that place a great deal
of emphasis on concavity. To obtain a more natural segmen-
tation, e.g., cutting away a finger at its base, one may need
to favor other factors, such as the cut length, over concavity.
The use of graph min-cut to partition the fuzzy region [12]
attempts at combining these factors, but its result will be
sensitive to the interplay between geodesic and angle dis-
tances and it is generally hard to chooseη andδ to ensure a
natural segmentation.

Finally, we report the timing of our algorithm in Table
1. These experiments were performed on an Intel Xeon 2.8
GHz machine with 1GB RAM. The majority of the time
is actually spent on constructing the pairwise distance and
affinity matrices. Comparatively, the actual clustering time
is almost negligible.

5. Conclusion and future work

In this paper, we report results from our preliminary
study on applying spectral clustering to 3D mesh segmen-
tation. From a theoretical point of view, we have shown
that clustering in the embedding space set up by the lead-
ing eigenvectors of the normalized affinity matrix should be
easier than clustering with respect to the affinity matrix it-
self, provided that an appropriate number of eigenvectors
are chosen — this is implied from the Polarization Theo-
rem [2]. The polarization phenomenon suggests that in the
embedding space, there is less ambiguity in terms of face
groupings. Thus the fuzzy region constructed therein is ex-
pected to be smaller than the one constructed from the orig-
inal affinities. This suggests that spectral embedding could
serve as a preprocessing step for fuzzy clustering.

With no attempt at post-processing the result of spec-
tral clustering, such as smoothing or graph min-cut [12],
we are able to obtain very good results on relatively clean
models. For more challenging models given in the paper,
the algorithm is not always able to produce the most natural



segmentation with smooth boundaries. We believe the prob-
lem illustrated is common to all the approaches so far. Ex-
plicit smoothing or shortening of the segmentation bound-
ary, e.g., using snakes [16], while not restricting them to lie
along mesh edges, appears to be promising.

In terms of improving efficiency, there are a number of
interesting directions to explore. These include the use of
parallel or multilevel eigensolver to improve speed, utiliza-
tion of the fast marching algorithm [21] to compute more
accurate geodesic distance, and also an investigation into
whether the affinity matrix can be made more sparse and
how the precision of the eigenvector computations can in-
fluence the segmentation result.

Finally, we believe that fully automatic 3D mesh seg-
mentation is still a rather difficult problem. Even with the
above issues resolved, one still needs to choose parameters
such asδ andη manually. Choices for the number of clus-
ters and the number of eigenvectors used in the embedding
are still ad-hoc and require more formal study.

Acknowledgments

This research is partially supported by an NSERC Dis-
covery Grant (No. 611370) and a MITACS grant (No.
699112) held by the second author. The authors would like
to thank Sagi Katz for the discussions and the anonymous
reviewers for their helpful comments to improve the paper.

References

[1] C. J. Alpert and S. Z. Yao, “Spectral Partitioning: The More
Eigenvectors, The Better,”Discrete Applied Mathematics
No. 90, pp. 3-26, 1999.

[2] M. Brand and K. Huang, “A Unifying Theorem for Spectral
Embedding and Clustering,” in C. M. Bishop and B. J. Frey
(eds),Proceedings of the Ninth International Workshop on
Artificial Intelligence and Statistics,Jan. 3-6, 2003.

[3] M. Carcassoni and E. R. Hancock, “Spectral Correspondence
for Point Pattern Matching,”Pattern Recognition,Vol. 36,
pp. 193–204, 2003.

[4] B. Chazelle and L. Palios, “Decomposition Algorithms in
Geometry,” in Algebraic Geometry and its Applications,
Springer-Verlag, C. C. Bajaj (eds), pp. 419-447, 1994.

[5] F. R. K. Chung,Spectral Graph Theory,CBMS, AMS, 1997.
[6] M. Garland, A. Willmott, and P. Heckbert, “Hierarchical

Face Clustering on Polygonal Surfaces”,Proceedings of
ACM Symposium on Interactive 3D Graphics,pp. 49–58,
2001.

[7] C. Gotsman, X. Gu, and A. Sheffer, “Fundamentals of Spher-
ical Parameterization for 3D meshes,”ACM Transaction on
Graphics,Vol. 22, No. 3, pp. 358-363, 2003.

[8] B. Hendrickson and R. Leland, “A Multilevel Algorithm for
Partitioning Graphs,”Proceedings of the ACM/IEEE confer-
ence on Supercomputing, Article No. 28, 1995.

[9] D. D. Hoffman and W. A. Richards, “Parts of Recognition,”
Cognition,Vol. 18, pp. 65–96, 1984.

[10] D. D. Hoffman and M. Singh, “Salience of visual parts,”
Cognition,Vol. 63, pp. 29-78, 1997.

[11] Z. Karni and C. Gotsman, “Spectral Compression of Mesh
Geometry,” Computer Graphics Proceedings, SIGGRAPH
2000, pp. 279-286.

[12] S. Katz and A. Tal,“Hierarchical Mesh Decomposition Using
Fuzzy Clustering and Cuts,”ACM Transactions on Graphics,
Vol. 22, No. 3, pp. 954–961, 2003.

[13] G. Karypis and V. Kumar, “A Fast And High Quality Multi-
level Scheme For Partitioning Irregular Graphs,”SIAM Jour-
nal on Scientific Computing,Vol. 20, No. 1, pp. 359-392,
1998.

[14] Y. Koren, L. Carmel, and D. Harel, “ACE: A Fast Multiscale
Eigenvector Computation for Drawing Huge Graphs,”Pro-
ceedings of IEEE Symposium on Information Visualization,
pp. 137-144, 2002.

[15] R. Lehoucq, K. Maschhoff, D. Sorensen, and C. Yang,
ARPACK, http://www.caam.rice.edu/software/ARPACK/.

[16] Y. Lee and S. Lee, “Geometric snakes for triangular meshes,”
Computer Graphics Forum,Vol. 21, No. 3, pp. 229–238,
2002.

[17] X. Li, T. Toon, T. Tan, Z. Huang, “Decomposing Polygon
Meshes for Interactive Applications,”Proceedings of the
Symposium on Interactive 3D Graphics,pp. 35–42, 2001.

[18] A. Mangan and R. Whitaker, “Partitioning 3D Surface
Meshes using Watershed Segmentation,”IEEE Transactions
on Visualization and Computer Graphics,Vol. 5, No. 4,
pp. 309–321, 1999.

[19] A. Y. Ng, M. I. Jordan, Y. Weiss, “On Spectral Clustering:
Analysis and An Algorithm,” inAdvances in Neural Infor-
mation Processing Systems14, pp. 857–864, 2002.

[20] R. Ohbuchi, S. Takahashi, T. Miyazawa, and A. Mukaiyama,
“Watermarking 3-D Polygonal Meshes in the Spectral Do-
main,” Proceedings of Graphics Interface,pp. 9-18, 2001.

[21] D. L. Page, A. F. Koschan, and M. A. Abidi, “Perception-
Based 3D Triangle Mesh Segmentation Using Fast Marching
Watershed,”Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition,pp. 27–32, 2003.

[22] G. L. Scott and H. C. Longuet-Higgins, “Feature Grouping
by Relocalisation of Eigenvectors of the Proximity Matrix,”
in Proceedings of the British Machine Vision Conference,
pp. 103–108, 1990.

[23] J. Shi and J. Malik, “Normalized Cuts and Image Segmenta-
tion,” Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition,pp. 731–737, 1997.

[24] S. Shlafman, A. Tal, and S. Katz, “Metamorphosis of Poly-
hedral Surfaces using Decomposition,”Eurographics 2002,
pp. 219–228, 2002.

[25] Y. Weiss, “Segmentation Using Eigenvectors: A Unifying
View,” Proceedings IEEE International Conference on Com-
puter Vision,pp. 975–982, 1999.

[26] E. Zhang, K. Mischaikow, and G. Turk, “Feature-Based Sur-
face Parameterization and Texture Mapping,”ACM Transac-
tions on Graphics,to appear.



(a) 3 parts. (b) 5 parts. (c) 7 parts. (d) 9 parts.

(e) 2 parts. (f) 3 parts. (g) 5 parts. (h) 6 parts.

(i) 2 parts. (j) 3 parts. (k) 4 parts. (l) 5 parts.

Figure 5. Segmentation results showing hierarchical nature of spectral clustering.
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Figure 6. More segmentation results.


