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Abstract
Quality meshing in 2D and 3D domains is an important problem in geometric modeling and scientific computing.
We are concerned with triangle meshes having only nonobtuseangles. Specifically, we propose a solution for
guaranteed nonobtuse remeshing and nonobtuse mesh decimation. Our strategy for the remeshing problem is to
first convert an input mesh, using a modified Marching Cubes algorithm, into a rough approximate mesh that
is guaranteed to be nonobtuse. We then apply iterative “deform-to-fit" via constrained optimization to obtain
a high-quality approximation, where the search space is restricted to be the set of nonobtuse meshes having a
fixed connectivity. With a detailed nonobtuse mesh in hand, we apply constrained optimization again, driven by a
quadric-based error, to obtain a hierarchy of nonobtuse meshes via mesh decimation.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

A nonobtuse triangle meshis composed of a set of nonob-
tuse triangles, in which every angle is less than or equal to
90◦. The problem of nonobtuse remeshing can be formulated
as follows. Given an input meshM, construct a nonobtuse
meshM̂, with any connectivity, which smoothly and accu-
rately approximatesM. To make effective use of nonobtuse
meshes in an interactive setting, it is often desirable to con-
struct a hierarchy of nonobtuse meshes, via decimation. We
refer to this problem as that of nonobtuse mesh decimation.

Nonobtuse meshes are of interest in several contexts.
First, a nonobtuse triangulation is necessarily a Delaunay
one, both in 2D [BMR94] and for surface meshing [BS06].
Secondly, nonobtuse meshes are shown to possess more de-
sirable numerical properties for finite element methods, e.g.,
in producing Stieltjes matrices [BGR88] or in ensuring faster
convergence when physical properties over the discretized
domain vary enormously [BMR94]. Also, nonobtuse meshes
result in more efficient and more accurate geodesic estima-
tions via fast marching [KS98]. Finally, nonobtusity ensures
the validity of planar mesh embedding via discrete Harmonic
maps [EDD∗95]; it also implies that certain key properties of
the well-known discrete Laplacian-Beltrami operator would
be analogous to those of the classical Laplacian-Beltrami op-
erator on a surface with Riemannian metric [BS06].

To the best of our knowledge, no known algorithms are
guaranteed to produce a nonobtuse mesh which either in-
terpolates or accurately and smoothly approximates a point
cloud. The same holds for the remeshing problem. However,
there have been studies on nonobtuse 2D triangulation and a
great deal of work on remeshing of curved surfaces with an-
gle or other quality criteria [AUGA05]. Bern et al. [BMR94]
give anO(nlog2n) algorithm for nonobtusely triangulating
a n-sided polygon usingO(n) triangles. Chew [Che93] de-
velops a refinement scheme based on constrained Delaunay
triangulation (DT) to ensure an angle bound of[30◦,120◦].
Cheng and Shi [CS05] use restricted union of balls to gen-
erate anε-sampling of a surface and extract a mesh from the
DT of the sample points. A lower bound on the minimum
angle can be as high as 30◦ with proper choice of parame-
ters, but results in a high triangle count. Neither algorithm
provides a nonobtuse guarantee; this has been identified as
an open problem by Gu and Yau [GY03], and so far only
some simple heuristics [GY03] have been suggested.

In this paper, we present a solution for guaranteed nonob-
tuse remeshing and mesh decimation. To make our presen-
tation concise, we shall only deal with closed, 2-manifold
meshes. Handling of mesh boundaries is discussed in an ex-
tended version of this paper [LZ06]. The framework we de-
velop is quite general and flexible. It allows us to generate
nonobtuse meshes from point clouds with slight modifica-
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Figure 1: Major components of our approach. (a) Original mesh (34,712 faces). (b) Result of our midpoint-based March-
ing Cubes algorithm (15,380 faces) shows visible artifacts. (c) After constrained optimization, the approximation error from
Metro [CRS98] is ε = 0.78%, which is the Hausdorff distance as a percentage of the bounding box diagonal. (d) After decima-
tion of 50%of the vertices nonobtusely. Error against (c):ε = 0.107%. (e)90%decimated. Error against (c):ε = 0.61%.

tions to our existing algorithm. Angle bounds may also be
enforced, although the cost of the constrained optimization
will increase. Both of these issues are elaborated in [LZ06].

Our strategy for remeshing is to construct an initial nonob-
tuse mesh and iteratively refine it in a constrained manner to
obtain a high-quality approximation of the input meshM.
Utilizing a modified Marching Cubes algorithm, we build a
close but rough approximation ofM. An added advantage of
using Marching Cubes is that we can bound the mesh size by
adjusting the grid resolution. Next, we iteratively deformthe
mesh, in a greedy fashion, to reduce approximation error.
The deformation is carried out via quadratic programming
with the constraint that each vertex must move within its
feasible region. Once a final, fine-detailed nonobtuse mesh is
generated, we can perform nonobtuse decimation via edge-
collapse under similar nonobtuse constraints. See Figure1.

2. Initial nonobtuse mesh via modified Marching Cubes

To construct the initial nonobtuse mesĥM0, we rely on a
midpoint-basedMarching Cubes algorithm. Originally ap-
peared in the seminal paper of Lorensen and Cline [LC87],
the Marching Cubes algorithm produces a triangle mesh
which tessellates the zero level-set of a given 3D scalar field.
Given an input meshM, we generate a signed distance field
sampled at the vertices of a regular cubical grid. Distance
field generation for open meshes is more difficult, but it
can be achieved with extra care [LZ06]. For our purpose,
only the signs of the distance values matter. Specifically, in-
stead of using linear interpolation to compute vertex loca-
tions [LC87], we insist that each mesh vertex along a cube
edge be at the edge’s midpoint. With a few additional modi-
fications to mesh connectivity, e.g., with new vertices at cube
centers created in some cases, the resulting triangle mesh is
provably nonobtuse. Closer examination reveals that the re-
sulting mesh also has no angle smaller than 30◦. Thus it is
possible to ensure an angle bound by placing tighter con-
straints. All these issues are discussed in length in [LZ06].

3. Deform-to-fit via constrained optimization

Given the initial nonobtuse mesĥM0, we wish to

min. ∑
v∈V(M̂)

L(v,M), subject toM̂ ∈NO(M̂0), (1)

whereV(M̂) is the set of vertices in̂M, NO(M̂0) is the set
of nonobtuse meshes with the same connectivity asM̂0, and

L(v,M) = α ·D(v,M)+(1−α) · S(v). (2)

The point-to-surface distanceD(v,M), whereM is the origi-
nal input mesh, is aquadric error[GH97], S(v) is a smooth-
ness (regularization) term, and 0≤ α ≤ 1 is a free parameter
for the trade-off between error reduction and smoothness.
We defineD(v,M) = Qv(v)/k where in general,Qv(x), the
quadric error [GH97], is the sum of squared distances from
x to a set of planes associated withv. In our case, this set is
composed ofk supporting planes, including that of the trian-
gle T of M that is closest tov and those of ther-ring neigh-
bor triangles ofT in M. In our experiments, we setr = 1.
At vertexv, the smoothness termS(v) = ||v−C(v)||2 mea-
sures the squared distance betweenv and the centroidC(v)
of its one-ring neighbors. Solution to the optimization (1) is
likely intractable, we thus resort to heuristics. Specifically,
we move vertices one at a time in a greedy fashion, under a
set of linearized and convexified nonobtuse constraints.

Given a vertexv, let its one-ring vertices bev0,v1, . . ., and
vk−1, in order. Consider the one-ring edgee= (vi ,vi+1). Let
U andV be the two planes orthogonal toe, passing through
vi andvi+1, respectively. Letsphere(e) be the sphere cen-
tered at the midpointq of e with diameter|e| and letp be
the intersection betweenvqandsphere(e); refer to Figure2.
Finally, let R be the tangent plane ofsphere(e) through p.
We define thefeasible regionF(e,v) of edgee with re-
spect tov as the intersection of the front half spaces de-
fined byU , V, andR, with their normals shown in the fig-
ure. The feasible regionF(v) of v is then given byF(v) =
Tk−1

i=0 F [(vi ,vi+1),v], which is linear and convex. Note that
by construction,F(v) is always nonempty, sincev∈ F(v).
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Figure 2: Left: feasible regionF [(vi ,vi+1),v] is the space
delimited by planes U, V , and R. Right: any point between
U and V and outside the sphere makes a nonobtuse triangle
with vi and vi+1. Thus the feasible region is a linearized and
convexified subset of the actual “nonobtuse region”.

To solve (1), we iteratively deform the mesh to obtain
progressively better approximation toM. For each vertex
v in the current meshM̂, we compute an optimal position
v∗ which minimizesL(v,M) subject tov ∈ F(v). To solve
this convex quadratic programming problem, we rely on the
OOQP solver of Gertz and Wright [GW03]. Then a priority
H(v), given by theimprovementmade by movingv to v∗:
H(v) = L(v,M)−L(v∗,M), is computed. The vertex with
the highest priority is moved to its optimal position and all
vertices influenced by the move will have their priorities re-
computed. To update the quadric for a vertexv that has just
moved, we need to find a triangleT′ in M that is closest tov.
In our implementation, we execute a local search within the
3-ring neighborhood of the previous closest triangleT. The
greedy optimization stops whenH(v) ≤ 0,∀v∈V(M̂).

Experimentally, the nonobtuse meshes produced by opti-
mization alone may be slightly rough. This can be attributed
to the fact that our optimization is highly localized. To this
end, we suggest to alternate between mesh optimization and
constrained Laplacian smoothing, with the former being the
first and the last steps of our “deform-to-fit” procedure and
the latter encouragingtangentialmovement of the vertices
to smooth out any roughness. In the smoothing step, vertices
are processed one at a time with no particular ordering. The
objective function is simply the smoothness termS(v).

4. Nonobtuse mesh decimation

Analogous to nonobtuse remeshing, nonobtuse mesh deci-
mation can also be formulated via constrained optimization
and solved in an iterative greedy fashion via edge collapse.
For each candidate edgee= (u,v), we compute the optimal
position w∗: w∗ = argminw∈F (e)[Qu(w) + Qv(w)], for the
unified vertexw, whereQu(w) andQv(w) are quadric errors
defined as before and the feasible regionF(e) for edgee is
determined similarly as in the vertex case, but by the one-
ring neighbors of bothu andv. The cost for collapsing edge
(u,v) is Qu(w∗)+Qv(w∗); this is set to∞ if F(e) = ∅. We
iteratively collapse the edge with the lowest cost, and update
the costs for the new edges as well as those edges that are
influenced due to changes to their feasible regions.

5. Experimental results

Now we demonstrate several characteristics of our approach
and the quality of the nonobtuse meshes produced. Un-
less otherwise specified, we chooseα = 0.5 for mesh op-
timization and only one step of Laplacian smoothing is ap-
plied. The approximation errorε is as defined for Figure1
and measured against the original mesh for remeshing and
against the full-resolution nonobtuse mesh in decimation.

(a) Original. (b) α = 1. (c) α = 0.5.

(d) α = 0.5. (e) α = 0.5 + LAP. (f) α = 0.5 + LAP.

Figure 3: Importance of smoothness term and smoothing:
Without the smoothness term in the objective function, we
suffer from poor angle quality, shown in (b). Percentage of
small angles (angles less than30◦) is γ = 7.74%. (c) and
(d): After weighing in the smoothness term:γ = 0.12%. But
geometric roughness is quite visible. (e) and (f): With con-
strained Laplacian smoothing added:γ = 0.03%. And the
rough geometric features are smoothed out.

In Figure3, we show the importance of the smoothness
term and smoothing. By comparing (b) and (c), it is appar-
ent that including the smoothness term in the objective func-
tion dramatically improves the overall angle quality of the
mesh. An additional smoothing step further improves the
mesh quality as the roughness is smoothed out, as shown
in (f). In Table1, we report mesh quality and performance
statistics from nonobtuse remeshing of six models. As it can
be observed in conjunction with Figure4, our algorithm is
capable of producing good angle distributions and approxi-
mation quality. In particular, smoothing does help reduce the
number of 90◦ angles as shown in the middle column of Fig-
ure 4. In our current implementation of nonobtuse decima-
tion, no smoothness term is incorporated into the objective
function. Hence, we see some spikes in the 90◦ bins.

6. Discussion and future work

In this paper, we propose a solution for guaranteed nonob-
tuse remeshing and mesh decimation. We design a mod-
ified, midpoint-based Marching Cubes algorithm to con-
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Input mesh (#F) #F #V Min. ∠ % small ∠’s Metro ε 1: %VM 2: %VM 3: %VM

Armhand (50K) 18798 9401 26.14 0.05 1.00 310.6 397.9 487.3
Bigsmile (34.7K) 15380 7692 19.49 0.04 0.78 308.3 312.9 N/A
Baldhead (15.8K) 18704 9356 20.68 0.06 1.86 407.1 399.8 393.0
Horse (40K) 19880 9944 15.03 0.18 1.31 258.3 266.4 N/A
Man (29K) 68252 34122 10.52 0.14 0.55 328.7 285.1 N/A
Monster (32.5K) 48226 24115 19.79 0.03 0.64 294.8 374.3 N/A

Table 1: This table shows quality measures and performance statistics for nonobtuse remeshing. We report, from left to right:
input mesh and its face count (#F); face (#F) and vertex (#V) counts of the output nonobtuse mesh; minimum angle (Min.∠)
in the nonobtuse mesh; percentage of angles less than30◦ (% small∠); approximation error (Metroε); the number of vertices
moved in each mesh optimization step (1, 2, and 3) as a percentage (“1:%VM”, “2: %VM”, and “3: %VM”) of (#V). Note that
in many cases, only two optimization steps are needed; in that case, the “3:%VM” column will be marked by “N/A”.
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Figure 4: Visual results and histogram plots of angle dis-
tributions. From left to right: Original model; remeshed
model; model after 90% of vertices decimated. The his-
togram plot associated with a particular model is given right
below the model. Top: Armhand model. Bottom: Baldhead.

struct an initial nonobtuse mesh from which a series of lo-
cal constrained optimizations are performed. Our framework
is quite general and flexible and it provides several direc-
tions for future work. In particular, we wish to achieve ef-
ficient nonobtuse remeshing with angle bounds, nonobtuse
or acute mesh generation from point clouds, and effective
handling of mesh boundaries. In addition, lazy evaluations,
early stopping, and adaptive smoothing and error reduction
procedures can be used to improve efficiency. Other more
challenging improvements, such as the use of adaptive grids
in cubes marching and the preservation of sharp features in
remeshing, are also worth investigating.
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