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Abstract

We investigate the use of multiple intrinsic geometric at-
tributes, including angles, geodesic distances, and curva-
tures, for 3D face recognition, where each face is repre-
sented by a triangle mesh, preprocessed to possess a uni-
form connectivity. As invariance to facial expressions holds
the key to improving recognition performance, we propose
to train for the component-wise weights to be applied to
each individual attribute, as well as the weights used to
combine the attributes, in order to adapt to expression vari-
ations. Using the eigenface approach based on the training
results and a nearest neighbor classifier, we report recogni-
tion results on the expression-rich GavabDB face database
and the well-known Notre Dame FRGC 3D database. We
also perform a cross validation between the two databases.

1 Introduction

Face modeling and recognition has been one of the
most intriguing and intensely researched topics in computer
graphics and vision. Traditionally, 2D images are used for
face recognition, due to ease of acquisition and the concep-
tual and computational advantages offered by the regular
grid structure inherent in images. However, the 2D image
of a person’s face may vary drastically in appearance under
different pose and illumination. Video streams that capture
a face image sequence can provide more information to fa-
cilitate recognition, but they are not designed to remove the
effects of pose and illumination. There is also the additional
computational load for processing the image sequence data
and the need for accurate registration between frames.

Recently, with the increasing ease with which 3D face
models can be acquired and their relative insensitivity to
changes in pose and illumination, much attention has been
drawn to schemes which distinguish faces based on 3D ge-
ometry. So far, most geometry-based approaches rely on
range images. A range image represents face geometry via

depth values sampled over a regular 2D grid with respect
to a reference plane, which is often hard to estimate due to
the presence of noise and extraneous parts in a face cap-
ture [11]. Also, although most 2D face recognition meth-
ods can be directly applied to range images, which explains
their popularity, certain intrinsic limitation with the image-
based approach, e.g., the mis-alignment problem due to fa-
cial expression [24], is still preserved.

In this paper, we model face geometry using irregular tri-
angle meshes. The free-form nature of meshes allows us to
adjust sampling positions and density in a feature-sensitive
way, which naturally supports more accurate alignment and
more efficient use of triangles. Specifically, we remesh
each face in the database intouniform connectivity. This
remeshing effectively maps all the faces into the same fea-
ture space, via the explicit feature correspondence it pro-
vides. Thus a variety of geometric attributes can be col-
lected and compared for 3D face discrimination.

The focus of our work is on accurate face recognition
under moderate to severe facial expressions; refer to Fig-
ure 1 for a few examples of expressioned faces from the
GavabDB 3D face database [27]. The adverse effect of fa-
cial expressions on face recognition is well known [10] and
needs to be removed regardless of whether 2D or 3D face
representation is being used. However, due to their non-
linear nature and the lack of an associated mathematical
model, facial expressions are not easy to deal with.

The main contribution of this paper towards expression-
invariant 3D face recognition is the idea that multiple geo-
metric attributes derived from the face meshes can be uti-
lized and even though they are all elementary, the key to
improved performance lies inadapting these attributes to
instabilities introduced by facial expressions and in effec-
tively combining them; both can be realized throughtrain-
ing. On one hand, we train for the element-wise weights
for each individual attribute to obtain a set ofexpression-
insensitive signatures. Each signature has its own ability
to discriminate faces and can be further combined to form
an optimized face recognition scheme. Our proposed 3D
face recognition algorithm has been tested on the frontal



Figure 1. Examples of normal (top row) and expressioned faces from GavabDB [27].

face captures from the GavabDB database [27] which con-
tains many severely expressioned faces. We are able to ob-
tain recognition ratios of about 93% and 96%, depending
on the number of reference faces used in recognition. On
the Notre Dame (UNC) FRGC database [17], similar rates
are reported and what is more important, when we apply
the trained parameters from GavabDB to recognize faces in
adifferentdatabase, FRGC in this case, we can still achieve
a corresponding recognition rates of about 85% and 95%.
To the best of our knowledge, this type of cross-database
validation results have not been reported before.

2 Related works

A typical face recognition system operates in three
phases: face detection, feature extraction, and face recog-
nition. Obviously, the quality of results from one phase can
influence those from the following phases and an integrated
approach would be most desirable. However, since each
phase poses a difficult problem on its own which still lacks
a completely satisfactory solution, a common and effective
research practice is to focus on one particular phase for al-
gorithm development and evaluation and assume that results
from the previous phase(s) are in the best possible state.

Indeed, the majority of existing face recognition algo-
rithms start with manual face alignment, trimming, or fea-
ture point selection. For example, in most methods based on
range images, e.g., [32], the projection plane is manually se-
lected and the facial region manually cropped out. When fit-
ting a 3D morphable model to face images, markers that are
needed in registration are often selected manually [6]. The
facial surfaces are manually cropped out and rotated to fit in
a Cartesian grid in the recent work of Bronstein et al. [10]
for robust expression-invariant face recognition. There are
even face databases which provide markers specified by hu-
man, e.g., [18]. On the other hand, there have also been
tremendous amount of work which study face feature de-

tection and registration alone, e.g., [16, 3]. In this paper, we
focus on the recognition phase and rely on manually marked
features to preprocess the face meshes.

Next we briefly survey previous works, focusing on
purely geometric approaches applied to 3D face represen-
tations; more complete surveys on this topic can be found
in [7, 33]. Most face recognition algorithms can be clas-
sified intoappearance-basedor feature-basedapproaches.
The former measure the appearance of a face via quan-
tities collected at densely-placed samples; some promi-
nent examples include eigenfaces [36] and Fisherfaces [4],
where recognition is performed in some low-dimensional
subspace. One of the main factors which can compro-
mise the performance of appearance-based methods is mis-
alignment between the samples, e.g., under severe facial ex-
pressions [24]. Feature-based approaches rely on carefully
extracted facial features, e.g., [12, 32], which are often more
compact and support more accurate alignment. However,
determining the right set of features is nontrivial and the
thresholding problem [30] in many feature extraction meth-
ods can heavily influence the recognition results.

Any appearance-based 2D recognition technique can be
easily adopted for range images, e.g., [2, 33]. Some of the
geometric attributes considered include curvatures [12, 19]
and extended Gaussian images [34]. Many feature-based
methods have also been proposed for range images. A vari-
ety of facial features have been studied, e.g., multiple hor-
izontal profiles [28], iso-contours on a face [32], and mul-
tiresolution range image gradients [29].

Face recognition using 3D meshes has drawn more atten-
tion lately. In earlier works, distances between face surfaces
are computed via rigid iterative closest point schemes [26]
or combined with Gaussian mixture models [14]. These
methods cannot handle facial expressions however, which
are non-rigid in nature. Of most relevance to our works are
those by Bronstein et al. [8, 9, 10] on expression-invariant
face descriptors. Next, we give a brief comparison between
these works and the approach proposed in this paper.



The basic assumption made in the works of Bronstein et
al. [8, 9, 10] is that facial expression is anisometrictrans-
formation, implying the preservation of area and geodesic
distances over a face surface. Canonical forms are de-
rived by embedding a face surface into a plane [8] or a
2-sphere [9]. The embeddings are treated as expression-
invariant features and are subsequently used to register face
textures for recognition. However, certain geometric infor-
mation such as surface curvature has been lost in the em-
beddings. In addition, expressions around the mouth do not
lead to isometry and would need to be treated separately.

The same authors subsequently propose thepartial em-
beddingmethod [10], where pairs of corresponding face
patches are embedded into each other. As the region cor-
responding to an opened mouth is disregarded, there is no
need for special handling. However, the computation re-
quired for comparing the patches would increase substan-
tially. Even with hierarchical matching, intensive prepro-
cessing is necessary for each new database. More impor-
tantly, there is no physiological support that facial expres-
sions are isometric. In fact, our experiment show that sur-
face areas and geodesic distances do vary under expressions
but they are still important attributes for face discrimination.

Instead of relying on expression-invariant features, we
utilize commonly used elementary geometric attributes,
e.g., angles and geodesic distances, defined element-wise
over the remeshed faces, akin to the appearance-based ap-
proach. These attributes are intrinsic to the surface and in-
dependent on the coordinate system chosen. As the remesh-
ings are constructed in a feature-sensitive way, one may re-
gard our approach as ahybridone, taking advantage of both
the appearance- and feature-based methods.

Note that we make no assumptions about invariance
properties of our selected attributes under expression. Also,
we do not assume expression invariance during the feature
selection or remeshing process. Instead, by training the al-
gorithm, the weighted descriptors will attempt to approach
expression invariance by emphasizing the stable elements
in the descriptors under expression and penalizing the un-
stable ones. The effectiveness of our approach relies on the
quality of information offered by the training data.

3 The 3D face databases

We focus on the GavabDB 3D face database [27] in our
studies as it offers special challenges in terms of data arti-
facts (see Figure 2) and severe facial expressions. The UND
FRGC database, well-known in the face recognition com-
munity, is used to validate and cross-validate our training
approach. GavabDB contains face meshes of60 individ-
uals, with 9 (numbered sequentially) per person captured
under different settings. In particular, meshes 3 to 6 were
captured under rotations resulting in partial profiles. Al-

Figure 2. Some faces from GavabDB contain-
ing incomplete data, occlusion, noise, and
extraneous parts (all dealt with in our work).

though the occluded parts may be reconstructed relying on
face symmetry, this work is beyond the scope of our current
study. We thus only select the remaining 5 faces per individ-
ual for our experiments: faces 1 and 2 are without expres-
sion; face 7 is “smiling”; the most challenging ones, faces
8 (“laughing”) and 9 (“random gesture”), demonstrate pro-
nounced facial expressions, where occlusions by the tongue
or a hand can be present; see Figures 1 and 2. In the remain-
der of this paper, we would refer to mesh 1 as thenormal
face and the othern = 4 meshes asexpressionedfaces,
where the second face would then be regarded as the one
exhibiting a neutral expression.

4 Uniform remeshing

Faces captured in GavabDB typically contain between
8K and 15K vertices and extraneous parts such as the shoul-
ders and the neck. Prior to face recognition, each face model
is remeshed, in a feature-sensitive manner based on manu-
ally selected face mask vertices, to have uniform connectiv-
ity and cover only the facial region. With face correspon-
dence established through uniform mesh connectivity, any
geometric feature computed per vertex, per feature point or
per triangle can be used as an attribute or descriptor in mod-
eling and comparing the appearances of the faces.

Note that the above remeshing problem has been studied
before, e.g., by Praun et al. [31]. We have decided to de-
velop our own simple procedure since we are working on a
restricted class of shapes, i.e., faces, that are close to being
planar; thus the patch construction step is simpler. On the
other hand, our procedure implements a few simple heuris-
tics to deal with incomplete data, by utilizing the symmetric
nature of human faces, as well as impulse noise.

Feature point selection and the face mask:Our remeshed
face covers the facial region from the eyebrow to the chin
tip, excluding ears and the forehead, since they are typi-
cally occluded in the database, e.g., by hair. As argued in
Section 2, we have decided to pick the 43 mask vertices
manually, after which we construct a triangulated mesh con-
taining 69 triangles, which we call the facemask, as shown
in Figure 3(a). All the mask vertices are intended to mark
facial features, e.g., they indicate the positions of the eyes,



(a) (b) (c)

Figure 3. Face mask (a) and as it is fitted on
face meshes, (b) and (c). In (c), the mask ex-
tends beyond the input mesh boundary.

nose, mouth, chin, etc., and define the face outline. We also
place more mask vertices over feature-dense regions to cap-
ture the detailed features and define a connectivity so that
most interior vertices have valance 5 or 6 to achieve regu-
larity. With the mask, we can take advantage of the symme-
try in human faces to extend the mask beyond the bound-
ary of an input mesh containing missing data, as shown in
Figure 3(c); this will help recover that missing data. Note
that our mask is quite simple compared with those used in
MPEG-4 [1] and for active appearance models [15], since
for noisy face scans and a large database in our setting,
manually or automatically registering a large set of feature
points is unrealistic.

Domain mesh construction:Our remeshing procedure fol-
lows the idea ofdisplaced subdivision surfaces[23], where
the face mask serves as the control mesh. Subdividing the
control mesh 3 times, we would obtain a domain mesh with
2297 vertices and 4480 triangles which is adequate for our
face modeling and recognition tasks, as shown in the top
row of Figure 4(f). However, in contrast to the algorithm
in [23], where the control mesh is gradually optimized, our
mask vertices (all are registered feature points) should not
be allowed to drift. A natural choice would then seem to be
Butterfly subdivision, which is interpolatory, but we have
found that 3 levels of Butterfly subdivision may result in
poor domain meshes, as shown in Figure 4(c); this is an
artifact of the mesh connectivity and the low resolution of
our face mask. Therefore, we have opted for the follow-
ing heuristic for domain mesh construction: After applying
Butterfly subdivision once to the control mesh, we run con-
strained non-shrinking Laplacian smoothing of Taubin [35]
for 5 iterations with the mask vertices fixed. As subsequent
Butterfly subdivision would introduce undesirable artifacts
again, we simply run two levels of topological subdivisions
(no change to geometry) to obtain the final domain mesh;
these are illustrated in Figure 4.

Final mesh construction: We displace the vertices of the
domain mesh along their normal directions to intersect the
original mesh surface, where spatial division of the mesh

(a) (b) (c) (d)

Figure 5. Bottom row: remeshing results; top
row: original mesh. (a): Entire face. (b): Data
completion. (c): De-noising. (d): Lower level
of details and connectivity regularization.

surface is used to speed up the intersection search. When
multiple intersections occur, we simply select the closest
one. Moreover, we adopt three simple heuristics to deal
with various artifacts in the input face data. First, if a dis-
placement of vertexv does not intersect the original mesh,
implying a case of missing data, then the (finite) displace-
ments computed at the one-ring neighbors ofv will be lin-
early interpolated to give the displacement atv. Further-
more, even with an intersection detected, if the displace-
ment exceeds a threshold, we would still consider this to be
a case of a missing data, or an impulse noise, and the same
remedy will be applied. At last, if all the displacements in
a small neighborhood on the domain mesh do not intersect
the original mesh or fail the threshold test, then the domain
mesh itself is used in the remeshing. Although these heuris-
tics are rather primitive, for the moderate cases of missing
data and impulse noise present in the databases we consider,
they appear to be adequate as evidenced by the recognition
performance we have been able to obtain. In Figure 5, we
show some examples of our remeshing procedure at work.

5 Face recognition via training

In this section, we first list the set of elementary, intrin-
sic geometric descriptors adopted for our face recognition
tasks. Then, we give a detailed description of the training
procedure for both the element-wise weighting factor~ω and
the attribute-wise weighting factor~β.

5.1 Intrinsic geometric descriptors

We select a set of elementary and commonly usedin-
trinsic geometric descriptors. Mesh vertex coordinates, for
example, are excluded since they are dependent on the co-
ordinate system chosen. Compared to more sophisticated
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Figure 4. Domain mesh construction with bottom row a zoomed-in view of the nose tip. (a): Control
mesh (mask). (b): After one level of Butterfly subdivision. (c): 3 levels of Butterfly subdivision lead
to artifacts. (d): Constrained smoothing applied to (b). (e): Artifacts again after Butterfly subdivision
applied to (d). (f): Domain mesh constructed after topological subdivision is applied to (d).

descriptors used in other works, e.g., [10, 32], our elemen-
tary descriptors allow for fast computation. Also, despite
of their simplicity, they are shown to work effectively when
equipped with an intelligent weighting scheme. In addition
to descriptors derived from the remeshed faces, we also con-
sider ones defined on the much lower-resolution face mask
as they model the global face structures and are much more
compact. We list our selected descriptors below.

Mask angles ~A: The shape of the face mask represents a
“skeleton” of the face it is fitted onto. We stack the inner an-
gles of the triangles and dihedral angles of the mask mesh in
some order to construct a column vector~A, which is scale-
invariant and can be used to uniquely reconstruct the mask,
given a scaling factor. For our face mask,| ~A| = 305.

Pair-wise geodesic distances~L on mask: Geodesic dis-
tances model the stretching of a surface. We stack the pair-
wise geodesic distances between the 43 mask vertices to
form a column vector~L, |~L| = 903, and normalize it to unit
length. For ease of implementation, we use graph distances
computed via Dijkstra’s algorithm to approximate the true
geodesic distances, which turns out to be quite adequate.

Triangle areas ~T on remeshed face:The column vector~T
stores the areas of all the 4,480 triangles in a remeshed face
model, modeling stretching. This descriptor is again not
scale-invariant and thus will be normalized into unit length.

Gaussian curvature ~G and mean curvature ~M : We esti-
mate the Gaussian and mean curvatures at the vertices fol-
lowing a parabolic fitting scheme [20], resulting in two col-
umn vectors of length 2,297,~G and ~M , respectively.

We can observe that none of the five descriptors above
are invariant to facial expression. As an example, in Fig-
ure 6(b), we show a change of pair-wise geodesic distances

Figure 6. Effect of facial expression on our
descriptor. Stable (left) and unstable (right)
geodesic distances under “laughing”.

caused by an opened mouth, when the face of the same in-
dividual changes from “normal” to “laughing”. It is worth
noting however that many descriptor elements do remain
stable under expression, e.g., the pair shown in Figure 6(a).

5.2 Expression-insensitive signatures

We stipulate that the stable elements in the descriptors
should be counted upon for discriminating faces between
different individuals while variations of the unstable ele-
ments under facial expression would render them unreli-
able for the task. Therefore, we use a set of element-wise
weights, obtained via training, to place more emphasis on
the stable, or as we refer to as expression-insensitive, el-
ements, and to suppress the effect of expression-sensitive
elements. For brevity, the resulting descriptors will simply
be referred to as expression-insensitivesignatures.

In the following, we use generic notations~X and ~X∗ to
represent any of the five un-weighted and weighted descrip-
tors, ~A, ~L, ~T , ~G, ~M and ~A∗, ~L∗, ~T ∗, ~G∗, ~M∗, respectively,
and the weight vector is denoted by~ω. Superscripts index



into the elements of a descriptor, e.g.,~X∗(k) = ~X(k) · ~ω(k),
and subscripts label individuals and faces, e.g.,~Xi,j is a de-
scriptor for thej-th face of individuali, where1 ≤ i ≤ l, l
is the number of individuals in the training set, and0 ≤ j ≤
n. Note thatj = 0 corresponds to the normal face.

Our training procedure works on a set of training faces
for which the identifies are known. Face recognition is car-
ried out using the commonly used nearest neighbor classi-
fier based on Euclidean distances between face descriptors
in eigenspace. One way to obtain the best weight vector~ω is
via explicit optimization, minimizing the average Euclidean
distance between the weighted descriptors of faces belong-
ing to the same individual, i.e., intra-group distances, while
maximizing the average inter-group distances. This is a
large-scale (due to some descriptor sizes), non-convex, and
constrained (e.g., requiring partition of unity of the weights)
quadratic problem that is hard to solve. Instead, inspired by
[22], we simply fit a function to~ω and optimize for the small
set of parameters defining the function.

Weighting function: We propose a simple one-parameter
weighting function~ω(α), motivated by the notion of Maha-
lanobis distance [25] in its diagonal form. Specifically, the
stability of a descriptor element is measured by the variance
of its change under expression. We call the difference be-
tween the descriptors of thej-th expressioned face and the
normal face,~Ri,j = ~Xi,j − ~Xi,0, an expression residual.
Given a value of the free parameterα, the weight applied
to thek-th element of the descriptor~X when computing a
distance from a probe face to a reference face is given by

~ω(k)(α) =
[ l∑

i=1

n∑
j=1

(R(k)
i,j − R̄(k))2

]−α

, (1)

where,R̄(k) is the mean of thek-th element of all the ex-
pression residuals of theln expressioned faces. The pa-
rameterα determines the degree of penalty for the unstable
elements and it will be determined through training.

Training: In thetraining stage, we use faces in the training
set as both training and testing data to simulate the recog-
nition task and determine theα value. In the latertesting
stage, to ensure cross validation, faces in the training set
and those used for testing are alwaysnon-overlapping.

In the training stage, we select the normal faces in the
training set as reference faces, and use the remaining ex-
pressioned faces as probe data. We collect descriptors~X
for both reference faces and probe faces. For each value
of α considered, we obtain a weighting vector~ω by (1).
Then we project the weighted signatures into the eigenspace
spanned by all the~X∗’s, and recognize the probe faces us-
ing a nearest neighbor classifier. The training result forα
is the one which gives the best recognition rate among all
probings. In the testing stage, given a testing face, we can

incorporate the trained weights to acquire a collection of
expression-insensitive signatures,~A∗, ~L∗, ~T ∗, ~M∗, and~G∗,
where ~A∗(k) = ~A(k) · ~ω(k),A, 1 ≤ k ≤ | ~A|, etc.

Finally, let us point out that although the training proce-
dure is meant to remove the adverse effect of facial expres-
sion for face recognition, we do not and will unlikely be
able to isolate the factor of facial expression from all other
factors that may degrade recognition performance. These
latter factors may include imperfect feature point selection
(even done manually, errors can still be introduced) or noise
and missing data that are not adequately repaired in our
remeshing procedure. Thus as a side product, the trained
weights will take care of the adverse effects generated by
these unstable factors as well. We only need to ensure that
the selected set of training faces is sufficiently representa-
tive so that the trained parameters will not be biased and
result in poor recognition results during cross validation.

5.3 Combining signatures

It is quite conceivable that the five signatures~A∗, ~L∗,
~T ∗, ~M∗, and ~G∗ are correlated. But at the same time, each
signature may possess certain unique aspect in accomplish-
ing face discrimination. Therefore, it would be beneficial to
consider a combination of multiple signatures so as to im-
prove recognition performance further. If we had known the
correlations between the signatures, we would use them to
drive a weighting scheme. However, since the lengths of our
signatures all differ, it is difficult to compute the correlations
analytically. That being said, note that our goal is only to
obtain a set of attribute-wise weights to achieve high-quality
recognition, thus we can combine thedistance matricesde-
rived from the signatures instead and rely on training to de-
termine an approapriate weight vector~β, a 5-tuple forming
a partition of unity, to apply to the distance matrices.

Specifically, for each face in the training set, we obtain
a collection of signatures. Take a particular signature~X for
all the l reference faces andln probe faces in the training
data, we first compute the eigenvectors of the covariance
matrix of the signatures and use them to span an eigenspace
SX . We project these signatures intoSX where we can de-
rive a matrixDX ∈ Rl×ln containing pairwise distances
between the reference and probe faces. If two signatures
discriminate faces similarly, their distance matrices will be
similar as well. Thus the correlation between the distance
matrices, all having the same dimensionalityl × ln, can be
used to approximate the correlations between their corre-
sponding signatures. Consequently, we do not combine the
signatures but combine their corresponding distance matri-
ces instead. The weight vector~β can be trained in the same
way as for~ω. We again recognize faces using a nearest
neighbor classifier, which is now based on the~β-weighted
combinations of the distance matrices.



6 Experiments and results

In this section, we report experimental results from
our training and face recognition algorithms applied to
two databases, the GavabDB [27] and the UND FRGC
database [17]. For the faces considered in each database,
we partition them into two groupsG1 andG2 of equal size.
Two sets of recognition tests are conducted. First, we use
G1 for training andG2 for testing and then we reserve their
roles. In each set of tests, we apply two test schemes. The
first is calledNormal-Reference(NR) scheme, where we
select all the normal faces as reference faces and the re-
maining expressioned faces as probes. We recognize the
probe faces by matching each of them to the closest refer-
ence face. The second scheme is the well-knownLeave-
One-Out(LOO) scheme [21], where we select one face for
each individual as the probe and use the remaining faces to
form a set of reference faces. A probe face is recognized
as belonging to an individual if it has the smallest average
distance to the reference faces of that individual.

6.1 Results on the GavabDB database

We consider the 300 frontal face captures in GavabDB,
5 faces per individual, of all the 60 individuals contained
in the database. GroupG1 contains 150 faces of individu-
als No. 1 to 30 andG2 contains the remaining 150 faces.
Thus for a test in the NR scheme, there will be 120 face
recognitions performed. While for the LOO scheme, 150
recognition tests will be conducted.

6.1.1 Recognition with independent signatures

Training results on ~ω: In our experiment, we search for
α in the range of[−0.5, 10] with a step size of0.1. Using
eigenspaces of dimension 100, the time taken to train for a
particularα in our setting is several minutes. In Fig. 7(a),
the curve plots the recognition rates againstα in the training
stage, for the attribute~L, where groupG2 is taken as train-
ing set. Note that the curve is smoothed using a Gaussian to
remove minor fluctuations. Due to space limitations, results
for the other four attributes are not shown but they exhibit
similar trends. In Fig. 7(b), we plot the trained weights for
~L. For better visualization, we partition the set of feature
points (mask vertices) into five groups and arrange them in
order along the horizontal axis. As can be seen, the plots
roughly indicate that lengths of geodesic paths going into
or out of the mouth and cheek regions are relatively unsta-
ble and assigned with smaller weights.

The bestα values obtained from the training stage are
given in Table 1. As we can see, they are quite consistent
from the two rounds of training, except forαL. For this at-
tribute, we can see from the curve shown in Figure 7(a) that
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Figure 7. G2-trained results for weights ~ωL.
(a): Recognition rate in the training stage,
plotted against α. (b): Plot of trained weights;
vertex grouping is shown along the horizon-
tal axis.

Table 1. Training results for GavabDB.
~A ~L ~T ~M ~G

G1 α 1.2 1.9 1.0 1.3 1.2
G2 α 1.3 2.6 1.1 1.6 1.4

G1
~β1 0.45 0.55 0 0 0
~β2 0.56 0.20 0 0.24 0

G2
~β1 0.50 0.50 0 0 0
~β2 0.35 0.40 0 0.25 0

there is a plateau around where the maximum recognition
rate occurs, encompassing the two obtainedαL values 1.9
and 2.6. This indicates that varying the value ofα in that
small range will not lead to significant performance degra-
dation. Thus overall, our trainedα values are sufficiently
general to be adopted for the face recognition tests.

Testing results: In Table 2, we report the recognition rates
obtained in the testing stage. Clearly, the weighted de-
scriptors consistently outperform their un-weighted coun-
terparts. The two shortest descriptors,~A∗ and~L∗, returned
the best results. Although the much longer area descrip-
tor gave respectable rate, it contains a great deal of re-
dundancy. The two curvature-based descriptors performed
rather poorly, as they are quite sensitive to small surface
variations. It is also worth noting that the recognition rates
in Table 2 are close to the best rates for~A, ~L, and~T in the
training stage, but not the other two, which further indicates
that the curvature-based descriptors are unsuitable, at least
independently, for expression-invariant face recognition.

6.1.2 Recognition with combined signatures

Training results on ~β: We search for~β in the unit 5-
dimensional cube with a step size of 0.1 per dimension.
The primitive exhaustive search only takes several minutes
to complete and from these training results, we identify the
best combination of two, three, four, and five descriptors.
Regardless of whetherG1 or G2 is used as the training set,



Table 2. Testing recognition rates, as % of
correct matchings, using independent de-
scriptors. “W-”: trained ~w applied.

~A ~L ~T ~M ~G
NR 68.33 60.00 33.33 22.50 8.33

G1 W-NR 89.17 81.67 63.33 65.00 50.00
LOO 83.33 68.00 44.67 26.67 8.00

W-LOO 93.33 88.67 77.33 64.67 41.33
NR 63.33 50.83 36.67 15.83 7.50

G2 W-NR 81.67 77.50 62.50 63.33 41.67
LOO 83.33 62.00 47.33 18.67 6.67

W-LOO 91.33 90.00 83.33 73.33 33.33

Figure 8. Mahalanobis distance between dis-
tance matrices of different signatures.

our results indicate that the best combination of two signa-
tures are~A and~L, which happen to be the shortest descrip-
tors as well. The best combination of three come from~A,
~L, and ~M . Combinations of more attributes do not provide
further performance gains. The trained weights~β1 and ~β2

for the best 2- and 3-combinations are given in Table 1.
Instead of exhaustively searching for a best combination,

we can seek guidance from the best recognition rates of the
individual signatures in the training stage and the correla-
tion between the distance matricesDA, etc., defined in Sec-
tion 5.3. In Figure 8, we show a gray-scale plot of the Maha-
lanobis distances between the five distance matrices, where
darker coloring indicates stronger correlation. As we can
see, the best performing signatures~A and~L are relatively
uncorrelated, compared with~A and~T , for example. Thus it
is reasonable to consider~A and~L as the best 2-combination.
On the other hand,~M and ~G are highly uncorrelated with
the other three signatures but they perform poorly as inde-
pendent signatures, thus it would be best to combine one of
them with ~A and~L to form a good 3-combination.

Final recognition results: Having obtained both weight-
ing vectors~ω and ~β, we can conduct the final recognition
test in our testing stage. Each descriptor~X of a test face
is weighted by~ωX to obtain the corresponding signature,
which is projected into the proper eigenspace. The result-
ing distances, one per signature, between the test face and
the reference faces, are combined using the trained~β. A

Table 3. Final recognition rates for GavabDB.

Rigid surface ~A∗+~L∗ ~A∗+~L∗+ ~M∗

G1 52.50% 92.50% 93.33%
NR G2 50.83% 91.67% 95.00%

Avg. 51.67% 92.09% 94.17%
G1 65.33% 96.00% 93.33%

LOO G2 65.33% 98.00% 97.33%
Avg. 65.33% 97.00% 95.33%

nearest neighbor classifier is used to recognize the test face.
The final recognition results are given in Table 3, where for
comparison purposes, we also provide recognition rates us-
ing eigenfaces applied to the rigid surfaces, represented by
the vertices of our remeshed face models. For rigid align-
ment, we apply ICP [5] which is initialized with the nose
tips and major axes of the faces aligned first.

As we can see, the facial expressions in the test faces
have significantly degraded the performance of the rigid
eigenface approach while our approach results in far supe-
rior recognition rates. It is also interesting to observe that in
the NR scheme, the combination of~A + ~L + ~M performs
better than~A+~L. However, in the LOO scheme, the inverse
is true. It would appear that when expressioned faces, which
tend to possess noisier curvature distributions, are included
as reference faces, as in LOO, utilizing curvature attributes
would have an adverse effect on face recognition.

Finally, we point out results from some other works on
the GavabDB database. In [27], the authors of GavabDB
develop a feature-based recognition method and the recog-
nition rate (for single best matching) reported is 78%. More
recently in [13], the face scans are projected into 2D range
images to which a PCA approach is applied. The best recog-
nition rate achieved using the NR and LOO schemes are
86.23% and 92.04%, respectively. In this work, as in our
experiments, only the frontal face captures were tested.

6.2 Results on the UND FRGC database

The FRGC 3D face database (v2.0) [17] was captured
by the University of Notre Dame and distributed in the Face
Recognition Grand Challenge (FRGC). The faces therein
are of higher resolution than those from GavabDB, but they
are typically more complete and contain less expression.
The first face for each individual is a normal face and the
other 5 exhibit some level of expressions. Some sample
faces and our remeshing results are given in Figure 9. We
select 180 faces for the first 30 individuals, 6 per individual,
from FRGC; they are divided into two groups as before.

In Table 4, we report the obtainedα and ~β on FRGC
from the training stage. Comparing these results with those
in Table 1 for GavabDB, we see that they are relatively con-



Figure 9. Sample faces from the UND FRGC database [17] and remeshing results.

sistent. When we conduct testing on the FRGC database,
the average recognition rate for the NR and LOO schemes
are96.67% and98.89%, respectively, where the combina-
tion of ~A + ~L is used. The corresponding recognition rates
for the best 3-combination are94.65% and99.45%, respec-
tively. These higher rates may be explained by the more
friendly test data in FRGC as well as a smaller test size.

Table 4. Training results for FRGC.
~A ~L ~T ~M ~G

G1 α 1.2 3.6 0.8 1.4 1.2
G2 α 1.3 3.2 1.0 1.2 1.1

G1 ~β1 0.62 0.38 0 0 0
~β2 0.41 0.30 0 0.29 0

G2 ~β1 0.60 0.40 0 0 0
~β2 0.41 0.33 0 0.26 0

To examine the issue of over-fitting and further demon-
strate the robustness of our algorithm, we conduct a cross
validation betweendifferent databases. The correspond-
ing recognition rates on the 180 faces from FRGC, when
the two groups of 150 training faces from the GavabDB
database are used as training data, are given in Table 5.

Table 5. Final cross-DB recognition rates.

NR LOO

~A∗+~L∗ ~A∗+~L∗+ ~M∗ ~A∗+~L∗ ~A∗+~L∗+ ~M∗

G1 82.67% 78.67% 94.44% 87.78%
G2 88.00% 87.33% 96.67% 93.89%
Avg 85.34% 83.00% 95.56% 90.84%

It is worth noting here that in both the NR and LOO
schemes, the combination of~A∗ + ~L∗ consistently outper-
forms the best 3-combination. This can again be attributed
to the presence of noise in the signature~M∗, whose vari-
ation is even harder to model when faces from a different
database are used as training data.

7 Conclusion and future works

Realizing the relative insensitivity of captured 3D geom-
etry to pose and illumination, we propose an approach for
3D face recognition to achieve robustness against facial ex-
pression. Instead of deliberately constructing expression-
invariant face features, we rely on elementary geometric
descriptors. The key is to adapt them to instabilities in-
troduced by facial expression and to effectively combine
them to achieve optimized performance. Both can be ac-
complished via training which provides intelligent choice
of weights to filter and combine the descriptors. The frame-
work proposed is flexible in that it allows for the incorpora-
tion of additional descriptors. It would be especially inter-
esting to identify compact and complementary descriptors
for improved expression-invariant face recognition.

An unsatisfying aspect of our current work is manual
feature selection, which can be tedious and error-prone.
In the near future, we will replace this step by an auto-
matic feature extraction algorithm and examine the robust-
ness of our face recognition scheme against possible er-
rors introduced. To further validate the effectiveness of our
algorithm, the proposed system should be tested on other
databases that contain a larger number of individuals.

Finally, our work confirms yet again the power of utiliz-
ing prior knowledge in shape analysis, a simple and effec-
tive idea. We would like to apply this idea in other settings
where parameter tuning is necessary but the choices made
so far have been ad-hoc. One such example is the weight-
ing of factors that determine the salience of a segmented
part [37]. We are also interested in looking beyond face
recognition and examining how training can be helpful in
tackling the more general shape retrieval problem.
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