
GRASS: Generative Recursive Autoencoders for Shape Structures

JUN LI, National University of Defense Technology

KAI XU∗, National University of Defense Technology, Shenzhen University, and Shandong University

SIDDHARTHA CHAUDHURI, IIT Bombay

ERSIN YUMER, Adobe Research

HAO ZHANG, Simon Fraser University

LEONIDAS GUIBAS, Stanford University

Fig. 1. We develop GRASS, a Generative Recursive Autoencoder for Shape Structures, which enables structural blending between two 3D shapes. Note the
discrete blending of translational symmetries (slats on the chair backs) and rotational symmetries (the swivel legs). GRASS encodes and synthesizes box
structures (bo�om) and part geometries (top) separately. The blending is performed on fixed-length codes learned by the unsupervised autoencoder, without
any form of part correspondences, given or computed.

We introduce a novel neural network architecture for encoding and syn-
thesis of 3D shapes, particularly their structures. Our key insight is that

3D shapes are e�ectively characterized by their hierarchical organization

of parts, which re�ects fundamental intra-shape relationships such as ad-

jacency and symmetry. We develop a recursive neural net (RvNN) based

autoencoder to map a �at, unlabeled, arbitrary part layout to a compact code.

The code e�ectively captures hierarchical structures of man-made 3D objects

of varying structural complexities despite being �xed-dimensional: an asso-

ciated decoder maps a code back to a full hierarchy. The learned bidirectional

mapping is further tuned using an adversarial setup to yield a generative

model of plausible structures, from which novel structures can be sampled.

Finally, our structure synthesis framework is augmented by a second trained

module that produces �ne-grained part geometry, conditioned on global

and local structural context, leading to a full generative pipeline for 3D

shapes. We demonstrate that without supervision, our network learns mean-

ingful structural hierarchies adhering to perceptual grouping principles,

produces compact codes which enable applications such as shape classi�ca-

tion and partial matching, and supports shape synthesis and interpolation

with signi�cant variations in topology and geometry.

CCS Concepts: • Computing methodologies → Computer graphics;
Shape analysis;

∗
Corresponding author: kevin.kai.xu@gmail.com

© 2017 ACM. This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The de�nitive Version of Record was published in ACM
Transactions on Graphics, https://doi.org/http://dx.doi.org/10.1145/3072959.3073613.

Additional Key Words and Phrases: analysis and synthesis of shape struc-

tures, symmetry hierarchy, recursive neural network, autoencoder, genera-

tive recursive autoencoder, generative adversarial training

ACM Reference format:

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas

Guibas. 2017. GRASS: Generative Recursive Autoencoders for Shape Struc-

tures. ACM Trans. Graph. 36, 4, Article 52 (July 2017), 14 pages.

DOI: http://dx.doi.org/10.1145/3072959.3073613

1 INTRODUCTION

Recent progress on training neural networks for image (van den

Oord et al. 2016b) and speech (van den Oord et al. 2016a) synthe-

sis has led many to ask whether a similar success is achievable in

learning generative models for 3D shapes. While an image is most

naturally viewed as a 2D signal of pixel values and a piece of speech

as a sampled 1D audio wave, the question of what is the canonical

representation for 3D shapes (voxels, surfaces meshes, or multi-view

images) may not always yield a consensus answer. Unlike images or

sound, a 3D shape does not have a natural parameterization over a

regular low-dimensional grid. Further, many 3D shapes, especially

of man-made artifacts, are highly structured (e.g. with hierarchi-

cal decompositions and nested symmetries), while exhibiting rich

structural variations even within the same object class (e.g. consider

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

https://doi.org/http://dx.doi.org/10.1145/3072959.3073613

52:2 • J. Li et al

RvNN decoder RvNN encoder

𝑛-D
root code

𝑛-D
random noise

Generator Discriminator

real

generated

real
structures

generated
structures

32D

𝑛-D part code

323 part
voxelization

(a) RvNN auto-encoder pre-training. (b) RvNN-GAN training.

32D

𝑛-D part code

(c) Volumetric part geometry synthesis.

Training Testing

training
parts

Fig. 2. An overview of our pipeline, including the three key stages: (a) pre-training the RvNN autoencoder to obtain root codes for shapes, (b) using a GAN
module to learn the actual shape manifold within the code space, and (c) using a second network to convert synthesized OBBs to detailed geometry.

the variety of chairs). Hence, the stationarity and compositionality

assumptions (Hena� et al. 2015) behind the success of most neural

nets for natural images or speech are no longer applicable.

In this paper, we are interested in learning generative neural nets for

structured shape representations of man-made 3D objects. In general,

shape structures are de�ned by the arrangement of, and relations

between, shape parts (Mitra et al. 2013). Developing neural nets for

structured shape representations requires a signi�cant departure

from existing works on convolutional neural networks (CNNs) for

volumetric (Girdhar et al. 2016; Wu et al. 2016, 2015; Yumer and

Mitra 2016) or view-based (Qi et al. 2016; Sinha et al. 2016; Su et al.

2015) shape representations. These works primarily adapt classical

CNN architectures for image analysis. They do not explicitly encode

or synthesize part arrangements or relations such as symmetries.

Our goal is to learn a generative neural net for shape structures

characterizing an object class, e.g. chairs or candelabras. The main

challenges we face are two-fold. The �rst is how to properly “mix”, or

jointly encode and synthesize (discrete) structure and (continuous)

geometry. The second is due to intra-class structural variations. If

we treat shape structures as graphs, the foremost question is how

to enable a generic neural network to work with graphs of di�erent
combinatorial structures and sizes. Both challenges are unique to our

problem setting and neither has been addressed by networks which

take inputs in the form of unstructured, �xed-size, low-dimensional

grid data, e.g. images or volumes.

Our key insight is that most shape structures are naturally hierarchi-
cal and hierarchies can jointly encode structure and geometry. Most

importantly, regardless of the variations across shape structures, a

coding scheme that recursively contracts hierarchy or tree nodes

into their parents attains uni�cation at the top — any �nite set of

structures eventually collapses to root node codes with a possibly

large but �xed length. We learn a neural network which can recur-

sively encode hierarchies into root codes and invert the process

via decoding. Then, by further learning a distribution over the root

codes for a class of shapes, new root codes can be generated and

decoded to synthesize new structures and shapes in that class.

Speci�cally, we represent a 3D shape using a symmetry hierar-
chy (Wang et al. 2011), which de�nes how parts in the shape are

recursively grouped by symmetry and assembled by connectivity.

Our neural net architecture, which learns to infer such a hierarchy

for a shape in an unsupervised fashion, is inspired by the recur-
sive neural nets (RvNN)

1
of Socher et al. (2012; 2011) developed for

text and image understanding. By treating text as a set of words

and an image as a set of superpixels, an RvNN learns a parse tree

which recursively merges text/image segments. There are two key

di�erences and challenges that come with our work:

• First, the RvNNs of Socher et al. (2011) always merge two ad-

jacent elements and this is modeled using the same network at

every tree node. However, in a symmetry hierarchy, grouping

by symmetry and assembly by connectivity are characteristically

di�erent merging operations. As well, the network structures at

a tree node must accommodate assembly, re�ectional symmetry,

and rotational/translational symmetries of varying orders.

• Second, our main goal is to learn a generative RvNN, for part-

based shape structures that are explicitly represented as discrete

structural combinations of geometric entities.

To accomplish these goals, we focus on learning an abstraction of

symmetry hierarchies, which are composed of spatial arrangements

of oriented bounding boxes (OBBs). Each OBB is de�ned by a �xed-

length code to represent its geometry and these codes sit at the

leaves of the hierarchies. Internal nodes of the hierarchies, also

characterized by �xed-length codes, encode both the geometry of

its child OBBs and their detailed grouping mechanism: whether by

connectivity or symmetry.

We pre-train an unsupervised RvNN using OBB arrangements en-

dowed with box connectivity and various types of symmetry. Our

neural network is an autoencoder-based RvNN which recursively

assembles or (symmetrically) groups a set of OBBs into a �xed-

length root code and then decodes the root to reconstruct the input;

see Figure 2(a). The network comprises two types of nodes: one to

handle assembly of connected parts, and one to handle symmetry

grouping. Each merging operation takes two or more OBBs as input.

Our RvNN learns how to best organize a shape structure into a

symmetry hierarchy to arrive at a compact and minimal-loss code

accounting for both geometry and structure.

To synthesize new 3D shapes, we extend the pre-trained autoencoder

RvNN into a generative model. We learn a distribution over root

codes constructed from shape structures for 3D objects of the same

class, e.g. chairs. This step utilizes a generative adversarial network

1
Note that we are adding the letter ‘v’ to the acronym RNN, since by now, the term

RNN most frequently refers to recurrent neural networks.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:3

(GAN), similar to a VAE-GAN (Larsen et al. 2015), to learn a low-

dimensional manifold of root codes; see Figure 2(b). We sample

and then project a root code onto the manifold to synthesize an

OBB arrangement. In the �nal stage, the boxes are �lled with part

geometries by another generative model which learns a mapping

between box features and voxel grids; see Figure 2(c). We refer

to our overall generative neural network as a generative recursive
autoencoder for shape structures, or GRASS. Figure 2 provides an

overview of the complete architecture.

The main contributions of our work can be summarized as follows.

• The �rst generative neural network model for structured 3D shape

representations — GRASS. This is realized by an autoencoder

RvNN which learns to encode and decode shape structures via

discovered symmetry hierarchies, followed by two generative

models trained to synthesize box-level symmetry hierarchies and

volumetric part geometries, respectively.

• A novel RvNN architecture which extends the original RvNN of

Socher et al. (2011) by making it generative and capable of encod-

ing a variety of merging operations (i.e. assembly by connectivity

and symmetry groupings of di�erent types).

• An unsupervised autoencoder RvNN which jointly learns and

encodes the structure and geometry of box layouts of varying

sizes into �xed-length vectors.

We demonstrate that our network learns meaningful structural

hierarchies adhering to perceptual grouping principles, produces

compact codes which enable applications such as shape classi�cation

and partial matching, and support generative models which lead

to shape synthesis and interpolation with signi�cant variations in

topology and geometry.

2 RELATED WORK
Our work is related to prior works on statistical models of 3D shape

structures, including recent works on applying deep neural net-

works to shape representation. These models can be disciminative

or generative, and capture continuous or discrete variations. We

review the most relevant works below. Since our focus is shape

synthesis, we emphasize generative models in our discussion.

Statistical shape representations. Early works on capturing statistical

variations of the human body explored smooth deformations of a

�xed template (Allen et al. 2003; Anguelov et al. 2005; Blanz and

Vetter 1999). Later papers addressed discrete variations at the part

level, employing stochastic shape grammars coded by hand (Müller

et al. 2006), learned from a single training example (Bokeloh et al.

2010), or learned from multiple training examples (Talton et al. 2012).

Parallel works explored the use of part-based Bayesian networks

(Chaudhuri et al. 2011; Kalogerakis et al. 2012) and modular tem-

plates (Fish et al. 2014; Kim et al. 2013) to represent both continuous

and discrete variations. However, these methods are severely limited

in the variety and complexity of part layouts they can generate, and

typically only work well for shape families with a few consistently

appearing parts and a restricted number of possible layouts. In a

di�erent approach, Talton et al. (2009) learn a probability distribu-

tion over a shape space generated by a procedure operating on a

�xed set of parameters. We are also inspired by some non-statistical

shape representations such as the work of Wang et al. (2011) and

van Kaick et al. (2013) on extracting hierarchical structure from a

shape: our goal in this paper is to learn consistent, probabilistic,

hierarchical representations automatically from unlabeled datasets.

Mitra et al. (2013) provide an overview of a range of further works

on statistical and structure-aware shape representations.

Deep models of 3D shapes. Recently, the success of deep neural net-

works in computer vision, speech recognition, and natural language

processing has inspired researchers to apply such models to 3D

shape analysis. While these are of course statistical shape represen-

tations, their immediate relevance to this paper merits a separate

section from the above. Most of these works have focused on extend-

ing computer vision techniques developed for images – 2D grids of

pixels – to 3D grids of voxels. Wu et al. (2015) propose a generative

model based on a deep belief network trained on a large, unanno-

tated database of voxelized 3D shapes. They show applications of

the model to shape synthesis and probabilistic shape completion

for next-best view prediction. Girdhar et al. (2016) jointly train a

deep convolutional encoder for 2D images and a deep convolutional

decoder for voxelized 3D shapes, chained together so that the vec-

tor output of the encoder serves as the input code for the decoder,

allowing 3D reconstruction from a 2D image. Yan et al. (2016) pro-

pose a di�erent encoder-decoder network for a similar application.

Yumer and Mitra (2016) present a 3D convolutional network that

maps a voxelized shape plus a semantic modi�cation intent to the

deformation �eld required to realize that intent.

In a departure from voxel grids, Su et al. (2015) build a powerful

shape classi�er based on multiple projected views of the object, by

�ne-tuning standard image-based CNNs trained on huge 2D datasets

and applying a novel pooling mechanism. Masci et al. (2015) build a

convolutional network directly on non-Euclidean shape surfaces.

Qi et al. (2016) discuss ways to improve the performance of both

volumetric and multi-view CNNs for shape classi�cation. In a recent

work, Tulsiani et al. (2017) develop a discriminative, CNN-based

approach to consistently parse shapes into a bounded number of

volumetric primitives.

We are inspired by the work of Huang et al. (2015), who develop a

deep Boltzmann machine-based model of 3D shape surfaces. This

approach can be considered a spiritual successor of Kalogerakis et

al. (2012) and Kim et al. (2013), learning modular templates that

incorporate �ne-grained part-level deformation models. In addition

to being fully generative – the model can be sampled for a point

set representing an entirely new shape – the method automatically

re�nes shape correspondences and part boundaries during training.

However, like the prior works, this approach is limited in the variety

of layouts it can represent.

Wu et al. (2016) exploit the success of generative adversarial nets

(GAN) (Goodfellow et al. 2014) to improve upon the model of Wu et

al. (2015). At its core, their model is a generative decoder that takes

as input a 200-D shape code and produces a voxel grid as output.

The decoder is trained adversarially, and may be chained with a

prior encoder that maps, say, a 2D image to the corresponding shape

code. The method supports simple arithmetic and interpolation on

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

52:4 • J. Li et al

the codes, enabling, for instance, topology-varying morphs between

di�erent shapes. Our work is complementary to this method: we

seek to develop a powerful model of part layout variations that can

accurately synthesize complex hierarchical structures beyond the

representational power of low-resolution grids, can be trained on

relatively fewer shapes, and is independent of voxel resolution.

Neural models of graph structure. The layout of parts of a shape

inherently induces a non-Euclidean, graph-based topology de�ned

by adjacency and relative placement. Several works, not concerning

geometric analysis, have explored neural networks operating on

graph domains. The most common such domains are of course linear

chains de�ning text and speech signals. For these domains, recurrent

neural networks (RNNs), as well as convolutional neural networks

(CNNs) over sliding temporal windows, have proved very successful.

Such linear models have even been adapted to generate non-linear

output such as images, as in the work of van den Oord et al. (2016b;

2016c), producing the image row by row, pixel by pixel. These models

are, however, limited in such adaptations since it is di�cult to learn

and enforce high-level graph-based organizational structure. Hena�

et al. (2015), Duvenaud et al. (2015) and Niepert et al. (2016) propose

convolutional networks that operate directly on arbitrary graphs by

de�ning convolution as an operation on the radial neighborhood of

a vertex. However, none of these works enable generative models.

A di�erent approach to this problem, which directly inspires our

work, is the recursive neural network (RvNN) proposed by Socher et

al. (2012; 2011), which sequentially collapses edges of a graph to yield

a hierarchy. We build upon the autoencoder version of this network,

adapting it to learn the particular organizational principles that

characterize 3D shape structure, and to extend it from a deterministic

model to a probabilistic generative one.

3 OVERVIEW

Our method for learning GRASS, a hierarchical, symmetry-aware,

generative model for 3D shapes, has three stages, shown in Figure 2.

In this section, we summarize the stages and highlight important

components and properties of the neural networks we use.

Geometry and structure encoding. We de�ne an abstraction of sym-

metry hierarchies, which are composed of spatial arrangements of

oriented bounding boxes (OBBs). Each OBB is de�ned by a �xed-

length code to represent its geometry. The �xed length code encodes

both the geometry of its child OBBs and their detailed grouping

mechanism: whether by connectivity or symmetry.

Stage 1: Recursive autoencoder. In the �rst stage, we train an autoen-

coder for layouts of OBBs. The autoencoder maps a box layout with

an arbitrary number and arrangement of components to a �xed-

length root code that implicitly captures its salient features. The

encoding is accomplished via a recursive neural network (RvNN)

that repeatedly, in a bottom-up fashion, collapses a pair of boxes

represented as codes into a merged code. The process also yields a

hierarchical organizational structure for the boxes. The �nal code

representing the entire layout is decoded to recover the boxes (plus

the entire hierarchy) by an inverse process, and the training loss is

measured in terms of a reconstruction error and back-propagated

to update the network weights.

Stage 2: Learning manifold of plausible structures. We extend the

autoencoder to a generative model of structures by learning a distri-

bution over root codes that describes the shape manifold, or shape

space, occupied by codes corresponding to meaningful shapes within

the full code space. We train a generative adversarial model (GAN)

for a low-dimensional manifold of root codes that can be decoded

to structures indistinguishable, to an adversarial classi�er, from the

training set. Given a randomly selected root code, we project it to

the GAN manifold to synthesize a plausible new structure.

Stage 3: Part geometry synthesis. In the �nal stage, the synthesized

boxes are converted to actual shape parts. Given a box in a synthe-

sized layout, we compute structure-aware recursive features that

represent it in context. Then, we simultaneously learn a compact,

invertible encoding of voxel grids representing part geometries as

well as a mapping from contextual part features to the encoded

voxelized geometry. This yields a procedure that can synthesize

detailed geometry for a box in a shape structure.

By chaining together hierarchical structure generation and part

geometry synthesis, we obtain the full GRASS pipeline for recursive

synthesis of shape structures.

4 RECURSIVE MODEL OF SHAPE STRUCTURE

In this section, we describe a method to encode shape structures

into a short, �xed-dimensional code. The learned encoding is fully

invertible, allowing the structure to be reconstructed from the code.

In Section 5, we present our method to adversarially tune this struc-

ture decoder to map random codes to structures likely to come from

real shapes. By combining this generator for sampling plausible

shape structures with a method for synthesizing the geometry of

individual parts (Section 6), we obtain our probabilistic generative

model for 3D shapes.

Our key observation is that shape components are commonly ar-

ranged, or perceived to be arranged, hierarchically. This is a natural

organizational principle in well-accepted theories of human cog-

nition and design, which has been extensively leveraged computa-

tionally (Serre 2013). Perceptual and functional hierarchies follow

patterns of component proximity and symmetry. Hence, the primary

goal of our structural code is to successfully encode the hierarchical

organization of the shape in terms of symmetries and adjacencies.

An important metric of success is that the hierarchies are consistent
across di�erent shapes of the same category. We achieve this via

a compact model of recursive component aggregation that tries to

consistently identify similar substructures.

Our model is based on Recursive Autoencoders (RAE) for unlabeled

binary trees, developed by Socher et al. (2014). The RAE framework

proposed by Socher et al. consists of an encoder neural network that

takes twon-dimensional inputs and produces a singlen-dimensional

output, and a decoder network that recovers two n-D vectors from a

single n-D vector. In our experiments, n = 80.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:5

Given a binary tree with n-D descriptors for the leaves, the RAE

is used to recursively compute descriptors for the internal nodes,

ending with a root code. The root code can be inverted to recover

the original tree using the decoder, and a training loss formulated

in terms of a reconstruction error for the leaves.

RAEs were originally intended for parsing natural language sen-

tences in a discriminative setting, trained on unlabeled parse trees.

We adapt this framework for the task of learning and synthesizing

hierarchical shape structures. This requires several important tech-

nical contributions, including extending the framework to accom-

modate multiple encoder and decoder types, handling non-binary

symmetric groups of parts, and probabilistically generating shapes

(as described in the subsequent sections).

Criteria for recursive merging. Our model of hierarchical organi-

zation of shape parts follows two common perceptual/cognitive

criteria for recursive merging: a mergeable subset of parts is either

an adjacent pair (the adjacency criterion) or part of a symmetry

group (the symmetry criterion)
2
. An adjacent pair is represented

by the bounding boxes of constituent parts. In this stage, we are

interested only in representing the gross layout of parts, so we dis-

card �ne-grained geometric information and store only oriented

part bounding boxes, following earlier work on shape layouts (Ovs-

janikov et al. 2011) — �ne-grained geometry synthesis is described

in Section 6. We recognize three di�erent types of symmetries, each

represented by the bounding box of a generator part plus further

parameters: (1) pairwise re�ectional symmetry, parametrized by the

plane of re�ection; (2) k-fold rotational symmetry, parametrized

by the number of parts k and the axis of rotation; and (3) k-fold

translational symmetry, parametrized by k and the translation o�set

between parts. The di�erent scenarios are illustrated in Figure 3.

We generate training hierarchies that respect these criteria, and our

autoencoder learns to synthesize hierarchies that follow them.

Synthesizing training data. To train our recursive autoencoder, we

synthesize a large number of training hierarchies from a dataset of

shapes. These shapes are assumed to be pre-segmented into con-

stituent (unlabeled) parts, but do not have ground truth hierarchies.

We adopt an iterative, randomized strategy to generate plausible

hierarchies for a shape that satisfy the merging criteria described

2
Currently, we make the reasonable single-object assumption that all parts are con-

nected by either adjacency or symmetry. For disconnected, asymmetric shapes, we

would need further merging criteria.

Fig. 3. Merging criteria used by our model demonstrated with 3D shapes
represented by part bounding boxes (relevant parts highlighted in red).
From le�: (a) two adjacent parts, (b) translational symmetry, (c) rotational
symmetry, and (d) reflective symmetry.

above. In each iteration, two or more parts are merged into a single

one. A mergeable subset of parts is either adjacent or symmetric.

We randomly sample a pair that satis�es one of the two criteria until

no further merges are possible. In our experiments, we generated 20

training hierarchies for each shape in this fashion. Note that none

of these hierarchies is intended to represent “ground truth”. Rather,

they sample the space of plausible part groupings in a relatively

unbiased fashion for training purposes.

Autoencoder model. To handle both adjacency and symmetry rela-

tions, our recursive autoencoder comprises two distinct types of

encoder/decoder pairs. These types are:

Adjacency. The encoder for the adjacency module is a neural net-

work AdjEnc which merges codes for two adjacent parts into the

code for a single part. It has two n-D inputs and one n-D output.

Its parameters are a weight matrixWae ∈ R
n×2n

and a bias vector

bae ∈ R
n

, which are used to obtain the code of parent (merged)

node y from children x1 and x2 using the formula

y = tanh(Wae · [x1 x2] + bae)

The corresponding decoder AdjDec splits a parent code y back

to child codes x ′
1

and x ′
2
, using the reverse mapping

[x ′
1
x ′
2
] = tanh(Wad · y + bad)

whereWad ∈ R
2n×n

and bad ∈ R
2n

.

Symmetry. The encoder for the symmetry module is a neural

network SymEnc which merges the n-D code for a generator

part of a symmetry group, as well as them-D parameters of the

symmetry itself into a single n-D output. The code for a group

with generator x and parameters p is computed as

y = tanh(Wse · [x p] + bse)

and the corresponding decoder SymDec recovers the generator

and symmetry parameters as

[x ′p′] = tanh(Wsd · y + bsd)

whereWse ∈ R
n×(n+m)

,Wsd ∈ R
(n+m)×n

, bse ∈ R
n

, and bsd ∈
Rm+n . In our implementation, we use m = 8 to encode sym-

metry parameters comprising symmetry type (1D); number of

repetitions for rotational and translational symmetries (1D); and

the mirror plane for re�ective symmetry, rotation axis for rota-

tional symmetry, or position and displacement for translational

symmetry (6D).

In practice, the encoders/decoders for both adjacency and symmetry

are implemented as two-layer networks, where the dimensions of

the hidden and output layers are 100D and 80D, respectively.

The input to the recursive merging process is a collection of part

bounding boxes. These need to be mapped to n-D vectors before

they can be processed by the autoencoder. To this end, we employ

additional single-layer neural networks BoxEnc, which maps the

12D parameters of a box (concatenating box center, dimensions and

two axes) to an n-D code, and BoxDec, which recovers the 12D

parameters from the n-D code. These networks are non-recursive,

used simply to translate the input to the internal code representation

at the beginning, and back again at the end.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

52:6 • J. Li et al

AdjEncode

AdjDecode

𝑛-D code vec.

12D parameters

𝑛-D code vec.

𝑛-D code vec.

…

𝑛-D code vec. 𝑛-D code vec.

12D parameters

BoxDecode
…

SymEncode

SymDecode

𝑛-D code vec. Symmetry params

𝑛-D code vec.

𝑛-D code vec.

…

Symmetry params

…

NodeClassifier

BoxEncode

Leaf, adjacent or
symmetry?

3D vector

Fig. 4. Autoencoder training setup. Ellipsis dots indicate that the code could
be either the output of BoxEnc, AdjEnc or SymEnc, or the input to BoxDec,
AdjDec or SymDec.

12D parameters

BoxDecode

Result

𝑛-D code vec.

NodeClassifier

AdjDecode

𝑛-D code vec. 𝑛-D code vec. 𝑛-D code vec. Symmetry params

SymDecode

Leaf Adjacent Symmetry

Prediction

Fig. 5. Autoencoder test decoding setup.

Lastly, we jointly train an auxiliary classi�er NodeClsfr to decide

which module to apply at each recursive decoding step. This classi-

�er is a neural network with one hidden layer that takes as input the

code of a node in the hierarchy, and outputs whether the node rep-

resents an adjacent pair of parts, a symmetry group, or a leaf node.

Depending on the output of the classi�er, either AdjDec, SymDec

or BoxDec is invoked.

Training. To train our recursive autoencoder, we use BFGS with

back-propagation, starting with a random initialization of weights

sampled from a Gaussian distribution. The loss is formulated as a re-

construction error. Given a training hierarchy, we �rst encode each

leaf-level part bounding box using BoxEnc. Next, we recursively

apply the corresponding encoder (AdjEnc or SymEnc) at each inter-

nal node until we obtain the code for the root. Finally, we invert the

process, starting from the root code, to recover the leaf parameters

by recursively applying the decoders AdjDec and SymDec, followed

by a �nal application of BoxDec. The loss is formulated as the sum

of squared di�erences between the input and output parameters for

each leaf box.

Note that during training (but not during testing), we use the input

hierarchy for decoding, and hence always know which decoder to

apply at which unfolded node, and the mapping between input and

output boxes. We simultaneously train NodeClsfr, with a three-

class softmax classi�cation with cross entropy loss, to recover the

tree topology during testing. The training setup is illustrated in

Figure 4.

Testing. During testing, we must address two distinct challenges.

The �rst is to infer a plausible encoding hierarchy for a novel seg-

mented shape without hierarchical organization. The second is to

decode a given root code to recover the constituent bounding boxes

of the shape.

To infer a plausible hierarchy using the trained encoding modules,

we resort to greedy local search. Speci�cally, we look at all subsets

that are mergeable to a single part, perform two levels of recursive

encoding and decoding, and measure the reconstruction error. The

merge sequence with the lowest reconstruction error is added to the

encoding hierarchy. The process repeats until no further merges are

possible. Particular cases of interest are adjacency before symmetry,

and symmetry before adjacency, as illustrated in Figure 6. For each

such case, we decode the �nal code back to the input box parameters

(using, as for training, the known merging hierarchy) and measure

the reconstruction error. This two-step lookahead is employed only

for inferring hierarchies in test mode. During training, we minimize

reconstruction loss over the hierarchy for the entire shape, as well

as over all subtrees. Thus, the encoder/decoder units are tuned for

both locally and globally good reconstructions, and at test time a

relatively short lookahead su�ces.

To decode a root code (e.g. one obtained from an encoding hierarchy

inferred in the above fashion), we recursively invoke NodeClsfr

to decide whether which decoder should expand the node. The

corresponding decoder (AdjDec, SymDec or BoxDec) is used to

recover the codes of child nodes until the full hierarchy has been

expanded to leaves with corresponding box parameters. The test

decoding setup is illustrated in Figure 5.

Several examples of test reconstructions are shown in Figure 7. The

above procedures are used to encode a novel shape to a root code,

and to reconstruct the shape given just this root code. In Figure 8,

we show how our RvNN is able to �nd a perceptually reasonable

symmetry hierarchy for a 3D shape structure, by minimizing the

reconstruction error. Given the structure of a swivel chair, the error

is much smaller when a wheel and spike are merged before the 5-

fold rotational symmetry is applied, than if two separate rotational

symmetries (for wheels and spikes respectively) are applied �rst.

5 LEARNING MANIFOLD OF PLAUSIBLE STRUCTURES

Our recursive autoencoder computes a compact, �xed-dimensional

code that represents the inferred hierarchical layout of shape parts,

and can recover the layout given just this code associated with the

Adjacent

Reflective
sym.

Adjacent

6-fold
rot. sym.

Fig. 6. Di�erent two-step encoding orders for two examples, found by min-
imizing reconstruction errors during testing. Le�: Symmetry (reflective)
before adjacency. Right: Adjacency before symmetry (6-fold rotational).

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:7

Input box structure Recovered structure

Refl. sym.Refl. sym.

Input box structure

7-fold
trans. sym.Refl. sym.

Refl. sym.5-fold
rot. sym.

Recovered structure

Fig. 7. Examples of reconstructing test shapes, without known hierarchies,
by successively encoding them to root codes, and decoding them back.
The encoding hierarchies inferred by our RvNN encoder are shown at the
bo�om.

5-fold rot.
sym.

5-fold rot.
sym.

5-fold rot.
sym.

(a) (b) (c)

Fig. 8. Our RvNN encoder can find a perceptually reasonable symmetry
hierarchy for a 3D shape structure, through minimizing reconstruction error.
Given an input structure (a), the reconstruction error is much smaller if
parts are grouped by adjacency before symmetry (b), instead of symmetry
before adjacency (c).

root of the hierarchy. However, the autoencoder developed so far is

not a generative model. It can reconstruct a layout from any root

code, but an arbitrary, random code is unlikely to produce a plausible

layout. A generative model must jointly capture the distribution of

statistically plausible shape structures.

In this section, we describe our method for converting the autoencoder-

based model to a fully generative one. We �ne-tune the autoencoder

to learn a (relatively) low-dimensional manifold containing high-

probability shape structures. Prior approaches for learning feasible

manifolds of parametrized 3D shapes from landmark exemplars in-

clude kernel density estimation (Fish et al. 2014; Talton et al. 2009),

multidimensional scaling (Averkiou et al. 2014), and piecewise prim-

itive �tting (Schulz et al. 2016). However, these methods essentially

reduce to simple interpolation from the landmarks, and hence may

assign high probabilities to parameter vectors that correspond to

implausible shapes (Goodfellow et al. 2014).

A
d

jD
ec

o
d

e

𝑛
-D

 r
an

d
o

m
 n

o
is

e

𝑛
-D

 c
o

d
e

ve
c.

𝑛
-D

 c
o

d
e

ve
c.

1
2

D
 p

ar
am

.

B
o

xD
ec

o
d

e

…
…

1
2

D
 p

ar
am

.

B
o

xD
ec

o
d

e

…

A
d

jEn
co

d
e

𝑛
-D

 co
d

e vec.
𝑛

-D
 co

d
e vec.

…

1
2

D
 p

aram
.

B
o

xEn
co

d
e

1
2

D
 p

aram
.

B
o

xEn
co

d
e

𝑛
-D

 co
d

e vec.

1
D

 vecto
r

…

…

generated

real

Generator network Discriminator network

Fig. 9. Architecture of our generative adversarial network, showing reuse
of autoencoder modules.

Recently, generative adversarial networks (GANs) (Goodfellow et al.

2014) have been introduced to overcome precisely this limitation.

Instead of directly interpolating from training exemplars, a GAN

trains a synthesis procedure to map arbitrary parameter vectors

only to vectors which a classi�er deems plausible. The classi�er,

which can be made arbitrarily sophisticated, is jointly trained to

identify objects similar to the exemplars as plausible, and others

as fake. This leads to a re�ned mapping of the latent space since

implausible objects are eliminated by construction. Given a com-

pletely random set of parameters, the trained GAN “snaps” it to the

plausible manifold to generate a meaningful sample.

In addition to enabling the synthesis of novel but statistically plau-

sible shape structures, the learned manifold also supports interpola-

tion between shape codes. The application of this feature to shape

morphing is shown in Section 7.

GAN architecture. The architecture of our generative adversarial

network comprises a generator (G) network, which transforms a

random code to a hierarchical shape structure lying on the estimated

manifold, and a discriminator (D) network, which checks whether

a generated structure is similar to those of the training shapes or

not. Our key observation is that we can directly reuse and �ne-tune
the autoencoder modules learned in the previous section, instead of

introducing new components. The decoder component (compris-

ing AdjDec, SymDec, BoxDec and NodeClsfr) is exactly what we

need to estimate a structure from a given code: it constitutes the

G network. The encoder component (comprising AdjEnc, SymEnc

and BoxEnc) is exactly what we need to estimate a code for the

generated structure. The �nal code can be compared to the codes

of training structures using an additional fully connected layer and

a binary softmax layer producing the probability of the structure

being “real”. This constitutes the D network. Hence, we initialize the

GAN with the trained autoencoder modules and further �ne-tune

them to minimize the GAN loss. The architecture is illustrated in

Figure 9, and the training procedure described below.

Training. The GAN is trained by stochastic gradient descent using

di�erent loss functions for the discriminator D and the generator

G. In each iteration, we sample two mini-batches: training box

structures x with their associated hierarchies, and random codes

z ∈ Rn . The x samples, with known hierarchies, are passed only

through the discriminator, yielding D (x), whereas the z samples are

passed through both networks in sequence, yielding D (G (z)). The

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

52:8 • J. Li et al
ra

n
d

o
m

 c
o

d
e
𝑧

All plausible hierarchies

… …

𝐷(𝐺(𝑧))

𝐷𝐺

𝐺

𝐺 𝐷

𝐷

𝐷(𝐺(𝑧))

𝐷(𝐺(𝑧))

0.96

0.85

0.23

Top 𝐾 plausible hierarchies

𝐺(𝑧)

𝐺(𝑧)

𝐺(𝑧)

Classification loss
weighted by 𝐷 𝐺 𝑧𝐺

𝐽𝐺
𝐺 𝐷

NodeClassifier

Geometric training of 𝐺 (𝐷 is fixed)

Structural training of 𝐺

Fig. 10. The training of our GAN model. Le�: Given a random code, we
select the top K “plausible” hierarchies from which G can decode a box
structure to best fool D . Right: For each selected hierarchy, the training
of G is split into geometric (top) and structural (bo�om) tuning, based on
di�erent loss functions.

loss function for the discriminator is

JD = −
1

2

Ex [logD (x)] −
1

2

Ez [log(1 − D (G (z)))] ,

while the loss function for the generator is

JG = −
1

2

Ez [logD (G (z))] .

By minimizing the �rst loss function w.r.t. the weights of the net-

workD, we encourage the discriminator to output 1 for each training

sample, and 0 for each random sample. By minimizing the second

loss function w.r.t. the weights of the network G, we encourage the

generator to fool D into thinking a random sample is actually a real

one observed during training. This is a standard adversarial training

setup; see Goodfellow et al. (2014) for more details.

With this straightforward training, however, it is still hard to con-

verge to a suitable balance between the G and D networks, despite

the good initialization provided by our autoencoder. This is due to

the following reasons. First, when mapping a random code z to the

manifold, the G network (which is just the recursive decoder) may

infer a grossly incorrect hierarchy. The D network �nds it easy to

reject these implausible hierarchies, and hence does not generate

a useful training signal for G. Second, the implausible hierarchies

generated from random codes may not provide reasonable path-

ways to back-propagate the loss from D so that G can be tuned

properly. Third, since the decoding networks in G are split into

geometric (e.g. AdjDec) and topological (NodeClsfr) types, they

should be tuned separately with di�erent losses deduced from D. To

these ends, we devise the following training strategies and priors,

to better constrain the training process:

• Structure prior forG . In an initial stage, we need to preventG from

mapping a random code z to a severely implausible hierarchy.

This is achieved by introducing a strong structure prior to G. We

constrain the hierarchies inferred byG to lie in a plausible set. This

set includes all hierarchies used to train the autoencoder in Section

4. It also includes all hierarchies inferred by the autoencoder, in

test mode, for the training shapes. For each z, we search the

plausible hierarchies for the top K = 10 ones that best fool the

discriminator, minimizing JG (Figure 10, left). These hierarchies

are then used to back-propagate the loss JG .

𝑧𝑠~𝑁(𝜇, 𝜎)

𝐺 𝐷

𝐺(𝑧)

𝐸𝑛𝑐

𝐸𝑛𝑐(𝑥)

VAE GAN

𝑓𝜇

𝑓𝜎

𝜇

𝜎

𝑧𝑠~𝑝(𝑧)

𝑓𝑙

Fig. 11. Confining random codes by sampling from a learned Gaussian
distributions based on learned root codes Enc (x). Jointly learning the dis-
tribution and training the GAN leads to a VAE-GAN network.

• Separate geometric and structural training. Given a selected hi-

erarchy, we �rst tune the geometric decoders of G via back-

propagating the corresponding loss JG through the hierarchy.

This tuning is expected to further fool the discriminator, leading

to a higher estimateD (G (z)) thatG (z) is real (Figure 10, top-right).

For each selected hierarchy, with its the newly updated D (G (z)),
we then tune the structural component, NodeClsfr, of G . This is

done by minimizing the classi�cation loss of NodeClsfr at each

node in the given hierarchy, using the node type as ground-truth

(Figure 10, bottom-right). To favor those hierarchies that better

fool D, we weight the loss by D (G (z)).

• Constrained random code sampling. Given the priors and con-

straints above, it is still di�cult to train G to reconstruct a plausi-

ble hierarchy from arbitrarily random codes. Therefore, instead of

sampling random codes from an uniform distribution, we sample

them from Gaussian distributions around the training samples x .

Speci�cally, G takes samples from a multivariate Gaussian distri-

bution: zs (x) ∼ N (µ,σ) with µ = fµ (Enc (x)) andσ = fσ (Enc (x)).
Here, Enc is the recursive encoder originally trained with the au-

toencoder (before adversarial tuning), running in test mode. fµ
and fσ can be approximated by two neural networks. We opti-

mize it to minimize the reconstruction loss on x , in addition to

the generator loss in the GAN. In fact, the networks Enc and G
constitute a variational autoencoder (VAE) if we also tune Enc
when learning the parameters of the Gaussian distribution. This

leads to an architecture similar to the VAE-GAN proposed by

Larsen et al. (2015); see Figure 11.

Consequently, we also impose the loss function for VAE that

pushes this variational distribution p (zs (x)) towards to the prior

distribution of the standard normal distribution p (z). In summary,

we minimize the following loss function:

L = LGAN (zp) + α1Lrecon + α2LKL (1)

The GAN loss is LGAN = logD (x) + log(1 − D (G (fl (zp)))), with

zp ∼ p (z). This loss is minimized/maximized byG/D, respectively.

The reconstruction loss is de�ned as Lrecon = ‖G (fl (zs (x)))−x ‖2.

fl is a network used to map a latent code to a root code, before

passing the latent code through G. The KL divergence loss is

LKL = DKL (p (zs (x)) ‖ p (z)). We set α1 = 10
−2

and α2 = 10 in

our experiments.

The results of the GAN training process are �ne-tuned RvNN de-

coder modules. The new decoders map any random n-D vector to a

structure lying on the plausible manifold. Together with a module to

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:9

generate �ne-grained part geometry, described in the next section,

this constitutes our recursive, generative model of 3D shapes.

6 PART GEOMETRY SYNTHESIS

In the previous sections, we described our generative model of part

layouts in shapes. The �nal component of our framework is a gener-

ative model for �ne-grained part geometry, conditioned on the part

bounding box and layout. Our solution has two components. First,

we develop a �xed-dimensional part feature vector that captures

both the part’s gross dimensions and its context within the layout.

Second, we learn a low-dimensional manifold of plausible part ge-

ometries while simultaneously also learning a mapping from part

feature vectors to the manifold. This mapping is used to obtain the

synthesized geometry for a given part in a generated layout. Below,

we describe these steps in detail.

Structure-aware recursive feature (SARF). The recursive generator

network produces a hierarchy of shape parts, with each internal

node in the hierarchy represented by an n-D code. We exploit this

structure to de�ne a feature vector for a single part. A natural con-

textual feature would be to concatenate the RvNN codes of all nodes

on the path from the part’s leaf node to the root. However, since

paths lengths are variable, this would not yield a �xed-dimensional

vector. Instead, we approximate the context by concatenating just

the code of the leaf node, that of its immediate parent, and that

of the root into a 3n-D feature vector (Figure 12). The �rst code

captures the dimensions of the part’s bounding box, and the latter

two codes capture local and global contexts, respectively.

SARF to part geometry. In the second stage, we would like to map

a SARF feature vector to the synthesized geometry for the part,

represented in our prototype as a 32 × 32 × 32 voxel grid. Such a

mapping function is di�cult to train directly, since the output is

very high (8000) dimensional yet the set of plausible parts spans

only a low-dimensional manifold within the space of all outputs.

Instead, we adapt a strategy inspired by Girdhar et al. (2016). We

set up a deep, convolutional autoencoder, consisting of an encoder

GeoEnc to map the voxel grid to a compact, 32D part code, and a

decoder GeoDec to map it back to a reconstructed grid. The learned

codes e�ciently map out the low-dimensional manifold of plausi-

ble part geometries. We use the architecture of Girdhar et al., and

measure the reconstruction error as a sigmoid cross-entropy loss.

Simultaneously, we use a second deep network GeoMap to map an

Concatenated code

Fig. 12. Construction of structure-aware recursive feature (SARF) for a part
in a hierarchy. We concatenate the RvNN codes of the part, its immediate
parent, and the root into a fixed-dimensional vector.

32 FC

80D SARF code

32x32x32 input
part volume 32D

SARF code

Training Testing

training
parts

32x32x32 output
part volume

32x32x32 output
part volume

96
256

384
256 256

384
256

96

6

32 FC

512 FC

512 FC

Fig. 13. Training and testing setup for part geometry synthesis.

(a) (b) (c) (d)

Fig. 14. Geometry synthesis from part structure. Given a generated part
structure (a), we synthesize the geometry inside each part box in volumetric
representation (b). The per-box volumes are then embedded into a global
volume (c) from which we reconstruct the final meshed model (d).

input SARF code to the 32D part code, with both networks accessing

the same code neurons. The mapping network employs a Euclidean

loss function. We train both networks jointly, using both losses,

with stochastic gradient descent and backpropagation. At test time,

we chain together the mapping network GeoMap and the decoder

GeoDec to obtain a function mapping SARF codes to synthesized

part geometry. The training and test setups are illustrated in Figure

13. The synthesis of the overall shape geometry is done by predict-

ing part-wise 3D volumes, which are then embedded into a global

volume, from which we reconstruct the �nal meshed model. See

Figure 14 for an example.

7 RESULTS AND EVALUATION

We evaluate our generative recursive model of shape structures

through several experiments. First, we focus on validating that our

autoencoder-based RvNN learns the “correct” symmetry hierarchies,

where correctness could be quali�ed in di�erent ways, and the

resulting codes are useful in applications such as classi�cation and

partial matching. Then we test the generative capability of our

VAE-GAN network built on top of the RvNN.

Dataset: We collected a dataset containing 1000 3D models from

�ve shape categories: chairs (500), bikes (200), aeroplanes (100),

excavators (100), and candelabra (100). These models are collected

from the ShapeNet and the Princeton ModelNet. Each model is pre-

segmented according to their mesh components or based on the

symmetry-aware segmentation utilized in (Wang et al. 2011). The

average number of segments per shape is 12 for chairs, 10 for bikes,

7 for aeroplanes, 6 for excavators, and 8 for candelabra. Symmetric

parts are counted as distinct. We do not utilize any segment labels.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

52:10 • J. Li et al

M1 M2

G1 G2 G3

A2A1

refl. refl.

refl.trans.

rot.

refl.trans.

Fig. 15. Our RvNN encoder correctly parses six out of seven 2D box arrange-
ments designed to test handcra�ed, perceptually-based grouping rules
from (Wang et al. 2011). The G2 rule is violated in our example, with 2-fold
translational symmetry (highlighted in the red box) taking precedence over
the reflectional one.

Our RvNN autoencoder is trained with all shapes in the dataset.

The generative VAE-GAN is trained per category, since its training

involves structure learning which works best within the same shape

category. Part geometry synthesis is trained on all parts from all

categories.

Learning recursive grouping rules. In the original work on symmetry

hierarchies by Wang et al. (2011), a total of seven precedence rules

(labeled M1, M2, G1, G2, G3, A1, and A2; see the Appendix for a

reproduction of these rules) were handcrafted to determine orders

between and among assembly and symmetry grouping operations.

For example, rule A1 stipulates that symmetry-preserving assembly

should take precedence over symmetry-breaking assembly and rule

M2 states that assembly should be before grouping (by symmetry)

if and only if the assembled elements belong to symmetry groups

which possess equivalent grouping symmetries. These rules were

inspired by Gestalt laws of perceptual grouping (Köhler 1929) and

Occam’s Razor which seeks the simplest explanation. One may say

that they are perceptual and represent a certain level of human

cognition.

The intriguing question is whether our RvNN, which is unsuper-

vised, could “replicate” such cognitive capability. To test the rules,

we designed seven box arrangements in 2D, one per rule; these

patterns are quite similar to those illustrated in Wang et al. (2011).

For rule A2, which involves a connectivity strength measure, we

simply used geometric proximity. In Figure 15, we show the seven

box arrangements and the grouping learned by our RvNN. As can

be observed, our encoder correctly parses all expected patterns ex-

cept in the case of G2, where 2-fold translational symmetry takes

precedence over the re�ectional one in our example.

Consistency of inferred hierarchies. Our RvNN framework infers

hierarchies consistently across di�erent shapes. To demonstrate

this, we augment two categories of our segmented dataset – chair
and candelabra – with semantic labels (e.g., for chairs: “seat”, “back”,

“leg”, and “arm”). Note that these labels occur at relatively higher

… …

refl.

…

rot.

…

rot.

…… … … … …

Fig. 16. Inferred hierarchies are consistent across sets of shapes, shown for
two shape classes (candelabra and chairs).

levels of the hierarchies, since legs, backs, etc., may be subdivided

into smaller parts. If the hierarchies are consistent across shapes,

these high-level labels should follow a consistent merging order.

For example, the seat and legs should be merged before the seat and

back are merged. Let `p denote the label of part p. Given another

label `, let h(p, `) denote the shortest distance from p to an ancestor

that it shares with a part with label `. Note that h(p, `p) = 0 by

de�nition. Let S` be the set of parts with label `. For labels `1, `2,

we measure the probability P` (`1 ≺ `2) that `1 is more regularly

grouped with ` than `2 as

∑
p∈S` I(h(p, `1) < h(p, `2))/|S` |, where I

is the indicator function and the sum is additionally restricted over

shapes in which all three labels appear. The overall consistency is

estimated as one minus the average entropy over all label triplets:

C = 1 +

(
|L|

3

)−1 ∑
`,`1, `2∈L, `,`1,`2

P` (`1 ≺ `2) log2 P` (`1 ≺ `2)

The average consistency over the two categories of training shapes

was measured as 0.81, and over the two categories of test shapes

as 0.72. The high values show that our RvNN infers hierarchies

consistently across di�erent shapes. Figure 16 shows several pairs

of shapes with consistent inferred hierarchies.

Classi�cation of shape structures. Our autoencoder generates com-

pact encodings for shapes segmented into arbitrary numbers of

parts, via a recursively inferred hierarchy. To test whether these

codes e�ectively characterize shapes and shape similarities, we con-

ducted a �ne-grained shape classi�cation experiment for each of

four classes: airplane, chair, bike, and candle. The sub-classes were:

airplane – 5 classes including jet, straight-wing, �ghter, delta-wing,

swept-wing; chair – 5 classes including armchair, folding, swivel,

four-leg, sofa; bike – 4 classes including motorcycle, casual bicycle,

tricycle, mountain bike; and candelabra – 3 classes including with

arms, w/o arm, with two-level arms. To represent each shape, we

used the average of all codes in the shape’s hierarchy, which, as in

Socher et al. (2011), we found to work better than just the root.

Following the standard protocol for each category of shapes, we hold

out one shape in turn, and sort the remaining shapes by increasing

the L2 distance between average codes, terminating the results by

a variable upper limit on the distance. The number of results from

the class of the query shape are considered as true positives.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ours

MV-CNN

3DShapeNets

Recall

P
re
ci
si
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ours

MVCNN

3DShapeNets

Recall

P
re
ci
si
o
n

Candle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ours

MV-CNN

3DShapeNets

Recall

P
re
ci
si
o
n

Chair

Airplane

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ours

MV-CNN

3DShapeNets

Recall

P
re
ci
si
o
n

Bike

Fig. 17. Precision-recall plots for classification tasks.

We show precision-recall plots for four classes of interest in Figure

17. The average accuracy of (subclass) classi�cation over all four

classes is 96.1%.

As baselines, we show the performance of two state-of-the-art de-

scriptors on this task (Su et al. 2015; Wu et al. 2015). This is not an

entirely equal-grounded comparison: our method leverages a prior

segmentation of each shape into (unlabeled) parts, whereas the base-

line methods do not. However, our method does not consider any

�ne-grained part geometry, only oriented bounding box parameters.

The considerable improvement of our method over the baselines

demonstrates that gross structure can be signi�cantly more impor-

tant for shape recognition than �ne-grained geometry, and accurate

and consistent identi�cation of part layouts can be the foundation

of powerful retrieval and classi�cation methods.

Partial structure matching. While the previous experiment tested

full shape retrieval, it is also interesting to explore whether subtree

codes are su�ciently descriptive for part-in-whole matching. As

before, we use the average of codes in a subtree as the feature for the

subtree. Figure 18 contains some partial retrieval results, showing

that our method correctly retrieves subparts matching the query.

Shape synthesis and interpolation. Our framework is generative, and

can be used to synthesize shapes from the learned manifold in a two-

step process. First, the VAE-GAN network is sampled using a random

seed for a hierarchical bounding box layout. Second, the leaf nodes

of the hierarchy are mapped to �ne-grained voxelized geometry,

which is subsequently meshed. Several examples of synthesized

shapes are shown in Figure 19.

Our model can also be used to interpolate between two topologi-

cally and geometrically di�erent shapes. For this task, we compute

the root codes of two shapes via inferred hierarchies. Then, we

linearly interpolate between the codes, reconstructing the shape

at each intermediate position using the synthesis procedure above.

Although intermediate codes may not themselves correspond to

root codes of plausible shapes, the synthesis procedure projects

them onto the valid manifold by virtue of the VAE-GAN training.

We demonstrate example interpolations in Figure 20. Note that our

model successfully handles topological changes both in the part

layout and within parts, while maintaining symmetry constraints.

Unlike Jain et al. (2012), we do not require prior knowledge of part

hierarchies. Unlike both Jain et al. and Alhashim et al. (2014), we do

not require part correspondences either, and we can handle smooth

topological changes in individual parts.

Implementation and Timing. Our RvNN and VAE-GAN are imple-

mented in MATLAB. The geometry synthesis model is implemented

using the MatConvNet neural network library. Pre-training the au-

toencoder (Section 4) took 14 hours. Adversarial �ne-tuning (Section

5) took about 20 hours for each shape class. Training the part geome-

try synthesis network (Section 6) took 25 hours. Mapping a random

code vector to the manifold of plausible structures to synthesize a

hierarchy takes 0.5 seconds, and augmenting it with synthesized

�ne-grained part geometry takes an additional 0.2 seconds per part.

8 DISCUSSION, LIMITATION, AND FUTURE WORK

With the work presented, we have only made a �rst step towards

developing a structure-aware, generative neural network for 3D

shapes. What separates our method apart from previous attempts

at using neural nets for 3D shape synthesis is its ability to learn,

without supervision, and synthesize shape structures. It is satisfying

to see that the generated 3D shapes possess cleaner part structures,

such as symmetries, and more regularized part geometries, when

compared to voxel �elds generated by previous works (Girdhar

et al. 2016; Wu et al. 2016). What is unsatisfying however is that we

decoupled the syntheses of structure and �ne geometry. This hints

at an obvious next step to integrate the two syntheses.

The codes learned by our RvNN do combine structural and geometric

information into a single vector. Through experiments, we have

demonstrated that the hierachical grouping learned by the RvNN

Query Top ranked box structures

Fig. 18. Partial structure retrieval results for two shape classes (chair and
bicycle). The query and matching parts are highlighted in red.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

52:12 • J. Li et al

Fig. 19. Examples of shapes synthesized from di�erent classes.

appears to conform to perceptual principles as re�ected by the

precedence rules handcrafted by Wang et al. (2011). The codes also

enable applications such as �ne-grained classi�cation and partial

shape retrieval, producing reasonable results. However, the internal

mechanisms of the code and precisely how it is mixing the structural

and geometric information is unclear. The fact that it appears to be

able to encode hiearachies of arbitrary depth with a �xed-length

vector is even somewhat mysterious. An interesting future work

would be to “visualize” the code to gain an insight on all of these

questions. Only with that insight would we be able to steer the

code towards a better separation between the parts re�ecting the

structure and the parts re�ecting low-level geometry.

Our current network still has a long way to go in fully mapping the

generative structure manifold. We cannot extrapolate arbitrarily – we

are limited to a VAE-GAN setup which samples codes similar to, or

in between, the exemplars. Hence, our synthesis and interpolation

are con�ned to a local patch of that elusive “manifold”. In fact, it

is not completely clear whether the generative structure space for

a 3D shape collection with su�ciently rich structural variations

is a low-dimensional manifold. Along similar lines, we have not

discovered �exible mechanisms to generate valid codes, e.g., by

applying algebraic or crossover operations, from available codes.

All of these questions and directions await future investigations. It

would be interesting to thoroughly investigate the e�ect of code

length on structure encoding. Finally, it is worth exploring recent

developments in GANs, e.g. Wasserstein GAN (Arjovsky et al. 2017),

in our problem setting. It would also be interesting to compare with

plain VAE and other generative adaptations.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable comments and

suggestions. We are grateful to Yifei Shi, Min Liu and Yizhi Wang

for their generous help on data preparation and result production.

This work was supported in part by NSFC (61572507, 61532003,

61622212), an NSERC grant (611370), NSF Grants IIS-1528025 and

DMS-1546206, a Google Focused Research Award, and awards from

the Adobe, Qualcomm and Vicarious corporations.

REFERENCES

Ibraheem Alhashim, Honghua Li, Kai Xu, Junjie Cao, Rui Ma, and Hao Zhang. 2014.

Topology-Varying 3D Shape Creation via Structural Blending. In Proc. SIGGRAPH.

Brett Allen, Brian Curless, and Zoran Popović. 2003. The Space of Human Body Shapes:

Reconstruction and Parameterization from Range Scans. In Proc. SIGGRAPH.

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,

and James Davis. 2005. SCAPE: Shape Completion and Animation of People. In Proc.
SIGGRAPH.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN. arXiv
preprint arXiv:1701.07875 (2017).

Melinos Averkiou, Vladimir Kim, Youyi Zheng, and Niloy J. Mitra. 2014. ShapeSynth:

Parameterizing Model Collections for Coupled Shape Exploration and Synthesis.

EUROGRAPHICS (2014).

Volker Blanz and Thomas Vetter. 1999. A Morphable Model for the Synthesis of 3D

Faces. In Proc. SIGGRAPH. 187–194.

Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. 2010. A Connection Between

Partial Symmetry and Inverse Procedural Modeling. In Proc. SIGGRAPH.

Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen Koltun.

2011. Probabilistic Reasoning for Assembly-Based 3D Modeling. In Proc. SIGGRAPH.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-

Bombarelli, Timothy Hirzel, Al’an Aspuru-Guzik, and Ryan P. Adams. 2015. Convo-

lutional Networks on Graphs for Learning Molecular Fingerprints. In Proc. NIPS.

Noa Fish, Melinos Averkiou, Oliver van Kaick, Olga Sorkine-Hornung, Daniel Cohen-Or,

and Niloy J. Mitra. 2014. Meta-representation of Shape Families. In Proc. SIGGRAPH.

Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. 2016. Learning a

predictable and generative vector representation for objects. In Proc. ECCV.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In

Proc. NIPS.

Mikael Hena�, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional Networks on

Graph-Structured Data. CoRR abs/1506.05163 (2015). http://arxiv.org/abs/1506.05163

Haibin Huang, Evangelos Kalogerakis, and Benjamin Marlin. 2015. Analysis and

synthesis of 3D shape families via deep-learned generative models of surfaces. In

Proc. SGP.

Arjun Jain, Thorsten Thormählen, Tobias Ritschel, and Hans-Peter Seidel. 2012. Explor-

ing Shape Variations by 3D-Model Decomposition and Part-based Recombination.

In EUROGRAPHICS.

Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen Koltun.

2012. A probabilistic model for component-based shape synthesis. ACM Trans.
Graph. (Proc. SIGGRAPH) 31, 4 (2012).

Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen DiVerdi, and

Thomas Funkhouser. 2013. Learning Part-based Templates from Large Collections

of 3D Shapes. In Proc. SIGGRAPH.

W. Köhler. 1929. Gestalt Psychology. Liveright.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and Ole Winther. 2015. Autoencod-

ing beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300
(2015).

Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre Vandergheynst.

2015. Geodesic convolutional neural networks on Riemannian manifolds. In ICCV
Workshops.

Niloy Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, and Martin Bokeloh. 2013.

Structure-aware shape processing. In Eurographics State-of-the-art Report (STAR).
Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. 2006.

Procedural Modeling of Buildings. In Proc. SIGGRAPH.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning Convolu-

tional Neural Networks for Graphs. In Proc. ICML.

Maks Ovsjanikov, Wilmot Li, Leonidas Guibas, and Niloy J. Mitra. 2011. Exploration of

Continuous Variability in Collections of 3D Shapes. In Proc. SIGGRAPH.

Charles R. Qi, Hao Su, Matthias Niessner, Angela Dai, Mengyuan Yan, and Leonidas J

Guibas. 2016. Volumetric and multi-view CNNs for object classi�cation on 3D data.

In Proc. CVPR.

Adriana Schulz, Ariel Shamir, Ilya Baran, David Isaac William Levin, Pitchaya Sitthi-

Amorn, and Wojciech Matusik. 2016. Retrieval on Parametric Shape Collections.

ACM Trans. Graph. (to appear) (2016).

Thomas Serre. 2013. Hierarchical Models of the Visual System. In Encyclopedia of
Computational Neuroscience, Dieter Jaeger and Ranu Jung (Eds.). Springer NY.

Ayan Sinha, Jing Bai, and Karthik Ramani. 2016. Deep Learning 3D Shape Surfaces

using Geometry Images. In Proc. ECCV.

Richard Socher. 2014. Recursive Deep Learning for Natural Language Processing and
Computer Vision. Ph.D. Dissertation. Stanford University.

Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, and Andrew Y.

Ng. 2012. Convolutional-Recursive Deep Learning for 3D Object Classi�cation. In

Proc. NIPS.

Richard Socher, Cli� C. Lin, Andrew Y. Ng, and Christopher D. Manning. 2011. Parsing

Natural Scenes and Natural Language with Recursive Neural Networks. In Proc.
ICML.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

http://arxiv.org/abs/1506.05163

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:13

Fig. 20. Linear interpolation between root codes, and subsequent synthesis, can result in plausible morphs between shapes with significantly di�erent
topologies.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-

view convolutional neural networks for 3D shape recognition. In Proc. ICCV.

Jerry Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah Goodman, and Radomír

Měch. 2012. Learning Design Patterns with Bayesian Grammar Induction. In Proc.
UIST. 63–74.

Jerry O. Talton, Daniel Gibson, Lingfeng Yang, Pat Hanrahan, and Vladlen Koltun. 2009.

Exploratory Modeling with Collaborative Design Spaces. In Proc. SIGGRAPH Asia.

Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik. 2017.

Learning Shape Abstractions by Assembling Volumetric Primitives. In Proc. CVPR.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. 2016a.

WaveNet: A Generative Model for Raw Audio. CoRR abs/1609.03499 (2016). http:

//arxiv.org/abs/1609.03499

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016b. Pixel Recurrent

Neural Networks. CoRR abs/1601.06759 (2016). http://arxiv.org/abs/1601.06759

Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and

Koray Kavukcuoglu. 2016c. Conditional Image Generation with PixelCNN Decoders.

CoRR abs/1606.05328 (2016). http://arxiv.org/abs/1606.05328

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1606.05328

52:14 • J. Li et al

Oliver van Kaick, Kai Xu, Hao Zhang, Yanzhen Wang, Shuyang Sun, Ariel Shamir,

and Daniel Cohen-Or. 2013. Co-Hierarchical Analysis of Shape Structures. In Proc.
SIGGRAPH.

Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan Cheng,

and Yueshan Xiong. 2011. Symmetry Hierarchy of Man-Made Objects. In EURO-
GRAPHICS.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B. Tenen-

baum. 2016. Learning a Probabilistic Latent Space of Object Shapes via 3D

Generative-Adversarial Modeling. In Proc. NIPS.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,

and Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volumetric

shapes. In Proc. CVPR.

Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. 2016. Perspective

Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D

Supervision. In Proc. NIPS.

M. E. Yumer and N. J. Mitra. 2016. Learning Semantic Deformation Flows with 3D

Convolutional Networks. In Proc. ECCV.

APPENDIX:
PRECEDENCE RULES FOR SYMMETRY HIERARCHY

We reproduce the precedence rules stipulated in Wang et al. (2011)

for sorting symmetry grouping and assembly operations:

M1 (Grouping before assembly): Grouping by symmetry takes

precedence over assembly operations, with an exception given by

the next rule (M2).

M2 (Assembly before grouping): Assemble before grouping if

and only if the assembled nodes belong to symmetry cliques which

possess equivalent grouping symmetries.

G1 (Clique order): If there are still symmetry cliques of order

greater than two in the contraction graph, then higher-order cliques

are grouped before lower-order ones.

G2 (Re�ectional symmetry): If there are only order-2 cliques in

the graph, then group by re�ectional symmetry before rotational

symmetry and translational symmetries.

G3 (Proximity in symmetry clique): If G1 and G2 cannot set a

precedence, e.g., between rotational and translational symmetries of

the same order, then grouping of part ensembles closer in proximity

takes precedence.

A1 (Symmetry preservation): Symmetry-preserving assembly

takes precedence over symmetry-breaking assembly.

A2 (Connectivity strength): If A1 cannot set a precedence, then

order assembly operations according to a geometric connectivity
strength measure.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	4 Recursive model of shape structure
	5 Learning manifold of plausible structures
	6 Part geometry synthesis
	7 Results and evaluation
	8 Discussion, limitation, and future work
	References

