
Structure-Preserving Retargeting of Irregular 3D Architecture

Jinjie Lin1 Daniel Cohen-Or2 Hao Zhang3 Cheng Liang1 Andrei Sharf4,1 Oliver Deussen5 Baoquan Chen1

1SIAT 2Tel-Aviv University 3Simon Fraser University 4Ben-Gurion University 5University of Konstanz

Figure 1: Retargeting of a real-world irregular 3D architectural model (photo at bottom-left corner) while preserving its structural style.

Abstract

We present an algorithm for interactive structure-preserving retar-
geting of irregular 3D architecture models, offering the modeler an
easy-to-use tool to quickly generate a variety of 3D models that re-
semble an input piece in its structural style. Working on a more
global and structural level of the input, our technique allows and
even encourages replication of its structural elements, while taking
into account their semantics and expected geometric interrelations
such as alignments and adjacency. The algorithm performs auto-
matic replication and scaling of these elements while preserving
their structures. Instead of formulating and solving a complex con-
strained optimization, we decompose the input model into a set of
sequences, each of which is a 1D structure that is relatively straight-
forward to retarget. As the sequences are retargeted in turn, they
progressively constrain the retargeting of the remaining sequences.
We demonstrate interactivity and variability of results from our re-
targeting algorithm using many examples modeled after real-world
architectures exhibiting various forms of irregularity.

1 Introduction

Generating a scene with a variety of models that share a common
characteristic or style is a challenging task. In the absence of a
concrete description of the target style, a common approach is to
synthesize by examples, where some notion of style in the example
is preserved in the generated models. A straightforward means of
style-preserving synthesis generates models consisting of contents
taken from the example while preserving their general relation. A
primary example is example-based texture synthesis [Wei et al.
2009] where the imitated styles are mainly of a local nature. Re-
cently, such techniques have been extended to preserve more global
structures in images [Risser et al. 2010; Wu et al. 2010].

Works on inverse procedural modeling can be regarded as abstract-
ing the structure present in the examples into a set of rules and then
synthesizing novel models based on the rules [Aliaga et al. 2007;

Stava et al. 2010; Bokeloh et al. 2010]. For effective rule extraction,
dominant presence of regularities in the examples is essential. In a
rather loose sense, works on image or model retargeting [Shamir
and Sorkine 2009] also represent a form of style-preserving synthe-
sis, where the style is signified by the salient features of the source
model. This direction has led to recent work on example-bases syn-
thesis of facade images [Lefebvre et al. 2010].

In this paper, we are interested in retargeting of 3D architectural ge-
ometry which preserves the structural style of an input piece. Our
focus is on the handling of complex structures, especially irregu-
larities in the example architectural piece. Specifically, the input
model does not exhibit dominant regular grids; it is typically com-
posed of regular substructures that vary in form and are arranged
in an irregular manner in 3D space. Our retargeting technique of-
fers a modeler an easy-to-use interactive tool to quickly generate a
variety of 3D models possessing a common structural style; see Fig-
ure 1. The large collection of models obtained provides a means for
creativity support [Shneiderman et al. 2006; Chaudhuri and Koltun
2010]; they can be explored by artists and engineers and stimulate
them during creative design and modeling.

Traditional retargeting methods focus on preserving salient features
while traditional example-based synthesis are aimed at reproducing
features at a local scale. Our technique works on a more global,
structural level of the input, e.g., it allows and even encourages

F

F

FF

S
S

F

S

S
R
R
R
R
R
R
R

R
R
R
R
R

R
R

R
R
R

R
R

R
R

F

(a) Input (b) Box hierarchy & Behavior attributes (c) Retargetable sequences & Retargeting order (d) Retargeting results

Figure 2: Major components of our retargeting algorithm. User interactively defines (b) the box hierarchy and behavior attributes (red:
replicated; green: scaled; blue: fixed). The rest of the algorithm is automatic. An ordered set of retargetable sequences is computed at
each level of the hierarchy — two are shown here in (c). Retargeting is executed by a traversal of the box hierarchy and operating on the
retargetable sequences in turn — from left to right, three such sequences are shown with a red border in (c).

replications of structural elements such as windows so as to mini-
mize stretching. Such minimization avoids deforming the elements
beyond what their semantic or engineering constraints would al-
low. Existing methods on retargeting architectural scenes have op-
erated on image data with the recent work of Wu et al. [2010] be-
ing structure-oriented. Their work focuses on retargeting detected
regular grid structures only. Many modern architectural models,
even the building facades alone, present amazing varieties includ-
ing irregularities in diverse forms (see figures throughout the pa-
per). Such models cannot be easily parsed by grammar-based meth-
ods [Wonka et al. 2003; Aliaga et al. 2007; Mueller et al. 2006], nor
can they be handled by the method of Wu et al. [2010] since the fa-
cade cannot be expressed by a grid, an aggregation of sub-grids,
nor is there a simple partition into floors of a regular structure. Our
technique aims to retarget architecture scenes exhibiting general ir-
regularities and it operates in the 3D object space.

To obtain a general solution to the structure-oriented retargeting
problem, a tie to semantic analysis is inevitable. Ideally, the retar-
geting should preserve certain semantics of the structural elements
of the input and certain semantic relationships among them. It is
difficult to learn automatically the semantics from the geometry of
a single input. Retargeting based purely on detected structural regu-
larities can result in much ambiguity, since a multitude of repeated
patterns can be present along any retargeted dimension; see Fig-
ure 2. Indeed, there is generally no unique way to define the most
meaningful retargeting result; the results depend on semantic inter-
pretations of the input which can differ significantly according to
design needs or user preference.

To incorporate semantics and alleviate the issue of ambiguity, our
retargeting algorithm starts with a semi-automatic analysis of the
input architectural structure. The user interactively partitions the
input and hierarchically groups the elements as a means to define
the semantic interpretation and influence the retargeting behavior.
Regardless of the geometric complexity of the elements, the user
only needs to manipulate their axis-aligned bounding boxes. Each
box is tagged with an attribute that indicates its behavior under re-
targeting; a box can be scaled (S), replicated/deleted (R), or stay
intact (F). Altering the hierarchy or behavior attributes can lead to
characteristically different variations.

The retargeting step operates on the set of bounding boxes. The
boxes are replicated or scaled according to the resizing parameters
while respecting the user-defined semantic properties and automat-
ically detected geometric interrelations between the boxes such as
alignments. The computational challenge is to achieve interactive
retargeting amid the multitude of constraints. Instead of formu-

lating and solving a complex constrained optimization, we break
down the problem into simpler-to-solve pieces. At the core of our
approach is a decomposition of a given irregular arrangement of
boxes into a set of disjoint sequences. Each sequence is a 1D struc-
ture that is relatively straightforward to resize. As the sequences are
retargeted in turn, they progressively constrain the retargeting of the
remaining sequences. We develop a scheme to find and order these
sequences to more effectively simplify the retargeting problem at
each step. Figure 2 illustrates the major steps of our algorithm.

We demonstrate interactivity and variability of results from our re-
targeting algorithm using many examples modeled after real-world
architectures exhibiting various forms of irregularity. The produced
model varieties can be easily plugged into a virtual scene for movie
or game production, urban planning, and architectural design. Our
technique is not designed for controlled editing. Instead, it can be
used to quickly and easily generate many models, even including
“surprises”, for a modeler to choose from and be creative.

2 Related work

Several topics involving scene analysis and modeling are relevant
to our work. In general, our goal of structure-preserving retargeting
differs from those of existing works on image-space retargeting and
example-based texture synthesis. Most works on structural analy-
sis, particularly those on inverse procedural modeling, strive for de-
terministic structure inference based on various heuristics. We aim
for interactive shape manipulation allowing semi-automatic analy-
sis to resolve the inevitable ambiguity resulting from different se-
mantic interpretation of the structural elements.

Image-space retargeting. The well established example-based
texture synthesis approach [Wei et al. 2009] has led to advances
in media retargeting [Shamir and Sorkine 2009], with a few recent
works focusing on architectural textures [Lefebvre et al. 2010; Wu
et al. 2010]. Most works on image retargeting have been salience-
driven. Lefebvre et al. [2010] cut the source image into horizontal
or vertical strips to avoid important features and then reassemble
them into a new size. Wu et al. [2010] resize architectural models
in an image by explicitly exploiting symmetry. Their work shares
similarities with our work in that it also analyzes the structure of the
input prior to retargeting. However, their method is in image space
and more importantly, their symmetry summarization is designed
to retarget regular structures formed by a collection of grids. Our
work aims to handle general irregular structures.

Structural analysis. Many recent works attempt to detect reg-
ular patterns in a scene based on symmetry analysis, e.g., [Pauly
et al. 2008; Mitra et al. 2010]. The symmetric elements can then
be organized into a hierarchy [Wang et al. 2011] or to infer a gen-
erative model [Mueller et al. 2007; Stava et al. 2010; Bokeloh et al.
2010]. In particular, the work of Stava et al. [2010] on inverse pro-
cedural modeling is more relevant to our work. They analyze a
more general pattern than a facade aimed at learning the irregular
structure therein in order to generate an L-system that describes it.
New structures can then be generated by modifying the parameters
of the L-system. The automatic analysis problem is indeed quite
challenging. Such an analysis typically attempts to infer, determin-
istically, the underlying generative model. However, the generative
procedures behind a pattern, in particular an architectural piece con-
taining irregularities, are often not unique and subject to different
semantic interpretations. The goal of our work is orthogonal to that
of automatic structure inference; we focus on structure-preserving
interactive model generation. With user involvement in the model-
ing loop, we are able to obtain different forms of editable structures
which would lead to more varied model creations.

Grammar-based facade modeling. In the last decade, proce-
dural modeling has received much attention in urban architecture
modeling, e.g., [Wonka et al. 2003; Mueller et al. 2006; Mueller
et al. 2007; Aliaga et al. 2007; Lipp et al. 2008]. These works
develop shape grammars and show their usefulness for modeling
facades and architectural models in general. Varying the grammar
parameters allows modifying the architectural structure. The gram-
mar scripts can be defined manually [Wonka et al. 2003; Mueller
et al. 2006], automatically [Mueller et al. 2007], or with an interac-
tive visual editing tool [Lipp et al. 2008]. The grammars strongly
exploit dominant regularities in the models. Inferring the same from
irregular structures is much more challenging. With user assistance,
our retargeting method is designed to handle irregular architectural
geometry. Instead of working from a pre-set procedure, our tool
can work directly with existing 3D models from various sources.

The model synthesis method of Merrell and Manocha [2008] takes
an existing input model and generates many complex variations
while respecting a local constraint, namely every point in the output
is locally identical to some point in the input. Aliaga et al. [2007]
present an interactive system with objectives similar to ours. They
aim at creating novel buildings that preserve the style of the input
model. Like [Mueller et al. 2007], they use grammar to describe
the structure of a building. The global structure of the building
is assumed to have a hierarchical regular structure consisting of a
grid with regular floors. This assumption allows the use of a tem-
plate grammar to describe the floor patterns. Their method does not
maintain vertical coherence and is not designed to deal with irregu-
lar architectural structures in general.

Structure-preserving editing. Our object-space retargeting is
related to structure-preserving shape editing [Kraevoy et al. 2008;
Gal et al. 2009; Cabral et al. 2009; Wang et al. 2011]. Kraevoy et
al. [2008] introduce an axis-aligned resizing of shapes that pre-
serve differential properties of certain object-space features, al-
lowing them only to rescale isotropically. Similarly, Cabral et al.
[2009] deform architectural models while constraining the angles
of rectilinear features. In contrast to our work, these methods are
oblivious to the semantics of the model’s elements. Our work shares
more conceptual similarity with iWires [Gal et al. 2009] in the sense
that the input shape is expressed by a set of elements, boxes in our
case and wires in theirs, and the editing is aware of the element
properties and their inter-relations. However, we explore a com-
pletely different problem as we allow and even encourage the repli-
cation or deletion of model elements during retargeting; iWires still
remains a tool for continuous shape deformation.

Figure 3: The box compatibility graph of a 2D arrangement of
boxes (left) and the set of retargetable sequences obtained (right).
Primary sequence is in red. Note that compatibility between hori-
zontally adjacent boxes requires common attribute and height.

3 Retargetable sequences

One may approach the retargeting problem using constrained op-
timization. However, in the presence of structure irregularity, it is
difficult to determine what the most meaningful result is; multiple
solutions can often be deemed desirable. Moreover, we aim for an
interactive tool which a complex optimization may not allow; the
complexity is inherent to the discrete nature of our problem and the
inhomogeneity of the retargeting constraints.

Breaking down into sequences. We have opted not to formu-
late the retargeting task as an optimization problem. Instead, we
compute one solution that fulfills the multitude of retargeting goals.
On one hand, the user imposes semantic constraints including hier-
archical grouping of the structural elements of the input and their
desired behavior under retargeting. On the other hand, adjacency
relations, as well as alignments, between the elements or groups of
elements constrain their movement.

To achieve interactivity, we break down the problem into simpler-
to-solve pieces. Specifically, we decompose a given irregular ar-
rangement of structure elements into a set of disjoint sequences.
For lack of a better term, we call these sequences retargetable to
signify the fact that they are relatively straightforward to retarget.
We use the sequences to express intra-relations within a sequence
and inter-relations among different sequences of the model. A re-
sizing operation then redistributes the elements in a sequence onto
a resized space subject to maintaining these relations. Our goal
is for the sequences to progressively simplify the problem, each
contributing to the simplification as much as possible. Ideally, we
would like the result computed for each retargetable sequence to
maximally constrain the retargeting of the remaining sequences.

Primary and secondary sequences. Given an arrangement of
structural elements (the retargeting space), the retargeting of the
very first sequence is unconstrained and its result dominates the
overall end result. We call this sequence the primary sequence.
The remaining sequences are the secondary sequences, which are
retargeted in turn and constrained by results computed for previous
sequences. To more stringently constrain the remaining sequences,
the primary sequence needs to be long, i.e., encompassing more
structural elements. At the same time, it is still an essentially one-
dimensional structure to remain (easily) retargetable.

4 Algorithm overview

The input to our algorithm, the source model, is a mesh representing
an architectural piece. Operating at the coarse, bounding box level
allows the algorithm to work directly on possibly non-clean on-line
models, such as those from Google Warehouse. The retargeting
algorithm works in two steps:

1. The first is an offline structural analysis of the source model
which produces: a) an attributed hierarchical tree representa-

tion of the structural elements of the source and their group-
ing; b) alignment constraints between the elements; and c) a
set of retargetable sequences.

2. The second step, the retargeting step, is an online, interactive
process which dynamically retargets the source based on user-
specified resizing parameters.

The retargeting operates on the retargetable sequences in an appro-
priate order based on the hierarchy while respecting various intra-
and inter-sequence constraints. Details of the two steps are given in
Sections 5 and 6, respectively.

Assumptions. Technically, our algorithm can take as input any
3D architectural model obtained from various sources. However, to
obtain meaningful results, we assume that the structural elements
of the 3D source model can be symbolically expressed by a non-
overlapping tessellation of axis-aligned (to one of the canonical
axis directions) boxes, e.g., see Figure 3. Except for rare instances,
this is indeed the case for most contemporary architectures, as ev-
idenced by examples shown throughout the paper most of which
are modeled after real-world buildings. Note that this assumption
does not preclude the handling of non-rectangular, e.g., curved, el-
ements, e.g., see Figure 9 (third row) — the structure enclosed by
a box can assume an arbitrary shape. To generate variations from
the source, we assume that the resizing is performed along one di-
mension at a time. The retargeting result depends on the ordering
of the dimensions, a positive (side) effect of which is that multiple
variations may be produced towards the same final target size.

Bounding boxes and hierarchy. This step constitutes a user-
directed semantic analysis of the source model. First, the user in-
teractively defines a semantic grouping of the structural elements of
the source. Each element or group of elements is characterized by
an axis-aligned bounding box. Grouping of elements is intended to
allow them to behave as a whole, e.g., to be replicated. In turn, the
grouping can define a hierarchical tree representation of the boxes,
which we call the box hierarchy tree; see Figure 2 for a two-level
box hierarchy. Along the process of defining the hierarchy, the user
tags each box in the hierarchy with one of three behavior attributes
which indicates the box’s behavior under retargeting.

Box alignment. Preservation of proper alignment between the
structural elements or their corresponding boxes is a natural con-
straint to enforce for retargeting of architectural models. Our anal-
ysis automatically detects alignments between all the boxes, specif-
ically their faces, at the bottom (finest) level of the hierarchy only.
Instead of recording all alignment pairs, we use a look-up table
which stores for each horizontal side of each box a unique align-
ment index — box sides sharing the same index are aligned in the
input model. These alignment indexes are propagated from the bot-
tom level up in the hierarchy as long as the box sides coincide.

Retargetable sequences. We compute a set of retargetable se-
quences at each node of the box hierarchy. Given a set of boxes
forming a retargeting space (these boxes tessellate the bounding
box associated with a node in the box hierarchy), we first define a
box compatibility graph where two boxes are connected by an edge
if they are compatible. Intuitively, two boxes are compatible if it is
straightforward to retarget them in a sequence; see Figure 3 for an
example and Section 5 for the definition of compatibility.

Computation of the retargetable sequences is via a constrained
longest-path graph traversal over the compatibility graph. After
finding the primary sequence which spans the whole height of the
retargeting space for vertical retargeting (retargeting along the other
two dimensions is similar), the secondary sequences are computed
by applying the same scheme to the compatibility graph after re-
moving all nodes and edges belonging to sequences obtained so far.

Figure 4: Different retargeting results by changing the behavior
attribute of one box (from S to R). The behavior attributes of the
finest-level boxes are shown in Figure 3.

Figure 3 shows the decomposition of a facade into a primary (red)
and a few secondary sequences.

Structure-preserving retargeting. To resize along the vertical
direction, we traverse a sequence hierarchy tree in depth-first order.
The sequence hierarchy is constructed from the box hierarchy by
reordering its nodes based on the computed retargetable sequences.
Specifically, sequences at each node in the box hierarchy are sorted
from primary to secondaries and within each sequence, the boxes
are ordered along the sequence. The retargeting of each sequence
is constrained by a) the available distributable length (positive for
stretching and negative for contraction); b) the behavior attributes
associated with boxes along the sequence; and c) alignment con-
straints enforced by boxes from previously retargeted sequences.
Section 6 describes the above in detail.

The 3D picture. While our algorithm is designed to work on 3D
arrangements of boxes, most illustrations are 2D to more intuitively
convey the key ideas. We mainly use the example in Figure 2 to
illustrate our retargeting algorithm. Furthermore, we focus on ex-
plaining concepts and procedures involved with a vertical retarget-
ing session in Sections 5 and 6.

The only step of our algorithm that is dimension-independent is the
box hierarchy construction. All boxes are axis-aligned 3D boxes
and the same 3D box hierarchy is used for retargeting in all direc-
tions. The behavior attributes depend on the retargeting dimension.
For example, a door can be repeated along the horizontal direction
but not along the other two directions. In our system, each box is
tagged with three behavior attributes, one per direction. For verti-
cal retargeting, box alignment is in reference to the top and bottom
faces of the boxes. For horizontal retargeting, top and bottom are
replaced by left and right, and for retargeting along the depth, by
front and back. The box compatibility graph is defined accordingly,
which results in different retargetable sequences and sequence hier-
archies for different retargeting directions.

5 Structural analysis

Given the source model, the user first interactively defines the box
groupings to obtain a box hierarchical graph. Box alignments are
then detected and stored in a look-up table. Finally, retargetable se-
quences are computed over the box compatibility graph constructed
over nodes in the box hierarchy. These steps are all part of the of-
fline structural analysis, with the first step a manual process and the
other steps performed automatically.

Bounding boxes and hierarchy. The user first defines an axis-
aligned bounding box using a series of cutting planes for each struc-
tural element of the source including window, balcony, door, etc.
These boxes together form a non-overlapping tessellation of the 3D
space occupied by the input. The user then defines a hierarchical
grouping over the boxes in a recursive, bottom-up fashion. This
results in a box hierarchy tree whose nodes correspond to bound-
ing boxes and edges signify box containment. The root bounds the
whole model and leaves contain the actual structural elements.

Grouping of structural elements of different forms reflects an un-
derstanding of the model semantics. In our current implementation,
the finest-level boxes and the box hierarchy are defined manually.
The number of finest-level boxes depends on the complexity of the
input and it varies from tens to a hundred. The complexity of the
hierarchy is dictated by the extent of fine-grained control the user
desires and the model semantics. The typical number of levels in a
box hierarchy is between two to five, e.g., see Figure 2(b).

Behavior attributes. Each box in the hierarchy is tagged by the
user with a behavior attribute: an F -box must remain intact; an R-
box can only be replicated or deleted; and an S-box can only be
scaled. Changing these attributes, for even few boxes, is a quick
way of generating interesting variations. Figure 4 shows two differ-
ent retargeting results by changing only one box attribute.

While the box hierarchy is constructed bottom-up, tagging of the
behavior attributes is executed top-down to allow early stopping,
e.g., none of the lower-level boxes need to be tagged if the current
box is marked as anF . The default attribute is S since retargeting is
a scaling transform. Assignment of theR and F attributes depends
on knowing the semantics of the elements.

Box alignment. For vertical retargeting, horizontal faces (there
are two per box, one top and one bottom) of the finest-level boxes
determine potential alignment groups. In the source model, when a
number of faces align horizontally within an ε-precision and their
total area exceeds the average, they define an alignment group. An
alignment group is given a numerical index. If a face does not be-
long to any alignment group, its index is null. All the alignment in-
dexes define a look-up table Talign which stores all the horizontal
box faces with their corresponding alignment indexes. Similarly,
boxes at higher levels of the hierarchy inherit alignment indexes
from the finest-level boxes they contain if their faces coincide.

Box compatibility graph. We construct a compatibility graph
Cvi = (V C

vi
, EC

vi
) at each node vi of the 3D box hierarchy; the

graph is a 3D structure. Let i be the box at vi. The graph Cvi is
used to compute the retargetable sequences at node vi. Specifically,
these sequences form a decomposition of the arrangement of boxes
which tessellate box i — these boxes are the children of vi in the
box hierarchy, forming the retargeting space. These boxes, along
with two virtual terminal boxes, constitute the set of nodes of Cv .
The two virtual boxes are attached to the top and bottom of box i
and will serve at the start and end of the primary sequence.

An edge between two nodes in Cvi corresponding to boxes b1 and
b2 is defined if the boxes are compatible: b1 and b2 are compatible
if a) one horizontal face of b1 is adjacent to (not necessarily coin-
cides with) one horizontal face of b2; or b) one vertical face of b1

coincides with one vertical face of b2 and the two boxes b1 and b2

are of the same behavior attribute. Note that each axis-aligned box
has two horizontal faces and the remaining four are vertical faces.
One can easily observe that box compatibility is defined in such a
way that a vertical resizing of two compatible boxes is straightfor-
ward. In case b), regardless of the behavior attribute, the coincident
vertical face will simply remain so after a resizing. Figure 3 shows
a 2D box compatibility graph as an illustration.

e(0,-)
c(0,-) d(0,-)

a(0,-)
b(0,-)

e(0,-)
c(0,-) d(1,a)

a(0,-)
b(1,a)

e(0,-)
c(2,b) d(1,a)

a(0,-)
b(1,a)

e(2,d)
c(2,b) d(1,a)

a(0,-)
b(1,a)

e(3,c)
c(2,b) d(1,a)

a(0,-)
b(1,a)

e(3,c)
c(2,b) d(1,a)

a(0,-)
b(1,a)

(a) (b) (c) (d) (e) (f)

Figure 5: A simple 2D box compatibility graph and the longest-
path computation to find the primary sequence (orange). Visited
nodes are in gray and the pair in parentheses give the current stored
path length and the preceding node for that path.

Sequence construction. Given a 3D arrangement of boxes con-
stituting a compatible graph C, we first describe construction of the
primary sequence. Our scheme computes the longest-path in C via
dynamic programming, which traverses the graph starting from the
node that is at the bottom-front-left of the retargeting space. The
traversal is restricted in that it cannot move to the left, down, or
back to the front direction. During traversal, we record at each
visited node v a pair consisting of two pieces of information: the
length of the longest path from the starting node to v so far and the
predecessor node along that path. Figure 5 illustrates longest-path
computation on a simple compatible graph, showing how the pair
of values are updated and the resulting primary sequence.

Computation of the secondary sequences follows the same form of
computation, except that all the nodes and edges along previously
computed sequences are removed from the graph C. Note that this
may result in a disconnected graph C′. We still designate two vir-
tual terminal nodes. The bottom terminal is connected to the lowest
boxes in each disconnected component of C′, where a lowest box is
one whose bottom face has the smallest height. The top terminal is
defined similarly. Refer to Figure 3 for the primary and secondary
sequences computed over a simple yet full compatibility graph.

Note that each secondary sequence must keep track of the two boxes
that are attached to its two ends. We call these the top and bot-
tom anchor boxes for the sequence. An anchor box can belong to
a previously computed sequence or be a virtual terminal. During
dynamic retargeting, the anchor boxes are used to determine the
distributable height a secondary sequence receives, as well as to
keep track of where its top and bottom faces are as the preceding
sequences are retargeted.

Sequence hierarchy The sequence hierarchy is constructed of-
fline and it will be traversed during dynamic retargeting to de-
termine the order in which the primary and secondary box se-
quences will be retargeted. Consider a node v whose associ-
ated retargetable sequences are q1 (the primary), q2, . . ., qk, in
the order they were computed. Let the sequence of boxes for qi

be bi1, . . . , bimi , in order, along the sequence. Then the chil-
dren of v in the sequence hierarchy are sorted in the order of
b11, . . . , b1m1 , b21, . . . , b2m2 , . . . , bk1, . . . , bkmk ; see Figure 6 for
a simple illustrative example.

6 Structure-preserving retargeting

The on-line dynamic retargeting process is carried out one sequence
at a time with an order determined by a depth-first traversal of the
sequence hierarchy tree. When retargeting a particular sequence,
the sequence is given a height quantity (we again only describe ver-
tical retargeting in this section with the situation involving retarget-
ing along the other two directions easy to derive) to be distributed
among the boxes along the sequence. The precise positioning of the
boxes is determined by the distribution subject to global alignment
constraints as dictated by already retargeted boxes. See Algorithm 1
for pseudocode for the on-line retargeting process.

q22,2

q1

q22,1

q2

Sequence hierarchy

q1 q2

 Sequences

q22,2q22,1

root

Level 1

 Level 2
(b22 only)

Box hierarchy

b23

b22

b21

b13

b12

b11

Figure 6: Example of a partial sequence hierarchy tree (right) with
its corresponding box hierarchy (left). Oval-shaped nodes in the
sequence tree represent retargetable sequences, denoted by the q’s.
A depth-first traversal of the sequence hierarchy yields the follow-
ing sequences retargeted in order: q1, q2, q22,1, q22,2, Boxes
b21 and b23 are not processed in the retargeting order since their
behavior attributes are of type of F .

Algorithm 1 Pseudocode: On-line retargeting.
Input: b = Bounding box of the whole model

for each retargetable sequence qi of b in order do
move qi to align its bottom with its bottom attachment
determine the distributable height ∆H
distribute ∆H to boxes of qi

maintain and update soft alignments
for each box bi of the sequence qi in order do

recursively retarget bi

end for
end for

Retargeting order. The retargeting order is determined by
traversing the sequence hierarchy in depth-first order, following
edges connecting the nodes, i.e., the boxes. However the retargeting
is done on the encountered sequences. A sequence may be consid-
ered as a “super node” in the sequence graph, consisting of a list
of boxes along that sequence. Figure 6 shows a partial sequence
hierarchy and its corresponding box hierarchy to provide a simple
example of the depth-first traversal.

Distributable height. We define distributable height assigned to
a box as the difference between the target height of the box under
(vertical) retargeting and its current height. Since the primary se-
quence spans the entire height of the box it belongs to, it receives
the full distributable height of the box. The distributable height
given to the next secondary sequence is determined by the move-
ment of its two anchor boxes as a result of retargeting the primary
sequence — the two ends of the secondary sequence are seen as
attached to the anchor boxes. This determination is applied recur-
sively as the sequences are retargeted in turn.

Height distribution. The height assigned to a sequence is dis-
tributed among the boxes along the sequence in a cascading fash-
ion based on certain priority. Adjacent boxes along the sequence
that are horizontally (or along depth) aligned have the same height
and during vertical retargeting, they also share the same distributed
height — they can be regarded as one box for height distribution
(see boxes marked by S1 and S2 in Figure 7). Recall that our
retargeting encourages replication, hence all R-boxes take prece-
dence over all S boxes; F -boxes do not resize hence receive no
distributable height. Within a set of boxes having the same attribute,
priority is set according to the height of the boxes — taller boxes

S1

F1

S2

S3

R2

R1

R3

F2

S1

F1

S3

R2

R1

R3

F2

R2

R1 S1

S3

F1

S1 S2

R2

R3

R3

R1

S3

F2

R2

F1

S1 S2

R2

R3

R3

R1

S3

F2

R3

R1

R2

R3

S1

S3R3

R1

R2

R3R3

R3

R1R1

R3

R2

Figure 7: An illustration of height distribution and box alignment
when a sequence is (vertically) retargeted. Compatible boxes (S1

and S2) adjacent in a row are treated as one during height distribu-
tion. The height of the virtual boxes having red and dashed outlines
represents the current distributable height. Observe how this height
is distributed to the R and S boxes in a cascading fashion. On the
right, we show two boxes scaled in succession (bottom to top) due
to alignment constraints (given by the black line).

receive higher priority. We now describe the height distribution
scheme in detail, assuming the height is positive hence replication
and up-scaling are possible. In the case of negative distributable
height, the scheme works the same way except that box replication
becomes box deletion and up-scaling becomes down-scaling.

The distributable height is first distributed proportionally (with re-
spect to box height) among all the R-boxes, if any. All the R-
boxes are sorted by descending heights. Let us take the firstR-box.
Given its associated distributable height σ′ and its current height
σ, the box is repeated as much as possible, i.e., floor(σ′/σ) times.
Any unused height is passed onto the box with the next highest
priority. If there are no R-boxes left and there still remains some
distributable height, the height is distributed proportionally to all
the S-boxes. If there are no S-boxes remaining, then the height
is distributed proportionally among all the R-boxes — these R-
boxes are then scaled according to the heights they receive. Fig-
ure 7 shows one instance of height distribution.

Attachment. The attachment between the top and bottom boxes
of a sequence to their respective anchor boxes is maintained through
retargeting. As one sequence is retargeted, its boxes reposition and
any of these boxes that is an anchor box simply “drags” the corre-
sponding secondary sequence with it. In the case of a contraction,
an anchor box belonging to sequence may be seen as deleted. How-
ever, we implement deletion of boxes in a virtual way. Specially,
deleted boxes will be assigned a height of zero with the underly-
ing box structure unchanged. Hence, the attachment relationship is
retained just as in the case of a stretching.

Soft box alignment. As each box along a sequence determines
its new height and as new boxes are created via replication, the
exact positioning of the boxes, specifically their top and bottom
faces for vertical retargeting, are also influenced by soft alignments.
Among constraints given by alignment, distributed heights, and at-
tachment, the precedence goes as follow:

Precedence: Attachment > Alignment > Distributed heights.

Note that attachment constraints are hard constraints. Two faces
from two boxes are to be aligned if they share the same alignment
index in the input model. Before retargeting starts, each alignment
group in the look-up table Talign has a status “not-updated”. After a
face f belonging to an alignment group is repositioned, the group’s
status changes to “updated” and the remaining faces in the group to

Figure 8: On the top left, we show the 3D arrangement of boxes
and sequences traversing the 3D object. Top right is the corre-
sponding 3D model of the building used in many of the 2D illustra-
tions. In the bottom row, we show two retargeting results.

be repositioned will seek to align with f , if possible. Any newly
created face due to replication has an alignment index null; it does
not have an alignment to maintain.

The alignments are enforced in a greedy manner, following the re-
targeting order of the sequences. Within each sequence, the posi-
tions (i.e., alignments) of the boxes are determined from bottom to
top. When a face has a null alignment index, the distributed height
assigned to its box dictates how it is positioned. Otherwise, align-
ment constraint takes effect (e.g., see Figure 7 for a simple exam-
ple) unless it breaks an attachment, causes any box to have a neg-
ative height, or must force an F -box along the sequence to resize.
The latter would happen if all the boxes remaining in the sequence
are of type F . If that is not the case, the series of F boxes are
simply “skipped” as if the face is adjacent to the next non-F box,
while of course the height of the F -series is maintained. Due to
above conditions, not all alignment constraints are fulfilled; this is
allowed since all alignments are soft constraints. At the same time,
we should note that alignment constraints may lead to the rescaling
of certainR-type boxes, typically to compensate for misalignments
globally, thus allowing for more alignments.

7 Results

We first show, in Figure 8, the 3D model of the building used in
many of the 2D illustrations so far, as well as two retargeting re-
sults. Figure 9 is a gallery of retargeting results, where each input
piece is either modeled by an artist after a real-world building or
obtained from Google Warehouse. Figure 10 shows a virtual resi-
dential community set up by one family of retargeted models.

The set of architectural models that we selected is meant to demon-
strate that our retargeting technique is not limited to simple regular
structures, but can, and is designed to, handle complex 3D architec-
tures exhibiting irregular structures. Structure preservation as well

as the variety of geometry variations are both visually evident in all
the results. Note that we do not only stretch, but also contract, e.g.,
as shown by the smallest resulting models in Figure 9. In theory,
our technique can generate an infinite set of different variations by
altering the box hierarchy, behavior attributes, and the combination
of retargeting dimensions and scales.

Our algorithm was run on a machine with a 2.8GHz CPU and 3GB
RAM. Given a box hierarchy and user-defined behavior attributes,
our automatic structure analysis including alignment detection and
sequence construction takes about one minute to complete for the
models shown. For the largest model containing 300 boxes, the
analysis took only 1.5 minutes. All the dynamic retargeting results
were obtained in real time, with one interaction taking less than a
second to complete. The most time-consuming task is the manual
definition of the box hierarchies. With the application tool we cre-
ated, the user first creates a partitioning of an input 3D model into
boxes and then groups the boxes in a bottom-up fashion to define
the box hierarchy. Typically, less than 80 boxes were sufficient to
express, at a rather fine scale, the inner structure and semantics of
an input building. The time taken in this typical case is about half
an hour. Rather loosely defined box hierarchies, involving much
fewer boxes, can also lead to interesting retargeting results.

After the user defines the box hierarchy, real-time interactive retar-
geting along different dimensions, to different sizes, and involving
different such combinations, can commence. A typical modeling
scenario then consists of the user modifying a few behavior at-
tributes, waiting for up to one minute for the automatic structure
analysis to complete, and then performing many more real-time
interactive retargeting operations. In practice, constructing, from
scratch, a digital 3D model of moderate complexity like those used
in games, movies, or VR applications is always time-consuming.
It typically takes an average modeler hours per model using tools
such as Maya or Studio-Max. Our technique reuses the input model
and allows fast creation of a large number variety of models via re-
targeting, taking up to few minutes per retargeted model.

8 Discussion, limitation, and future work

We present a technique for interactive structure-preserving retar-
geting of irregular architecture models. The semantic interpretation
of the structural elements of the input, as well as their organization,
are provided by the user. The core computational effort involves the
decomposition of the retargeting task into the retargeting of a series
of retargetable sequences to achieve interactivity. The retargeting
results preserve the structural style of the input while retaining the
consistency and coherence among the structural elements.

Structural irregularity. In architectural models, irregularity does
not imply a complete lack of regularity, rather, the irregularity is
reflected by the presence of diverse forms of regular patterns orga-

Figure 10: A virtual community set up by the retargeted models.

v h hv

Figure 12: Example showing non-commutativity of retargeting.
Two different results with the same final size, one with horizontal
(h) followed by vertical (v) retargeting, the other vice versa.

nized in an irregular way. The multitude of regularities and their
irregular organizations make it difficult to infer a unique genera-
tive model, a grammar, for example, and similarly, it induces much
ambiguity when the input is retargeted. On the other hand, the pres-
ence of regularities, many of which might exist at small scales, im-
ply strong coupling between certain structural elements. Adding to
this the engineering constraints such as vertical or horizontal align-
ments, the retargeting problem becomes challenging.

User interaction and automated variations. The main goal of
this work is to allow a casual user to quickly and easily generate

Figure 11: Automated
variations by randomly se-
lecting retargeting dimen-
sions and extents.

many variations from an input
piece. Ease of use is indeed one
of the main advantages of our
technique: there is solely a single
operation, axial scaling, which re-
quires no expertise. With such
a simple interaction, the user can
quickly generate a large number
of variations; virtually any ma-
nipulation yields a valid model.
Optionally, we can allow auto-
mated variations, e.g., by ran-
domly choosing the retargeting
axes and extents at each step. Fig-
ure 11 shows some results with
alternate retargeting in vertical
and horizontal directions; the ra-
tio of change with respect to the
current length is also randomly
determined.

Variability of results. Besides modifying the box hierarchy, the
user has a few other options to vary the retargeting results. For ex-
ample, a combination of horizontal and vertical retargeting steps
would yield an interesting model as shown in Figure 12. Note
that the two axial scaling operations are not commutative, a feature
which increases the possibility of generating variable models. With
the implementation described so far, our method does not scale
well, in the sense that the more a structure is stretched the more
regular it becomes, as shown in the left of Figure 13. The strength-
ening of the regularities is enforced since we encourage replication.
This, however, can be alleviated by introducing certain probabilistic
alteration of the box hierarchy to break the regularity and produce
more varied results. In the right of Figure 13, we show the result
produced by the same retargeting operations (as in the left) but with
certain box tags altered probabilistically.

Grammar-based notation. Architectural models naturally lend
themselves to grammar-based representations [Wonka et al. 2003;
Mueller et al. 2007; Aliaga et al. 2007]. In this work, we delib-
erately do not describe our method as such, although the hierar-
chy of boxes can be represented in a grammar. Box replication is
nothing but a simple A → AA rule, a scaling of a box is a pa-
rameter change, and a box B with n siblings can be denoted as
B → C1 . . . Cn. However, a context-free grammar is not necessar-
ily effective under the multitude of constraints arising in our retar-

Figure 13: When an irregular structure is overly stretched, it be-
come regular (left). By simply altering some box tags probabilis-
tically, less regularity and more varied retargeting results can be
obtained easily (right, after the same retargeting operations).

geting application. Our sequences can be regarded as being derived
by a grammar, while being context-sensitive with respect to each
other. That said, the formalism of grammar-based representations
makes them attractive to study in future work.

Limitations. The meaningfulness of our retargeting results is nat-
urally dictated by the meaningfulness of the box hierarchy. An un-
natural partitioning of the input by the user would lead to unnatural
retargeting results, as shown in Figure 14 (left). On a technical
level, our alignment scheme still leaves room for improvement. For
example, currently the alignment is only applied to the bounding
boxes and not to the salient features in the structural elements; this
may lead to visible artifacts as shown in Figure 14 (right). Also,
even if the input model is a watertight mesh, our algorithm is not
guaranteed to produce a watertight output; possible misalignment
between adjacent boxes can be a cause.

Another limitation of our method is inherent to the fact that it is de-
veloped for retargeting and not generic modeling which supports ar-
bitrary editing. Retargeting alone does not provide the user a means
to synthesize new creations by cut-and-paste or reshuffling of archi-
tectural pieces. Nevertheless, conceptually, such editing operations
can be integrated with our technique; at any point, the geometry
of any structural element can be altered and then retargeted. This,
however, compromises the simplicity of retargeting which we ad-
vocate in our work for generating variations.

Finally, our retargeting algorithm is not based on optimizing a par-
ticular objective function; it merely computes one solution, among
possibly many solutions, that would fulfill user-defined semantics
and softly enforced alignment constraints.

Future work. Improving our interactive retargeting algorithm at
the technical level is possible, e.g., by enhancing the height distribu-
tion and alignment schemes. Feature alignment can be considered
in addition to box alignment. Defining appropriate objective func-
tions may lead to less greedy computations, but at the expense of
more costly processing. Other selection criteria for the retargetable
sequences are also possible. Our current choice tends to maximize
the number of hard constraints involving box compatibility and at-
tachments. This facilitates alignment enforcement and has been
shown to produce effective results with efficiency. Other choices
may result in different retargeting behavior and model variations.

We regard our work as an early step in analyzing and synthesizing
irregular structures. So far regular structures have been extensively
researched, much more so than semi-regular structures [Chen et al.
2008]. The synthesis of semi-regular and irregular structures de-
serve more attention and we plan to conduct such studies in do-
mains involving structures other than architectural models. Many
automatically created model variations can be offered to a user as
a gallery to choose from, i.e., as in a design gallery [Marks et al.
1997]. Finally, we would like to develop other interactive tools to

Figure 14: Results showing certain limitations of our method.
Left: unnatural partitioning (bottom-left insert) of the input leads
to unnatural retargeting. Right: aligning only the bounding boxes
but not edge features in the structural elements can result in visible
artifacts; bottom-left insert again shows the partitioning used.

create variations. Our motivation is to enlarge the scope of trans-
formations while keeping interactivity and ease of use.

Acknowledgments We thank the anonymous reviewers for their
valuable suggestions. This work was supported in part by NSFC
(60902104, 61025012, 61003190), 863 Program (2011AA010500),
CAS One Hundred Scholar Program, CAS Visiting Professorship
for Senior International Scientists, CAS Fellowship for Young In-
ternational Scientists, Shenzhen Science and Technology Founda-
tion (JC201005270329A, JC201005270340A), China Postdoctoral
Science Foundation (201104146), the Israel Science Foundation,
Lynn and William Frankel Center for Computer Sciences and the
Tuman Fund, and the Natural Sciences and Engineering Research
Council of Canada (No. 611370).

References

ALIAGA, D. G., ROSEN, P. A., AND BEKINS, D. R. 2007. Style
grammars for interactive visualization of architecture. IEEE
Trans. Vis. & Comp. Graphics 13, 4, 786–797.

BOKELOH, M., WAND, M., AND SEIDEL, H.-P. 2010. A connec-
tion between partial symmetry and inverse procedural modeling.
ACM Trans. on Graph 29, 4, 104:1–10.

CABRAL, M., LEFEBVRE, S., DACHSBACHER, C., AND DRET-
TAKIS, G. 2009. Structure preserving reshape for textured ar-
chitectural scenes. Computer Graphics Forum (Eurographics)
28, 2, 469–480.

CHAUDHURI, S., AND KOLTUN, V. 2010. Data-driven suggestions
for creativity support in 3D modeling. ACM Trans. on Graph 29,
6, 183:1–10.

CHEN, G., ESCH, G., WONKA, P., MÜLLER, P., AND ZHANG,
E. 2008. Interactive procedural street modeling. ACM Trans. on
Graph 27, 3, 103:1–10.

GAL, R., SORKINE, O., MITRA, N., AND COHEN-OR, D. 2009.
iWIRES: An analyze-and-edit approach to shape manipulation.
ACM Trans. on Graph 28, 3, 33:1–10.

KRAEVOY, V., SHEFFER, A., SHAMIR, A., AND COHEN-OR, D.
2008. Non-homogeneous resizing of complex models. ACM
Trans. on Graph 27, 5, 111:1–9.

LEFEBVRE, S., HORNUS, S., AND LASRAM, A. 2010. By-
example synthesis of architectural textures. ACM Trans. on
Graph 29, 4, 84:1–8.

LIPP, M., WONKA, P., AND WIMMER, M. 2008. Interactive visual
editing of grammars for procedural architecture. ACM Trans. on
Graph 27, 3, 102:1–10.

MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W.,
GIBSON, S., HODGINS, J., KANG, T., MIRTICH, B., PFISTER,
H., RUML, W., RYALL, K., SEIMS, J., AND SHIEBER, S. 1997.
Design galleries: a general approach to setting parameters for
computer graphics and animation. In Proc. of SIGGRAPH, 389–
400.

MERRELL, P., AND MANOCHA, D. 2008. Continuous model syn-
thesis. ACM Trans. on Graph 27, 158:1–7.

MITRA, N. J., BRONSTEIN, A., AND BRONSTEIN, M. 2010. In-
trinsic regularity detection in 3d geometry. In ECCV, 398–410.

MUELLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. ACM
Trans. on Graph 25, 3, 614–623.

MUELLER, P., ZENG, G., WONKA, P., AND GOOL, L. V. 2007.
Image-based procedural modeling of facades. ACM Trans. on
Graph 26, 3.

PAULY, M., MITRA, N. J., WALLNER, J., POTTMANN, H., AND
GUIBAS, L. 2008. Discovering structural regularity in 3D ge-
ometry. ACM Trans. on Graph 27, 3, 43:1–11.

RISSER, E., HAN, C., DAHYOT, R., AND GRINSPUN, E. 2010.
Synthesizing structured image hybrids. ACM Trans. on Graph
29, 4, 85:1–6.

SHAMIR, A., AND SORKINE, O. 2009. Visual media retargeting.
In ACM SIGGRAPH ASIA 2009 Courses, 11:1–11:13.

SHNEIDERMAN, B., FISCHER, G., CZERWINSKI, M., AND
ET AL. 2006. Creativity support tools: Report from a u.s.
national science foundation sponsored workshop. Int. J. Hum.
Comput. Interaction, 61–77.

STAVA, O., BENES, B., MECH, R., ALIAGA, D., AND KRISTOF,
P. 2010. Inverse procedural modeling by automatic generation
of l-systems. Computer Graphics Forum (Eurographics) 29, 2,
665–674.

WANG, Y., XU, K., LI, J., ZHANG, H., SHAMIR, A., LIU, L.,
CHENG, Z., AND XIONG, Y. 2011. Symmetry hierarchy of
man-made objects. Computer Graphics Forum (Eurographics)
30, 2, 287–296.

WEI, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009.
State of the art in example-based texture synthesis. Eurograph-
ics’09 State of the Art Reports EGSTAR, 93–117.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W.
2003. Instant architecture. ACM Trans. on Graph 22, 3, 669–
677.

WU, H., WANG, Y., FENG, K.-C., WONG, T.-T., LEE, T.-Y.,
AND HENG, P.-A. 2010. Resizing by symmetry-summarization.
ACM Trans. on Graph 29, 6, 159:1–10.

Figure 9: Retargeting results demonstrating our method’s ability to handle irregular structures and the model variety it generates. The first
three inputs were modeled by an artist after real-world buildings (shown on the left) and the last two were from Google Warehouse.

