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Figure 1: Pipeline of our sketch reconstruction system. A user draws a sketch (a) part by part and then annotates connections (b) among
parts. Given a database of 3D models (c) with the same category as (a), we perform structure and shape matching to retrieve a candidate
model (d) to provide plane information (e), which is used in our reconstruction stage. The initial back-projection result (f) and our optimized
result (g) are compared under two different views. (Colors are used to indicate segmentation and part correspondences in (a) and (d).)

Abstract

We propose an interactive system that aims at lifting a 2D sketch
into a 3D sketch with the help of existing models in shape collec-
tions. The key idea is to exploit part structure for shape retrieval and
sketch reconstruction. We adopt sketch-based shape retrieval and
develop a novel matching algorithm which considers structure in
addition to traditional shape features. From a list of retrieved mod-
els, users select one to serve as a 3D proxy, providing abstract 3D
information. Then our reconstruction method transforms the sketch
into 3D geometry by back-projection, followed by an optimization
procedure based on the Laplacian mesh deformation framework.
Preliminary evaluations show that our retrieval algorithm is more
effective than a state-of-the-art method and users can create inter-
esting 3D forms of sketches without precise drawing skills.

Keywords: sketch interpretation, sketch-based shape retrieval,
structure matching, 3D sketch, mesh deformation, user interface

Concepts: •Computing methodologies→ Shape modeling;

1 Introduction

Sketching is a vital and frequently adopted form of artistic ex-
pression. For many people, free-hand sketching is arguably the
most natural and accessible means to visually depict a 3D object
or concept. To more fully exploit sketching as a visual form, it
may be even more interesting if a sketch can serve as not only
a static and final depiction, but also a 3D entity to be interacted
with and viewed from different angles. There exist two main cat-
egories of approaches to exploring such an idea: interactive 3D
sketching [Bae et al. 2008] and reconstruction from completed
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sketches [Zou et al. 2015; Zheng et al. 2016]. Current systems in
the latter category, which our work belongs to, typically take accu-
rate engineering drawings [Zou et al. 2015] or predefined 3D plane
knowledge [Zheng et al. 2016] as input. In contrast, our approach
is model-driven and can manage even rough sketches from users.

We propose a structure-oriented system that elevates 2D sketches
into 3D immediately after their creation, taking advantage of 3D
models from large shape collections available online. Our key in-
sight is that if we understand the 3D characteristics of the sketched
object, we may find a suitable model to serve as a 3D proxy. An es-
sential part of that understanding is the part structure of an object.
More specifically, a user sketches an object part by part using our
interface, which is supported by a preprocessed repository of 3D
man-made models of the same category and endowed with struc-
tural information. To lift the user’s completed sketch into 3D, our
system consists of two stages (Fig. 1): shape retrieval and sketch
reconstruction. In the retrieval stage, a 3D model resembling the
sketch is retrieved to serve as a 3D proxy, contributing 3D infor-
mation for reconstructing what the user has sketched. Our shape
retrieval approach jointly considers structure and shape matching
to improve performance within a specified object category, yielding
part-level correspondences between the sketch and the model as a
retrieval by-product. In the reconstruction stage, we further lever-
age the correspondences descending from the retrieval to extract
suitable planes from model parts for back-projecting the sketch into
3D. A straightforward back-projection approach, however, usually
produces disconnected 3D sketch parts due to imprecise drawing
and foreshortening perception bias (Fig. 1-(f)). We formulate these
issues as a quadratic energy minimization problem to derive a fea-
sible reconstruction result.

To sum up, our contributions are threefold: (i) applying shape col-
lections to the analysis and reconstruction of rough sketches; (ii)
developing a shape retrieval algorithm that combines part structure
and conventional shape features; (iii) casting 3D planar sketch re-
construction as a quadratic energy optimization procedure based on
the Laplacian mesh deformation framework.

2 Database Preprocessing

We collected different categories of man-made model collections
from online public datasets [Shilane et al. 2004; Shen et al. 2012].
All models in each category were pre-segmented into meaningful
parts and aligned with consistent upright and front-facing orienta-
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tion. For each model in our database, we analyzed connection re-
lationships between parts based on simple distance testing and de-
tected reflective symmetry by sampling in the reflective plane space.
We rendered contours of each model and its parts to images from
eight selected views (front, side, top and top corner views) for the
following retrieval stage.

3 Shape Retrieval

In this section, we describe how an input sketch is matched to the
projected contours of 3D models with the same object category in
our database for shape retrieval. The matching process takes both
the shape and the structural similarity into account, and produces a
ranked list of the database models.

The user sketches on a canvas under the drawing mode in our sys-
tem, and s/he needs to confirm when finishing a semantic part, e.g.,
the back or the gas lift of a chair. We assume that the 3D counter-
part of each sketch part envisioned by the user is hosted on a plane
in 3D space. When the drawing is completed, the user switches to
the annotation mode to mark connections among strokes of sketch
parts (Fig. 1-(b)).

We symbolically represent the input sketch as a graph G =
{S, V, L}, where S = {si} is the set of strokes, V = {vi} is the
set of parts, part vi = {sk} is defined as the set of its constituent
strokes, and L = {(vi, vj)} is a set of part pairs that have con-
nections annotated by the user. The 2D projection of a 3D model
is represented similarly, except that S consists of linked pixels, re-
sulting from rendering the contours of each part separately, and L
is directly derived from the part connections in the model. In the
remaining sections, we refer the input sketch as G = {Sg, Vg, Lg},
and the projection of a 3D model as M = {Sm, Vm, Lm}. We now
describe how to perform structure matching (Sec. 3.1) and shape
matching (Sec. 3.2) of G and M in detail.

3.1 Structure Matching

The goal of structure matching is to evaluate whether the projec-
tion of a database model is structurally similar to the input sketch.
To this end, we find correspondences between the parts in Vg and
Vm and assess their plausibility. Since one-to-many and many-to-
one mappings among the parts may exist, common graph matching
methods [Livi and Rizzi 2013] do not suffice. We develop our own
structure matching approach by first introducing a pairwise cost of
part mapping and then evaluating the structural difference.

Pairwise cost. We first compute a pairwise cost of mapping vig to
vjm, and then find the correspondences between Vg and Vm such
that the total cost is approximately minimized (see Fig. 2). We
observe that (i) if we superimpose Vg on Vm (or vice versa), the
corresponding parts should be close to each other; (ii) the shapes
of the corresponding parts should be similar. In structure matching,
we would like to focus on comparing the positions and sizes of the
semantic parts. So, we replace each part by a best-fit ellipse in the
pairwise cost computation. Therefore, we define the pairwise cost
of matching two parts as the weighted sum of the distance and shape
difference of their best-fit ellipses.

Correspondence estimation. With the pairwise cost, the corre-
spondence problem can be formulated as an optimal linear assign-
ment problem. However, some parts may have no correspondence
if the sketch and the model projection have different numbers of
parts. Hence, we devise an iterative assignment approach, which al-
lows many-to-one and one-to-many correspondences, to make sure
that all parts have correspondences. Suppose that the sketch has
fewer parts than the model (i.e., |Vg| < |Vm|). We first map Vg
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Figure 2: Part correspondence procedure. The parts of a database
model projection (a) are fitted with ellipses (orange) in (c). The
input segmented sketch is shown in (b), and its parts are fitted with
ellipses (blue) in (d). Dissimilarity is computed for every pair of
parts in (c) and (d) using the ellipses, forming a cost matrix (e),
which is then used to compute an assignment of the parts (f).

to a subset V ′m ⊂ Vm that minimizes the cost and |Vg| = |V ′m|,
using optimal linear assignment. We then remove V ′m from Vm,
keeping Vg unchanged, and repeat the assignment step again. This
process stops when Vm becomes empty. The case of |Vg| ≥ |Vm|
is handled similarly.

After the computation of part-level correspondences between the
input sketch and the model projection, we evaluate their structure
similarity using the correspondences, during which two factors are
taken into account: relative positions of corresponding parts and
part merging.

1) Relative position. If Vg and Vm are structurally similar, their
parts should possess similar spatial arrangement, that is, corre-
sponding parts should have similar relative positions. Precisely, if
vig and vjg are connected ((vig, vjg) ∈ Lg), and vim and vjm are their
corresponding parts in the model, then the relative position cost is
simply defined as Er =

∑
i,j ||p(vig)−p(vjg)−(p(vim)−p(vjm))||2,

where p(·) is the position of a part.

2) Part merging. When the sketch and the model projection have
different numbers of parts, one element in Vg might correspond to
multiple elements in Vm, or vice versa. This might be due to the
difference in segmentation granularity. For example, some users
might treat the base and the attached wheels of an office chair as
a single part, while others might separate them. We refer to this
as merging. Suppose that a part vig ∈ Vg is mapped to a subset of
parts V i

m ⊂ Vm. (Note that |V i
m| >= 2; otherwise no merging cost

is applied.) If vig is similar to elements in V i
m combined, the part

merging is possibly due to different segmentation granularities,
which shall incur zero merging cost. Otherwise, the part merging
should reflect incorrect correspondences with a cost. The cost
increases with the pairwise distances between the merged parts
since combining distant parts together will lead to large changes
in the structure. Specifically, the cost is defined as Eg(vig, V

i
m) =

U(vig, V
i
m)

∑
||p(vam)− p(vbm)||2,∀(vam, vbm) ∈MST (V i

m),
where MST (V i

m) is the minimum spanning tree connecting the
centers of all the parts in V i

m. MST is used here so that the cost
increases linearly with the number of merged parts. The cost can
be defined similarly for the case of mapping a subset of parts of
the sketch to a single part of the model projection. U(vig, V

i
m)

is a binary indicator function, which is computed by measuring
the dissimilarity of vig and V i

m, to indicate whether the merging is
implausible or not.

Given the definitions above, the part merging cost is Em =∑
vi
g→V i

m
Eg(vig, V

i
m) +

∑
V i
g→vi

m
Eg(vim, V i

g ), where vig → V i
m

stands for the mapping from a sketch part to a subset of model parts,
similarly for V i

g → vim. Finally, the structure difference is mea-
sured as Er + Em.



3.2 Shape Matching

Shape matching aims at comparing pure geometry details of the
query sketch to the projections of the database models, i.e., Sg and
Sm. We define shape similarity using the Gabor feature, inspired
by [Eitz et al. 2012]. The sketch or the database model projection is
first rasterized into a fixed-size square image, whose Gabor feature
is then extracted in the same way as [Eitz et al. 2012]. The extracted
feature vectors are normalized into unit length, and compared using
cosine distance Ef = 1−h(Sg) ·h(Sm), where h(Sg) and h(Sm)
are the normalized features of Sg and Sm.

Complete matching cost. Based on the previous analysis, the com-
plete cost of matching a sketch S and a database model projection
M is Ec = w1 log(Er +Em) +w2Ef . We apply the logarithm to
the structural cost to make its magnitude comparable to the shape
matching cost Ef . We set w1 = 0.2 and w2 = 0.8. During sketch-
based retrieval, this cost is computed between the input sketch and
every projection of each model in the database, and the matched
models are finally returned as a ranked list (see Fig. 3).
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Figure 3: Qualitative retrieval performance comparison with [Eitz
et al. 2012]. The first column is the input sketches. The second
column is the ranked list of our retrieval approach. The last column
is the results of [Eitz et al. 2012]. Models are retrieved from the
same category as the input sketches for both methods. The views of
the models are adjusted slightly to show the hidden parts.

4 Sketch Reconstruction

In this section, we describe our semi-automatic reconstruction
method that elevates a user’s 2D sketch G into 3D, with the help
of 3D information from a model. Let M denote the 3D mesh of
a selected model from the ranked list. Given part-level correspon-
dences between G and M originating from the retrieval algorithm,
the main idea is to firstly back-project G onto the 3D planes distilled
from M (Sec. 4.1) before an optimization procedure that deforms
the back-projection result subject to constraints of user specification
and geometric derivation (Sec. 4.2). The user may need to fine-tune
the view of M to maximize the resemblance between M and G due
to the limited number of rendered views used in the retrieval stage,
and interactively fix any wrong correspondences. We formulate the
optimization as a quadratic energy minimization problem that can
be efficiently solved by sparse linear system solvers.

4.1 3D Plane Generation

Generating plane proxies of meshes in accordance with human
perception is not a trivial problem on its own. To reduce the
overall complexity, we adopt a greedy scheme to find candidate
planes for each sketch part on its corresponding model part. Let
C = {(vig, ṽim)} denote the part correspondence set between G

and M , where ṽim ⊂ M is a subset of model part meshes corre-
sponding to vig . We first perform PCA on ṽim to form a candidate
plane set P i = {pik}, and then use a greedy rule to select an appro-
priate plane pi from P i.

The plane set P i is generated as follows. Let {ei
1, e

i
2, e

i
3} denote

the principal axes of ṽim sorted by their eigenvalues in a decreasing
order after PCA and vm be the view direction to M . A common
plane suggested by PCA is the plane spanned by ei

1 and ei
2, with the

normal direction same as ei
3, which is added to P i in the first place.

There are also two cases to be considered: (i) if ei
1 dominates, i.e.,

ṽim is similar to a cylinder, we add an extra view dependent plane
with a normal ei

1 × (ei
1 × vm) to P i; (ii) if there are no signifi-

cant dominant axes, three planes, each with normal direction ei
3, ei

2

or ei
1, are added to P i. We also consider reflective symmetry if it

exists in M . For case (i), if ṽim and ṽjm have reflective symmetry,
planes that pass through them and are of reflective symmetry will
constitute P i and P j instead. For case (ii), whether ṽim shows re-
flective symmetry or not, P i consists of planes that are parallel or
perpendicular to the symmetry plane.

To select an appropriate pi if |P i| > 1, the greedy rule that we use
is to choose a plane from P i that has the minimum angular differ-
ence between its normal and vm, since a large angular difference
increases the foreshortening perception bias and reduces the plausi-
bility of back-projection. Users can also interactively change it to a
more suitable plane in P i if necessary, but this seldom happens for
the examples shown in Fig. 4.

4.2 Reconstruction

With a plane selected from P i for vig , naive back-projection of vig ,
however, usually produces undesired disconnections and depth dis-
continuity between parts (Fig. 1-(f)) due to imprecise drawing and
foreshortening perception bias. So, a subsequent optimization pro-
cess is indispensable. To reconstruct the sketch G, we formulate
a quadratic energy function based on the Laplacian mesh deforma-
tion framework [Sorkine et al. 2004]. Let Γ denote the pointwise
connections annotated by the user. We individually triangulate vig
using its stroke points and its connection points in Γ. Note that we
support two types of connections as shown in Fig. 1-(b): the X mark
is the border connector and the star mark is the interior connector.
We back-project the triangulated mesh of vig onto pi in the camera
space under the orthographic view to get initial 3D positions (depth)
of points in ṽig , which is defined as the 3D counterpart of vig . We
represent the back-projected mesh as ∆i = (Qi, F i), where Qi is
the set of mesh vertices in R3 and F i describes the vertex connec-
tivity of Qi. To deal with sketch parts that have no corresponding
model parts, we divide all ∆is into two classes: Parts in ∆1 have
corresponding model parts and extracted planes, while parts in ∆2

do not (e.g., the dashed line in Fig. 4-(1)). For ∆i ∈ ∆2, we tem-
porarily assign zero depth to it by back-projecting the triangulated
mesh of vig onto the xy-plane in the camera space to get Qi, and we
expect the final positions of Qi, i.e., the depth of each point, will
be determined and smoothly interpolated through its connections
to ∆1. To find the final plausible 3D positions of points in ṽig , we
perform Laplacian mesh deformations to all ∆is while satisfying
several constraints. Let Q

i
denote the unknown vertex positions of
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Figure 4: Reconstruction results. From left to right: User sketch, retrieved model and 3D reconstructed sketch under two different views.
Black color in model (1) indicates no corresponding sketch parts and the dashed-line part of sketch (1) has no corresponding model parts.

the optimized result corresponding to Qi. We consider the follow-
ing energy costs to account for different aspects of constraints for
optimizing the initial result.

Deformation cost Emd and Esd. To keep the original shape as
much as possible, we employ the traditional differential coordinates
to define the mesh deformation cost Emd [Sorkine et al. 2004] using
Qi and Q

i
, and the stroke deformation cost Esd [Nealen et al. 2007]

using vig and ṽig for all ∆is .

Proximity cost Epr . Given a pointwise connection (u,w) ∈ Γ
where points u and w come from different sketch parts, we en-
force such a relationship in a proximity cost Epr by penalizing the
Euclidean distance between the unknown 3D positions of u and w.

Plane cost Epl. Since we presume that ṽig envisioned by the user is
hosted on a plane, we adopt a plane cost Epl to restrain ṽig from be-
ing non-planar. Epl is defined as the sum of point-to-plane distance
of each point in Q

i
.

Projection cost Epj . To keep the resemblance between the user in-
put and the 2D projection of the reconstructed result, we use a pro-
jection cost Epj to capture the x and y differences between points
in vig and ṽig .

Our final energy function E3d is a weighted average of Emd, Esd,
Epr , Epl and Epj , and it can be efficiently minimized using sparse
matrix solvers. To get more visually pleasing results, if reflective
symmetry exists in M , we also perform another symmetrization
step, where point correspondences between symmetric sketch parts
are computed by the Iterative Closest Point (ICP) algorithm, while
satisfying the constraints in E3d as well.

5 Results and Discussions

To evaluate our proposed retrieval and reconstruction methods, we
collected five categories of man-made objects to form the database,
which contains 72 chairs, 54 tables, 45 airplanes, 20 glasses and 20
lamps. We implemented our system in C++ but our code is not fully
optimized. Regarding the average running time of each stage, shape
retrieval takes ˜0.6s; plane generation takes ˜5s; and sketch recon-
struction takes ˜3s on a laptop with Intel(R) Core(TM) i7-2670QM
CPU @2.20GHz and 8GB RAM. Fig. 4 shows the reconstruction
results of user input sketches along with the retrieved models. We
can see that with our model-driven approach, the user can draw
strokes to be hosted on non-trivial 3D planes without the tedious
plane definition process observed in the traditional systems. Strokes
without corresponding model parts are also handled properly. Note
that user sketches are not necessarily similar to the database models
thanks to the highly abstract 3D information extracted from models,
which leaves room for user creativity.

The ability of our system to handle different kinds of man-made ob-

ject drawings is limited by the richness of models in the database.
However, if we increase the number of models, it will possibly ham-
per the running time performance of our structure-oriented retrieval
approach. Thus a possible future work could be studying how to re-
duce the number of models in the database in terms of plane proxy
arrangements extracted from models (e.g., by using a part-assembly
approach [Shen et al. 2012]). Besides, due to our assumptions about
sketch parts, we cannot deal with non-planar strokes. However,
even with the above constraints, the results show that our model-
driven sketch reconstruction with structure-oriented retrieval is still
a viable solution to create interesting 3D forms of sketches.
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