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Abstract

Face recognition is one of the most intensively studied

topics in computer vision and pattern recognition. Facial

expression, which changes face geometry, usually has an

adverse effect on the performance of a face recognition sys-

tem. On the other hand, face geometry is a useful cue for

recognition. Taking these into account, we utilize the idea

of separating geometry and texture information in a face

image and model the two types of information by project-

ing them into separate PCA spaces which are specially de-

signed to capture the distinctive features among different in-

dividuals. Subsequently, the texture and geometry attributes

are re-combined to form a classifier which is capable of rec-

ognizing faces with different expressions. Finally, by study-

ing face geometry, we are able to determine which type of

facial expression has been carried out, thus build an ex-

pression classifier. Numerical validations of the proposed

method are given.

1. Introduction

Face recognition is an intensively studied research prob-

lem. A comprehensive review of the related works can be

found in [1] and [2]. It has been noticed that facial expres-

sion usually affects the performance of a face recognition

system. To deal with it, some existing methods rely on ex-

tracting stable face features, e.g., extracted line segment [3]

and geometric invariants [4]. [5] is based on dynamic link

matching which is robust under face rotation and deforma-

tion. One of the drawbacks with these works is that there is

less reliable invariants when faces carry heavy expressions.

Recently, some newly-developed face recognition sys-

tems based on video sequences can handle a wider range of

facial expressions [6, 7]. Compared to a single face image, a

video sequency consists of a large number of succesive im-

ages and carries much more information, making the recog-

nition task easier. However, a conventional face recognition

system based on single image is still valuable in many real

applications, e.g., creating personal photobook from digi-

tal image collections, where video sequences consistently

capturing a face are not generally available.

Besides face recognition, expression classification has

also drawn much attention. The facial action coding system

(FACS) [8] is designed to capture the variations of face fea-

tures under facial expressions given a single image frame.

[9] and [10] are examples of classifying facial expressions

by analyzing multiple image frames in a video sequence.

However, these works do not consider the problem of rec-

ognizing faces.

Our aim in this paper is to design a single-image-based

face recognition system which is capable of, given an ex-

pressioned testing face image, not only recognizing which

individual the testing face belongs to, but also determining

which type of facial expression has been carried out. This is

a challenging task, since the expression information needs

to be separated from the intrinsic face features. An intuitive

observation is that even under different expressions, the tex-

ture of one’s face skin is relatively invariant, with only slight

changes due to local lighting effects, or particular changes

such as blushing. In addition, certain geometry, e.g., the

length of nose and the distance between eyes, is also rel-

atively invariant under different expressions. On the other

hand, some geometry can have obvious changes under dif-

ferent expressions. For example, an opened mouth can pro-

long the chin. In this paper, our proposed face recognition

system is based on constructing separate PCA spaces for

face texture and those invariant geometry features. In addi-

tion, a novel expression PCA space is also constructed for

the purpose of classifying expressions.

The rest of this paper is organized in the following way.

Section 2 compares our method with existing works. Sec-

tion 3 describes the proposed method. Section 4 provides

experimental results. Concluding remarks are given in Sec-

tion 5, followed by some future research issues.

2 Comparison with related methods

The adverse effect of facial expressions on the perfor-

mance of face recognition systems can be mostly attributed



to misalignment. In typical recognition systems, faces are

aligned globally. As a result, under different facial expres-

sions, face features are not simultaneously and accurately

aligned, which dramatically affects the performance of an

appearance-based recognition system [11, 12].

The idea of separately modeling texture and geometry

information has been applied in Active Shape Model and

Active Appearance Model (ASM/AAM) [13, 14]. In ASM,

face geometry is defined via a set of feature points. In do-

ing so, the geometry of a face can be described by a mean

shape and a set of PCA basis representing geometric vari-

ations. In AAM, face texure can be warped to the mean

shape to acquire shape-normalized faces. The textures of

these normalized faces can be used to calculate a mean tex-

ture and a set of PCA basis modeling texture variations. Us-

ing these geometry and texture models, given a testing face,

ASM/AAM can represent it, as well as detect and register

its corresponding feature points.

In our proposed method, we have a face gallery which

is a collection of unexpressioned faces (in the following we

call them reference faces). Given an expressioned testing

face, we first recognize it by finding its matching reference

face in the face gallery. This process begins with fitting a

generic mask to reference faces as well as the testing face,

where the mask nodes are feature points. We then warp

the testing face to each of the reference faces. If we have

warped an expressioned face to the reference face of the

same individual, we call this warping natural warping; oth-

erwise we call it artificial warping. The warped texture

is then used as the texture information of the testing face,

while the fitted mask carries the geometric information. The

face recognition task is then to distinguish natural warping

from artificial warpings by jointly utilizing the two pieces

of information.

To compare the texture of a testing face with that of each

reference face, we project their textures onto the Eigenfaces

[11] spanned by the training faces. The distance between

their projections indicates their texture dissimilarity. As

for the geometry attribute, we focus on stable face geome-

try features by eliminating the geometric change caused by

expressions. Specifically, in training stage, we investigate

the geometric change in natural warpings and find out those

inner angles of the fitted mask which are relatively stable.

Larger weights are assigned to these angles when spanning

a angle PCA space. In this angle PCA space, the distance

between two faces’ projections indicates the dissimilarity

between their intrinsic geometry. The distances in the two

PCA spaces will be appropriately combined to identify a

natural warping for each testing face, i.e., accomplish the

task of face recognition. Next, the geometric change of the

testing face during the identified natural warping can then

be used to determine which type of expression has been

carried out on the testing face. For example, faces with an

opened mouth can be detected by a prolonged chin, which

probably implies the expression “happy” or “surprise”. In

this case, we focus on the unstable angles during natural

warpings and build an expression PCA space for expression

classification.

By comparing our method with ASM/AAM, we clearly

see that the design targets and the set of PCA spaces are

quite different. In ASM/AAM, the target is to build repre-

sentative models which can be used to represent, detect or

register different faces. Therefore, all the faces are warped

to an average face. On the other hand, our target is to

capture the distinctive features among different individuals.

Thus, testing faces are warped to each reference face. In the

warping of AAM, a face will be aligned with the average

face where the intrinsic face geometry has been changed

and the expression is also removed. In our warping, how-

ever, we separately capture the intrinsic geometry and ex-

pression, which is specially designed for the purpose of face

recognition and expression classification.

3 Method

3.1 Face mask

The idea of using a mask for registration in a face recog-

nition system is not new. For example, [15] uses a 3D mask

to register the frontal view with the profile view. Some

existing masks, such as [16], are well designed for fitting

deformable surface according to muscle actions. However,

when working with planar face images, it is hard to achieve

a good registration for all the densely placed vertexes. Be-

sides, although quad-based masks [16] make morphing flex-

ible, triangulated masks are advantageous in texture map-

ping. Consequently, we use a simplified and trianglated

mask, as shown in Fig. 1. On this mask, the grey trian-

gles correspond to regions of the eyebrows, eyes, nose and

Figure 1. Face mask.



mouth. They are intentionally set to smaller sizes so as to

capture more detailed features. This mask contains only 34

vertexes and 51 triangles, which will be denoted by v and t,

respectively.

3.2 Input data

We arrange the input data from a given database of face

images as follows:
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where Fi denotes the set of faces for the ith individual, for

i = 1, 2, . . . , k. Within Fi, there is a frontal-looking face

without expression, namely normal face, denoted by ri. In

addition, there are faces with n types of expressions, de-

noted by e
j
i where j = 1, 2, . . . , n indexes different types

of expressions. Since we are particularly interested in rec-

ognizing expressioned faces, we use all the normal faces

to form a face gallery and each of these normal faces is a

reference face.

3.3 Mask fitting and warping

Given a testing face, we first fit the mask onto it, by man-

ually selecting 14 markers to register important face fea-

tures. These markers are shown as the dark dots in Fig. 1.

Then, all the other vertexes on the mask can be fitted using

the symmetry and common knowledge of face structures.

Fig. 2 gives two examples of such a registration process.

Figure 2. Fitting masks. (a), (c): manually
placed markers (white dots); (b), (d): fitted
masks.

Figure 3. Examples of face warping. (a): ref-
erence face; (b), (c), (d), (e), (f): expressioned
faces of the same individual; (g): cropped ref-
erence face; (h), (i), (j), (k), (l): natural warp-
ings; (m): reference face of another individ-
ual; (n), (o), (p), (q), (r): artificial warpings to
(m).

The region outside of the fitted mask is then set to zero

intensity, since backgrounds, hair and shoulders are not sta-

ble features. After fitting masks, we have established a one-

to-one correspondence among the vertexes on fitted masks

for different faces. We then warp the texture in each triangle

t′ on an expressioned face onto the corresponding triangle t

on a reference face by operating an affine triangle warping.

Each vertex v′(x′, y′) in t′ will be transformed to the corre-

sponding vertex v(x, y) in t. This warping can be expressed

as




x

y

1



 =





a1 a2 a3

a4 a5 a6

0 0 1









x′

y′

1



 (1)

where a1, a2, a4 and a5 define scaling, rotation and shear-

ing, etc., while a3 and a6 represent translation. Substituting

the coordinates of all the vertexes in t and t′, the above six

parameters can be determined.

After warping, expressioned faces have been morphed to

have the same geometry as the reference face. Such exam-

ples are shown in Fig. 3. As we can see, the geometries of

expressioned faces, shown in Fig. 3 (b) to (f), are similar to

that of the reference face of the same individual in Fig. 3

(a) in most facial parts, with only certain geometry changes,

such as prolonged chin or closed eyes. However, when com-

pared to the reference face of a different individual in Fig. 3

(m), the geometries differs greatly almost for the entire face.

In the warping process, the warped face preserves texture

features, while its geometry has been changed. In natural



warpings, i.e., warping expressioned faces to the reference

face of the same individual, the warped texture will be close

to that of the reference face, as shown in Fig. 3 (h) to (l).

On the other hand, if expressioned faces are warped to the

reference face of a different individual, leading to artificial

warpings, the warped texture will be quite different from

that of the reference face, as shown in Fig. 3 (n) to (r).

3.4 Face geometry and angle residual

An example illustrating the geometry change of an ex-

pressioned face during a warping process is given by Fig. 4.

Figure 4. Geometry change, when warping a
surprised face to a reference face.

After warping, the resulting face will have the same ge-

ometry as the reference face. Consequently, the warped

face may appear similar to the reference face if their skin

textures are close to each other. However, the testing face

may belong to another individual whose face geometry dif-

fers greatly from that of the reference face. This implies

that face geometry carries valuable information. To char-

acterize this, we select the inner angles of each triangle on

the fitter mask as a descriptor of its geometry. In addition,

this descriptor is invariant under uniform scaling, transla-

tion and rotation, which can be caused by inaccurate cal-

ibration. These angles are arranged into an angle vector

xang , denoted by

xang = [θ1 θ2 θ3 . . . θ151 θ152 θ153 ]
T

where θ1 to θ3 belong to the first triangle, θ4 to θ6 belong to

the second triangle, etc. There are altogether 51 triangles,

yielding a total of 153 angles for each mask.

We record the geometric change during the warping pro-

cess. As the mask of an expressioned face is warped, its

angle vector changes. We calculate a vector xres to record

this angle change, referred to it as angle residual hereafter,

given by

xres = xe
ang − xr

ang. (2)

where xe
ang and xr

ang are the angle vectors of the expres-

sioned face and the reference face, respectively.

3.5 Face recogntion and expression classi-
fication

Our face recognition system is developed by jointly uti-

lizing texture and geometry information. A diagram illus-

trating the various components and the flow of our recogni-

tion system is shown in Fig. 5.

3.5.1 Training stage

Given a set of training faces F1 to Fk, we fit a mask to each

of these faces, then crop each normal face by only keeping

the region inside of the fitted mask. For the jth expressioned

face of the ith individual e
j
i , we warp it to its normal face

ri. For all the cropped normal faces and the warped faces,

we obtain a column vector xtex for each of them. We use

xtex to construct a texture PCA space, denoted by Vtex, to

calculate eigenfaces. The eigenfaces serve as the basis of

texture projection.

When constructing the angle PCA space, denoted by

Vang , the angle vectors of the fitted masks are used. How-

ever, based on the observation that only a small number of

angles have notable changes under facial expressions (such

as the ones around mouth and eyes), we use relatively in-

variant angles to capture the intrinsic face geometry in dis-

criminating individuals. This can be achieved by assign-

ing larger weighting factors to these angles. Specifically,

we arrange a matrix E, whose column vectors are the an-

gle residual vectors xres for all faces. We then calculate

the variance of each row in E, and use the inverse of the

variance as the weighting factor for the angles on that row.

The angle weights acquired in this way are arranged into a

column vector s. s(p) characterizes the stability of the pth

angle, i.e., the larger s(p), the more stable the pth angle is.

The weighted angle vector, denoted by x∗

ang , with its pth

element calculated by

x∗

ang(p) = xang(p) · s(p), (3)

will be used to construct Vang . The eigenvectors in this

space serve as the basis of geometry projection.

To build a classifier for face recognition, we jointly uti-

lize the two distances among faces in Vtex and Vang . As

a result, a weight w is needed for appropriately combining

the two attributes. We use the same recognition scheme as

will be explained later in the testing stage. Note that, for

different values of w, we will obtain different recognition

ratios on the training data. Thus, a curve plotting the recog-

nition ratio versus the weight w can give the best w to be

used in the testing stage. However, in practice, this curve

may be jaggy, or in other words, have more than one values

of w leading to maximum recognition ratio. To smooth the

curve, we fit a least-square parabola to the plotted curve and

select w where the parabola reaches its peak.



Figure 5. Diagram of the recognition system.

For the expression classification, we calculate angle

residuals for expressioned faces. The angle residual PCA

space, denote by Vres, can be constructed accordingly.

Then, all the angle residuals are projected to Vres. These

projections will serve as prototypes in the testing stage.

Now, each type of expression can be characterized by a set

of prototypes from different individuals.

3.5.2 Testing stage

Given a testing face, we fit a mask to it and warp it to each

of the reference faces in the face gallery. The warped faces

are projected to Vtex. After that, we calculate an Euclid-

ian distance dtex between the testing face and the reference

face that it has been warped to. The angle vector of the

testing face xang is weighted by the angle weighting vector

s, leading to x∗

ang , and then projected to Vang . The dis-

tance between the testing face and a reference face in the

angle PCA space is calculated as dang . In a warping pro-

cess, the testing face preserves its texture, but its geometry

will be completely changed to that of the reference face.

Therefore, we infer that texture and geometry attributes are

uncorrelated to each other, which means they can be lin-

early combined to form a new classifier. Such a combined

distance between a testing face and a reference face is then

calculated as

dcomb = w × dtex + (1 − w) × dang (4)

where 0 ≤ w ≤ 1 is the weighting parameter. Finally,

we can identify a reference face for each testing face by

selecting the one with the smallest dcomb.

So far, we have identified a reference face for each test-

ing face. We then collect the angle residual xres for each

testing face with respect to its reference face. We project

xres to Vres constructed in the training stage, and calcu-

late the Euclidean distances between the projections of the

testing face and all the prototypes. Then, we can obtain an

average value of the distances between the testing face and

those prototypes belonging to the same type of expression.

Indeed, this average distance is able to tell us how far the ex-

pression on the testing face is from each type of expression

and thus can be used to classify expressions.

4 Results

The Yale Faces database [17] is used for our ex-

periments. In this database, there are 90 face images

with/without expressions, for 15 individuals. Each indi-

vidual has six different types of facial expressions, namely:

“normal”, “happy”, “sad”, “sleepy”, “surprise” and “wink”.

Due to the limited number of individuals in the database

and to ensure cross-validation, we arrange these faces to

conduct three experiments. Specifically, in the first experi-

ment, we place the first five individuals’ expressioned faces

into the testing set. Their normal faces form the face gallery.

The remaining ten individuals’ faces are placed into the

training set. In the second experiment, we place the expres-

sioned faces of individuals numbered from 6 to 10 into the

testing set; the face gallery and the training set are formed

in a similar way as the first experiment. In doing so, each

face will be included in the testing set only once.



4.1 Face recognition

To compare with typical face recognition methods, we

first use Eigenface to recognize the original faces without

warping. To align the faces, we manually pick the nose

tip. A 150 × 150 square centered at the nose tip is cut off

and taken as the aligned face. Fig. 2 (a) to (f) and (m)

are such examples. Following the same experiment setup

as mentioned above, we divide the input data to perform

three experiments and in each experiment, we place five in-

dividuals’ expressioned faces into the testing set. All other

individuals’ faces are put into the training set and used to

construct a face PCA space.

To compare the performances when using different at-

tributes in discriminating individuals, we conduct three sets

of experiments, which are based on texture attribute, geom-

etry attribute and combined attributes, respectively. Both

weighted and un-weighted angle vectors, i.e., x∗

ang and

xang , will be used to model face geometry. In the set of

experiments based on combined attributes, the weight w is

obtained from the training stage. As mentioned above, we

use the training set to simulate a recognition process and

find a w corresponding to maximum recognition ratio. An

exemplary curve plotting the recognition ratio versus w for

the training set is shown in Fig. 6. The w corresponding

to the peak of the fitted parabola will be used in the testing

stage.
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Figure 6. Training for w. The solid line plots
the recognition ratio versus w. The dash

line is the fitted parabola. The dash-dot line
cuts the fitted parabola at its peak. From left
to right, larger weight is given to texture at-
tribute.

As can be seen from Fig. 6, we achieve a recognition

ratio of 29/50 by using geometry attribute only (w = 0). On

the other hand, if we only use texture attribute, a recognition

experi- experi- experi- over
ment 1 ment 2 ment 3 all

(1) original
face 22/25 17/25 23/25 82%

(2) texture
attribute 24/25 23/25 23/25 93.3%

(3) geometry
attribute 12/25 12/25 15/25 52%

(4) weighted
geometry
attribute 14/25 17/25 18/25 65.3%

(5) Combined
recognition 25/25 23/25 24/25 96%

Table 1. Results for face recognition. (1)
shows the recognition ratio when directly us-
ing the Eigenface method on original faces.
(2) is the recognition ratio when using tex-
ture attribute only. (3) and (4) are the recog-
nition ratios when using geometry attribute

only, without and with angle weighting, re-
spectively. (5) is the final combined recog-
nition ratio.

ratio of 43/50 (w = 1) can be achieved. When the two

attributes are combined, we will obtain a recognition ratio

of 48/50 at the peak of the parabola, w = 0.7677.

The recognition ratios for all the experiments have been

listed in Table 1. From Table 1, we observe that using tex-

ture attribute only, the recognition system has better perfor-

mance than directly recognizing the original faces, with an

improvement of the recognition ratio from 82% to 93.3%,

which demonstrates the adverse effect of facial expressions.

Using geometry attribute only does not provide satisfactory

results, due mainly to the geometry changes under different

expressions. However, using weighted geometry attribute,

higher recognition ratios are observed in all three exper-

iments. This proves that certain geometry information is

relatively stable under different expressions. However, the

recognition ratio of using geometry attribute is much lower

than that of using texture attribute. This result is reasonable,

because face geometries of different individuals can be eas-

ily similar. In contrast to the systems using single attribute

only, the performance of the proposed system further im-

proves if the two attributes are jointly utilized. It is shown

in [18] that both face texture and global configuration serve

as attributes in a face recognition system. Our experiment

corroborates that a machine recognition system also bene-

fits from combining the two attributes properly.

It is also interesting to investigate how the two attributes

contribute proportionally to a machine recogntion system.

In Table 2, we list the trained weights w in three experi-

ments, together with its standard deviation. We find that w

does not change too much over three experiments, which

suggests that the contributions from the two attributes are



experi- experi- experi-
ment 1 ment 2 ment 3 std

w 0.8283 0.7677 0.7676 0.0350

Table 2. The trained weight w in three experi-
ments, the standard deviation is calculated in
the last column.

related by a relatively stable ratio. This might be a good

indication that our system will have a stable performance

when working on larger data sets.

4.2 Expression classification

In the training stage, for each of the five types of facial

expressions, we have obtained ten prototypes. In Fig. 7, we

plot an exemplary distance matrix between the prototypes

obtained from a training set.

Figure 7. One distance matrix between the
prototypes of five types of expressions.

In Fig. 7, the first ten columns/rows correspond to the

expression “happy” for individuals 1 to 10. The next ten

columns/rows correspond to the expression “sad”, and so

on. It is easy to observe that there are five 10 × 10 dark

diagonal blocks, indicating that faces carrying the same type

of expression have smaller distances in the angle residual

PCA space.

However, as can be seen from Fig. 7, there are outliers

for almost all types of expressions, shown by the bright dots

in the diagonal blocks. We believe that this phenomenon

might be attributed to the fact that the ways people annotate

an expression may be quite different. For example, one can

have one or two eyes blinking under “wink”. One can also

Figure 8. Different faces carrying the same
expression: (a), (b): happy faces; (c), (d): sad
faces

have a closed or opened mouth under “happy”. Such exam-

ples can be found in Fig. 8. As can be seen, Figs. 8 (a)

and (b) have a widely opened mouth and a slightly opened

mouth, respectively, even though they are both defined as

“happy”. Similar observation can be made for Figs. 8 (c)

and (d), which are both defined as “sad”. As a result, for

each type of expression, there may be several faces that are

quite different from each other. To minimize the effect of

these outliers, when calculating the average distance from a

testing face to each type of expression, we only count the

distances between the testing face and its k-nearest neigh-

bors, instead of using all the prototypes.

The expression classification ratio over three experi-

ments is plotted in Fig. 9, where different values of k are

used. From Fig. 9, we find that the classification ratio varies

1 2 3 4 5 6 7 8 9 10
0.773

0.786

0.800

0.813

0.827

0.840

k

C
la

s
s
if
ic

a
ti
o

n
 r

a
ti
o

Figure 9. Expression classification ratio. The
ratio varies with respect to different k



from the lowest 77.3% to the highest 84%, with different

settings of k. The best ratio is obtained when two-nearest

neighbors are used.

The expression classification does not provide a ratio as

high as face recognition. As mentioned above, it might be

caused the ambiguity in defining an expression. In this case,

a larger training set for each type of expression may im-

prove the system performance. Another reason is, we may

have mis-recognition in the face recognition step. If a test-

ing face is matched to a wrong reference face, the resulting

angle residual is no longer meaningful and the mistake will

propagate into the expression classification step.

5 Conclusion and future works

In this paper, we constructed three PCA spaces sepa-

rately modeling face texture, intrinsic geometry and expres-

sion information by fitting a generic mask and warping the

texture. Based on a combination of texture and appropri-

ately defined geometric attributes, superior recognition per-

formance can be achieved. After face recognition, expres-

sions can be quantitively modeled, enabling our system to

classify expressions as well.

Our current mask fitting scheme is based on 14 manually

picked markers. The usage of markers makes the system

less automatic and likely to cause error. Considering that

there are existing methods on automatic face feature regis-

tration, the combination of our method with these automatic

registration algorithms will further highlight the advantages

of our method.

In our experiments, the definition of expression types has

to follow what has been provided by the database. However,

it may not be an accurate way of categorizing expressions

in practice, e.g., faces defined as “sad” do not have clearly

distinguishable features and likely resemble faces defined

as “normal”. In addition, for the database with which we

have conducted our experiments, the number of prototypes

in each type of expression is quite limited and insufficient

to cover different ways people define expressions. Thus,

we anticipate that a physiological expression categorizing

method and more prototypes representing each type of ex-

pression will be helpful in classifying different expressions.

Furthermore, in this database, faces do not usually carry

heavy expressions. We would expect that, with a specially

captured database which include more heavily expressioned

faces, our proposed method will further demonstrate its ad-

vantages.
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