
The Visual Computer manuscript No.
(will be inserted by the editor)

Joe Kahlert · Matt Olson · Hao Zhang

Width-Bounded Geodesic Strips for Surface Tiling

Abstract We present an algorithm for computing fam-
ilies of geodesic curves over an open mesh patch to par-
tition the patch into strip-like segments. Specifically, the
segments can be well approximated using strips obtained
by trimming long, rectangular pieces of material hav-
ing a prescribed width δ. We call this the width-bounded
geodesic strip tiling of a curved surface, a problem with
practical applications such as the surfacing of curved
roofs. The strips are said to be straight since they are
constrained to fit within rectangles of width δ, in con-
trast to arbitrary, possible highly curved, strip segments.
The straightness criterion, as well as a bound on strip
widths, distinguishes our problem from ones previously
studied for developable surface decomposition.

We start with a geodesic curve defined by a user-
specified starting point and direction on the input mesh.
We then iteratively compute the neighboring geodesics
which respect the constraints and lead to optimal use
of material (i.e., minimizing the trimmed material) until
the surface mesh in question is completely tiled. Our al-
gorithm is exact with respect to the polyhedral geometry
of the mesh surface and it runs on a variety of surfaces
with a modest time complexity of O(n1.5) under reason-
able input parameter settings, where n is the mesh size.
We also show how the algorithm can be extended by
relaxing the constraint that neighboring geodesics span
the mesh, thus allowing the algorithm to be applied to
meshes with greater undulation.

Keywords geodesics · surface tiling · straight strips

1 Introduction

Anyone who has made a papier-mâché model knows that
a curved surface can be formed using strips of flexible
material. If these paper strips are trimmed to eliminate
overlap, the result is a strip tiling . In industrial settings,

Graphics, Usability, and Visualization (GrUVi) Lab
School of Computing Science
Simon Fraser University, Canada

p
v

(a)
� �

(b)

Fig. 1 Width-bounded geodesic strip tiling of a ship hull
surface. (a) User input includes a point p and an orientation
v, resulting in the initial geodesic through p. An intermedi-
ate processing step showing the geodesic found in the first
iteration (second blue curve), along with the upper bound
curves (in red) which constrain the search for the geodesics,
is shown as well. (b) The complete tiling and two resulting
strip widths plotted over-top of rectangular material pieces
showing that the δ width constraint is satisfied.

whether it be for building shells, ship hulls or timber
construction, material is typically available in long rect-
angular strips or spools. Such strips can be cut, trimmed
and joined together to approximate a surface.

In this paper, we are interested in the following straight
strip tiling problem: given a curved surface patch with-
out holes, approximate it using an adjoining set of straight
strips satisfying a bounded-width constraint. Specifically,
each strip must fit within a long rectangular piece of ma-
terial with a given width δ; see Figure 1. In other words,
the tiling strip can be obtained from the rectangular
piece by cutting and trimming which for our purposes
makes it straight. Note here that there is no constraint
on the length of the rectangles.

In a practical application such as roof building in
Figure 2, we can directly observe the need for straight
tiling as the long metal roof panels used flex (to any
significant extent) in only one direction — perpendicu-
lar to their length and normal to their surface. In other
words, these panels remain straight when applied, so the
technique described herein is needed to prescribe their



2 Joe Kahlert et al.

Fig. 2 The Southern Cross Station in Melbourne, Australia
covered with straight metal strips (from flickr.com).

cutting and placement necessary for construction. Need-
less to say, reducing material waste is also of paramount
practical importance here.

A naive solution to this problem would be polygonal
meshing, tiling the input surface using planar facets each
of which is sufficiently small to fit within the material
width. However, this does not exploit the long length of
the material and thus leads to more cutting and joining
than is necessary. Planar mesh parameterization is also
an option, whereby the given surface is first flattened
so as to minimize distortion and then straight lines in
the parameter domain are mapped back onto the origi-
nal surface to define the strip boundaries. While excel-
lent algorithms for mesh parameterization exist [22], they
do not provide satisfactory solutions with respect to the
straightness criterion. Consider for example the case of
a hemispherical mesh. Conventional mesh parameteriza-
tion schemes would flatten the input surface into a pla-
nar circular patch while distributing distortion uniformly
across. The resulting strips on the hemisphere, obtained
using curves corresponding to straight line boundaries in
the parameter domain, when approximately developed,
are curved in that they do not fit within our rectangles
of width δ (unless δ is very large — on the order of the
mesh size — which is of little interest here as we seek
an algorithm that works for any δ). See Figure 3 for an
illustration of such a situation, comparing with straight
strips derived from our approach.

Recent work of Pottmann et al. [20] takes as input
a set of curves on a mesh surface and produces a set
of adjoining developable strips (constrained by the in-
put curves) which together provide a good surface ap-
proximation. If one of these curve families consists of
geodesics, then this algorithm can be adapted to produce
strips with approximately straight development. Making
use of this work affords us the luxury of addressing our
strip tiling problem by only focusing on covering the sur-
face with geodesics and then deferring to Pottmann et
al. [20] for constructing the actual material strips to ap-
proximate the surface. Specifically, we frame the problem
we wish to solve as follows: on a given mesh patch, find a

Strips produced via planar mesh parameterization.

Strips produced via width-bounded geodesic marching.

Fig. 3 Tiling a hemisphere patch using strips. Top: Strips
produced by straight lines drawn over a conventional pla-
nar parameterization of the patch are not straight. Bot-
tom: Straight strips derived from our width-bounded geodesic
marching algorithm.

set of nonintersecting geodesic curves that are separated
by no more than the prescribed material width δ (mea-
sured geodesically) from each other and from the surface
boundary so that the resulting strips, when developed,
span the width of the bounded-width rectangles as much
as possible so as to minimize material waste.

Finding a globally optimal solution to such a prob-
lem is beyond the scope of this paper. Instead, we solve
a greedy version which is initialized with a point and an
orientation on the surface. Given this input provided by
the user, we can launch an initial source geodesic curve
from which we can iteratively find neighboring geodesics
with the properties mentioned until the surface is cov-
ered with geodesic strips of bounded width. We call such
a procedure width-bounded geodesic marching ; refer to
Figure 1 for an illustration on a ship hull surface.

1.1 Motivation

It is well known that when a narrow strip of flexible yet
unstretchable material is placed on a smooth surface to
conform to it, the strip will follow a geodesic path [18].
This results from the straightness property of geodesics
— a geodesic over a smooth surface curves only in the di-
rection of the surface normal — and it motivates the use
of geodesic marching for straight strip tiling of surfaces.
With the recent work of Pottmann et al. [20] which can
convert sets of geodesic curves on a surface into adjoining
strips to approximate the surface, we are left to address
the problem of computing an optimal set of geodesics
fulfilling the various constraints.

Our geodesic-finding algorithm draws upon much re-
cent excellent work on geodesic computation over dis-
crete surfaces [4,13,23]. Specifically, we make significant
use of the commonly adopted concept of “windows” for
geodesic marching. However, previous works focused on
solving the shortest path problem to find geodesics and



Width-Bounded Geodesic Strips for Surface Tiling 3

while all shortest paths are indeed geodesics, not all
geodesics are shortest paths [8]. Therefore, in order to
find all of the geodesics necessary for our strip tiling
problem, we need to extend these existing works.

If material strips need not be straight when unrolled,
or developed, into the plane or if the surface to be tiled is
rather special, e.g., section of a sphere, developable sur-
face, or surface of revolution, then either existing tech-
niques (e.g., stripification) or surface properties (e.g.,
symmetry) may be exploited to compute the geodesic
curves covering the surface. However, if only planar ma-
terial available in rectangular strips of bounded width
may be used to cover an arbitrary curved surface, then
to the best of our knowledge, our algorithm is the only
available solution so far.

1.2 Applications

Roof construction With the exception of single-layered
roofs made from exotic materials such as glass or fab-
ric, most building roofs have two distinct components:
the supporting structure and weather resistant surfac-
ing. For curved roofs that have been gaining popular-
ity in modern architecture, construction of both of these
components is far more complicated than for the case of
planar roofs. For curved roof surfacing the de facto stan-
dard materials are metal roofing panels which are abun-
dantly available in long straight strips. Figure 2 shows
a large curved roof covered with metal panels trimmed,
placed and joined to tile the roof surface. Given a mesh
of this surface and the material width, our algorithm
(in conjunction with a strip construction algorithm like
Pottmann [20]) can be used to prescribe the trimming
and placement of the material strips necessary to panel
the roof.

Boat hull construction Some boat hulls are made from
straight flexible materials such as thin wooden strips.
Figure 1 shows an example of how our algorithm can be
used to produce the strips necessary to form the hull.

1.3 Contributions

Our contributions include the following. First, we adapt
existing shortest-path techniques in order to be able to
find straight, as opposed to shortest, geodesics. Then,
we develop techniques to satisfy more geodesic curve
constraints of greater complexity from a wider range of
starting points as compared to the constraints posed by
shortest-path problems. We present a novel geodesic area
calculation technique which enables us to choose strip
candidates that minimize material waste. Finally, we al-
low straight strip tiling of a wider variety of meshes,
including those with greater undulation, by relaxing the
constraint that neighboring geodesics span the mesh. In

other words, the delimiting geodesics constructed are al-
lowed to intersect in the interior of the input patch.

Our algorithm is exact with respect to the polyhedral
geometry of the mesh surface and it runs on a variety of
surfaces with a modest time complexity of O(n1.5) un-
der typical input parameter settings, where n is the mesh
size. The required user-defined orientation typically al-
lows us to incorporate important property of the surface
or application-specific knowledge, e.g., symmetry, grav-
ity, or other considerations, into the algorithm.

2 Related work

In this section, we discuss possible alternative approaches
to solving our straight strip tiling problem and tech-
niques upon which we build in the course of developing
our chosen approach.

2.1 Meshing and stripification

Technically speaking, our stripping tiling problem can
be solved by remeshing [2] the input surface with small
enough planar facets. However this solution does not take
advantage of the available length of the material strips
and thus leads to an unnecessarily fractured result.

Recent work from architectural geometry [11] uses
planar quad meshes to represent free-form structures.
This work is then extended by combining these quadri-
laterals into continuous singly curved strips in what is
known as a semi-discrete surface representation [20]. Pottmann
et al. go on to show that if geodesic curve families are
used as input then straight strips which approximate the
input surface can be produced. In a similar work [21] the
same authors call for the creation of curve networks to
initialize their semi-discrete surface optimizations which
is in fact the objective of this paper. If we are success-
ful in finding such a family of geodesic curves then this
existing body of work can be used to approximate the in-
put mesh with a semi-discrete surface made out of singly
curved strips that are straight when unrolled.

There are also a variety of mesh stripification algo-
rithms [24]. The common issue with them is that they
do not address the straightness criterion. Our effort is on
finding straight geodesic curves on an open mesh patch
satisfying user and material width constraints

2.2 Discrete geodesics

Geodesics are most well known for the fact that the
shortest path between two points on a smooth mani-
fold is guaranteed to be geodesic [3,5]. However, they are
more rigorously defined as curves whose curvature vector
is parallel to the surface normal. There have been many
studies extending this concept of differential geodesics



4 Joe Kahlert et al.

from smooth surfaces to discrete geodesics on polyhedral
surfaces that are represented by meshes.

Shortest geodesics are defined as locally shortest curves
on a mesh [6,13]. The most popular method for finding
these shortest geodesics on meshes has been using fast
marching to solve the Eikonal equation [10]. Using this
method, distances from a source point are propagated
across the mesh face by face with shorter distances can-
celing out longer ones.

The other popular approach for finding shortest paths
exploits their straightness property. The MMP algorithm
of Mitchell et al. [13], originally introduced in 1987 and
made practical by Surazhsky et al. in 2005 [23], divides
the mesh into intervals — or windows — without ver-
tices over which geodesics exist simply as straight lines
in that window’s planar unfolding. By creating, propa-
gating and merging appropriately, straight windows can
be extended from any source point to all other points
on the mesh and the shortest path can simply be se-
lected from among those that reach the intended target.
Bommes and Kobbelt [4] extend this work for geodesic
marching to polygonal segment sources rather than just
single points. Liu et al [12] warn of degeneracies that
exist in the Surazhsky algorithm.

Straightest geodesics are those whose left and right curve
angles (the sums of the incident angles on either side of
a point on the curve on a mesh) are always equal [17].
Straightest geodesics have application to the translation
of vectors and the integration of vector fields and are
related to shortest geodesics in the following ways [17]:

– A geodesic containing no surface vertex is both short-
est and straightest.

– A straightest geodesic through a spherical vertex is
not locally shortest.

– There exists a family of shortest geodesics through
a saddle vertex. Only one of them is a straightest
geodesic.

Note that we define saddle and spherical vertices in
Section 3.2, since they are relevant to the discussion of
our algorithm.

Quasi-geodesics Despite their popularity, neither of the
above discrete geodesics serves our purpose since we are
interested in all straight geodesics — not just those that
are the shortest or the straightest. Quasi-geodesics are
the limit sets of smooth geodesics on polyhedral sur-
faces [1,15]. They behave identically to shortest geodesics
with the exception that there is also a family of quasi-
geodesics through a spherical vertex, which cannot con-
tain shortest geodesics [13]. It is this higher adherence to
the differential version of the geodesic that makes quasi-
geodesics the most suitable for our application.

2.3 Mesh parameterization

Mesh parameterization techniques [7,22] also offer poten-
tial. Specifically, the straight strip tiling problem could
be solved by a parameterization that preserved straight-
ness in the sense that straight lines in the parameter do-
main would correspond to geodesics on the original sur-
face (and vice versa). However, we are not aware of any
existing algorithm that possesses this property in gen-
eral. On a hemisphere mesh patch, conventional param-
eterization algorithms, i.e, angle-preserving approaches
such as angle-based flattening [22], would lead to curved
strips, as illustrated in Figure 3.

In fact, a closer look at the example of the hemi-
sphere suggests that there may be no one mesh pa-
rameterization that preserves straightness in all direc-
tions. We can see this by first observing that the only
geodesics that produce straight strips on a hemisphere
are the so-called great arcs which must start and end at
the same two poles to avoid intersection (see Figure 3).
In other words, these two singularities are inevitable for
any straightness-preserving flattening procedure. How-
ever, a parameterization with such isolines would clearly
not preserve straightness in any other direction as the re-
sulting geodesics would converge on two different poles.
Therefore for any given surface we would require a fam-
ily of parameterizations — each one corresponding to
a particular strip alignment — to solve the problem in
general.

2.4 Geodesic flow

Another approach, that of the geodesic flow [14], also of-
fers potential for solving the straight strip tiling problem.
A geodesic flow is a tangential vector field on a surface
whereby all resulting integral curves, i.e., curves whose
tangents vectors belong to the vector field, are geodesic.
If a geodesic flow for a surface could be found, then the
desired strip boundaries for any material width could be
found trivially. There has been some work on geodesic
flows for discrete surfaces [16] describing the properties
of fields corresponding to geodesics that emanate from a
single point on a mesh. However, application of this the-
oretical technique to our problem appears to be difficult,
hence we have chosen not to pursue it here.

3 Width-bounded geodesic marching algorithm

As mentioned in Section 1, the work of Pottmann et al.
[20] allows us to concentrate exclusively on the creation
of geodesic curves rather than the construction of 2D
strips from these curves. Our goal then is to seek a fam-
ily of curves on a given open mesh patch so that the
following constraints or criteria are satisfied:

– Geodesic: The curves must be geodesics.



Width-Bounded Geodesic Strips for Surface Tiling 5

– User constraint: The initial source geodesic must
respect the user-specified point and orientation.

– Width constraint: Given that we expect our flex-
ible material to conform to the surface, no point on
any curve should be more than the material width δ
geodesic distance away from either of its neighboring
curves. In other words, a “geodesic circle” with radius
δ centered at any point on any curve should intersect
another curve or the mesh boundary on either side;
see Figure 4.

– Best use of material: The found curves should be
as far away as possible from each other.

– Intersection-free: The curves should not intersect
in the patch interior.

Note that there is no guarantee that all the con-
straints above can be satisfied for any surface with any
width bound δ. If we can find such a family of geodesic
curves, then we can pass them to the strip generation al-
gorithm of Pottmann et al. [20] to produce the straight
strips to tile the input mesh.

However when the input surface is sufficiently curved
with a sufficiently small δ bound, the last constraint
above can be impossible to satisfy. In Section 3.5, we
present an extension to our core algorithm which al-
lows long strips to be “severed” when the constructed
geodesics intersect in the patch interior. This enables
us to handle surfaces with greater undulation. However,
since the resulting curve families now contain intersec-
tions, they cannot be passed as input to Pottmann’s al-
gorithm [20] for strip production — extensions of this
technique are required to support severed strips.

3.1 Initial source geodesic curve

We first create the initial curve from the user-specified
surface point p and tangent vector v to serve as the
source. Since our curve is to be geodesic, we can simply
start at the given point and proceed “straight” along the
surface in the given direction until we reach the bound-
ary. To do this, we utilize the classical definition of a
geodesic as a path whose osculating plane also contains
the surface normal [5]. In the discrete version, a geodesic
proceeds straight over faces and preserves incident an-
gles when traveling over edges [9]; traveling directly over
vertices will be discussed below in Section 3.2. Using this
simple rule we implement a geodesic walk that takes as
input a starting point and tangent vector and simply
“walks” forward producing a geodesic curve as output.

3.2 Constrained neighbor geodesic construction

Given this source geodesic, we implement a method for
finding a neighboring geodesic that satisfies the constraints
mentioned above. Then we use this method iteratively,

δδ

Fig. 4 Geodesic circles of radius δ illustrating the width con-
straint test for two points (red dots) on the middle curve. The
point on the right passes the test since the circle intersects
another curve on either side while the point on the left does
not. Every point on every curve must pass this test.

with the newly found neighbor geodesic serving as the
source, to find subsequent neighbors until we reach the
boundary of the mesh patch. Finally, we repeat this iter-
ative process on the other side of the source to find the
remaining set of geodesics to cover the entire surface.

Upper bound curve To satisfy the width constraint, we
first construct an upper bound curve based on the cur-
rent source geodesic and use it to delimit the search for
a neighbor geodesic. To this end, we appeal to the work
of Bommes and Kobbelt [4] which enables us to find
the boundary of the region locally “swept out” by our
geodesic circle of Figure 4 as its center travels along the
source curve. This resulting connected curve is an upper
bound curve in the sense that it represents the furthest
extent of all of our geodesic boundary circles.

We can use this upper bound curve to simultane-
ously enforce the width constraint at all points along a
source geodesic by requiring that the neighbor geodesic
not cross the upper bound. Also, since our upper bound
is unbroken the bounding constraint is reciprocal: if a
neighbor geodesic ĉ to the source geodesic c respects the
upper bound constructed from c, then c also respects the
upper bound curve constructed from ĉ using the same
width constraint.

Vertices (spherical vs. saddle) and windows Given a cur-
rent source geodesic, the upper bound curve can be ob-
tained by constructing a set of vertex-free regions called
windows extending perpendicularly from the source curve.
We do this because mesh regions without vertices can be
unfolded or flattened without distortion onto the plane
where all geodesics then exist as straight lines. It is for
this reason that windows are used in geodesic compu-
tations [4,13,23]. The intuition behind our construction
of the upper bound curve via windows is that we are
unfolding the mesh from the source geodesic toward the
upper bound curve.

Note that despite our alternative definition these win-
dows are the same as those used in previous work [4,13,



6 Joe Kahlert et al.

Source Curve

(a)

Source Curve

(b)

Source Curve

(c)

Source Curve

(d)

Fig. 5 Window regions each of which contains a continuous
“side-by-side” set of geodesics emanating in a perpendicular
direction from the source geodesic curve. Here a linear win-
dow propagates first in the planar face containing the source
(cyan window) in (a), splits (into red and green) around a
vertex in (b) which continue in (c) and finally give rise to a
vertex window (yellow) in (d). The vertex shown is a saddle
vertex (Figure 6) as is evidenced by the incident window sep-
arating and leaving a gap filled by the circular vertex window
(yellow).

23] in which they are defined as a set of intervals on edges
propagated across the mesh. In contrast we talk about
window regions which we define as the set of all points
on the mesh traversed by all geodesics within a window
interval as these geodesics travel back to the source. In
other words, an interval corresponds to a continuous set
of adjacent geodesics all lying within a bounded region
of the mesh — see Figure 5 for an illustration.

The unfolding process is complicated by the existence
of mesh vertices which inevitably introduce distortions.
Indeed, the behavior of geodesics near mesh vertices re-
quires special care. To this end, one makes distinction
between two types of vertices:

– Spherical (elliptical) vertices: a mesh vertex where
the sum of face angles incident at the vertex is less
than or equal to 2π.

– Saddle (hyperbolic) vertices: a mesh vertex for
which the face angle sum is greater than 2π.

Recall that we are interested in all straight geodesics.
When a geodesic ray (a straight curve on the mesh)
passes through a vertex and extends straightly beyond
that vertex, it may continue along any ray between the
two rays that are at an angle π from the incident ray [23]
and still retain its (straight) geodesic properties. In Fig-
ure 6, the ray can be extended anywhere within a region
marked either as a shadow or an overlap. The distinc-
tion between the two cases dictates how windows are

ππ

sh
ad
ow

(a) Saddle vertex:
windows leave a “gap”.

ππ

ov
er
la
p

(b) Spherical vertex:
windows overlap.

Fig. 6 Saddle (a) and spherical (b) vertices and the window
boundaries surrounding them. A vertex splits the incoming
window into two windows and gives rise to a third window
emanating from this new or pseudo-source.

constructed near the vertices as explained below. There
are two types of windows [4]:

– Linear window: A linear window contains geodesics
emanating in a perpendicular direction from a seg-
ment of our source curve. In the unfolding of this
window’s faces the boundary of the region swept out
by our geodesic circle is easily computed as a line seg-
ment that is parallel to the source. A linear window
is shown propagating in Figure 5 and is marked in
cyan in Figure 7.

– Circular window: A circular window contains all
geodesics emanating from a single point on the sur-
face. While we do not require circular windows to
construct our initial upper bound, as linear windows
propagate they split at vertices (Figure 5) giving rise
to shadows and overlaps which contain circular win-
dows propagating radially from these new or pseudo-
sources. Figures 5 and 7 both show circular windows
emanating from pseudo-sources in yellow. In the un-
folding of a circular window the extent of our geodesic
circle is simply a circular arc.

Note that our need to create circular windows for
both saddle and spherical vertices arises from our need to
use quasi-geodesics. The resulting implementation differ-
ences from previous work on finding discrete geodesics [4,
23] are described in Section 4. This difference also sim-
plifies area calculations as described in Section 3.3.

δ δ
δ

δ

curveSource

Uppe
r bound curve

Fig. 7 Linear (an example in cyan) and vertex (an example
in yellow) windows (delimited by dashed lines) constructed
from the current source geodesic (blue). The width constraint
is given by δ. The upper bound curve (red) is made up of
straight (i.e. geodesic) and circular arc segments.



Width-Bounded Geodesic Strips for Surface Tiling 7

Construction and use of upper bound The geodesic and
arc segments in our windows above join together to form
our upper bound curve. Figure 7 shows the upper bound
curve as a connected set of these segments. As men-
tioned, in order to ensure that the width test passes at
all points on the source and the neighbor geodesic, we
need only ensure that our neighboring geodesic does not
cross the upper bound curve. Furthermore, we can in-
terpret our constraint that neighboring curves be as far
away as possible from each other to mean that at least
one point on the neighboring geodesic must touch the
upper bound. If this were not the case, we would greed-
ily claim that our neighbor would not be far enough away
from the source and thus we would not be making the
best use of material. The possibility that a neighbor not
touching the upper bound could in fact be the optimal
choice seems unlikely; however, formal confirmation of
this fact is left to future work.

Construction of neighbor geodesic With the knowledge
that our neighbor geodesic must touch, but not cross,
the upper bound, we consider the upper bound curve’s
shape. If we unfold the faces local to a point along the up-
per bound curve on the surface, it corresponds to a point
on a polygon in the plane. Furthermore the problem of
finding our noncrossing geodesic becomes the problem
of finding a line segment touching — but not crossing
— our planar polygonal upper bound. Under this use-
ful transformation we can see that any line segment that
touches but does not immediately cross over the polygon
must touch a point where the polygon bends away from
the line segment. Thus we can label all such points on
the upper bound curve that bend away from the source
as convex corners (green dots in Figures 7 and 8) and
conclude that all valid candidate geodesics must touch
at least one convex corner of the upper bound.

We can then use this fact to enumerate all poten-
tial candidate geodesics by observing that all geodesics
touching one convex corner must lie within double-sided
angular ranges, or “butterflies”, emanating from this con-
vex corner, as shown in Figure 8. We find all the geodesics
within each butterfly (i.e. those traveling through our
convex corner) by propagating a pair of circular windows
in opposite directions and then pairing up the resulting
windows that are directly across from each other (split-
ting if necessary). Finally, in order to satisfy the width
and intersection-free constraints, we discard any of por-
tions of any windows that cross back over the source or
upper bound curves.

3.3 Optimizing material usage

While different applications may have unique criteria
against which to judge and select the best valid can-
didate geodesics, one that is likely to have universal util-
ity is that of material usage maximization. Specifically,

Fig. 8 A “butterfly” window: a pair of opposing angular
ranges (delimited by the dash lines) emanating from a con-
vex corner point (green dot). A convex corner is a point
along the upper bound curve where it curves “away” from
the source; more convex corners are marked in Figure 7, also
as green dots. The “butterfly” window contains all the can-
didate geodesics touching that convex corner.

among all the valid candidates in one iterative step, we
greedily select the one which results in the most usage,
measured as the enclosed surface area divided by the
length of the source curve.

The enclosed area between the source and a candi-
date geodesic curve can be found by summing the areas
of the enclosed faces. However, in order to select the sin-
gle geodesic enclosing the greatest area from amongst a
set of windows each containing continuous range (and
therefore infinite number) of geodesics we must consider
the geometry of the windows themselves. Specifically, in
the planar development — or unfolding — of a window’s
faces (an area preserving transformation), geodesics be-
come straight lines and the regions between geodesics
emanating from the same source become thin planar tri-
angles (Figure 9). Moreover, if successive windows are
alongside (i.e. in full contact with) one another, we can
propagate area calculations to the next window. Finally,
we can even propagate area calculations from butterfly
to butterfly by exploiting the fact that the last geodesic
of one butterfly is actually the first geodesic of the next.
Thus, we can propagate our initial brute-force face sum-
mation by simply adding window areas (and subtracting
overlap areas) as we step sequentially from window to
window and from butterfly to butterfly.

Fig. 9 Incremental computation of enclosed areas. Given the
area enclosed by one geodesic (red dashed line) in a window
(delimited by solid red lines), the area enclosed by any other
geodesic in that window can be found by adding or subtract-
ing the triangle between them (shaded) in the unfolding of
the window’s faces.



8 Joe Kahlert et al.

Fortunately, since we are using quasi-geodesics, the
windows emanating from a source point are indeed al-
ways alongside each other. This follows from the property
that quasi-geodesics travel across spherical vertices sim-
ilarly to saddle vertices in that geodesics incident upon
them may continue along any ray between the two rays at
an angle π from the incident (Figure 6). This is opposed
to previous works on finding discrete geodesics [4,23] in
which spherical vertices are ignored as shortest paths
never travel directly over them [13]. These spherical ver-
tex windows (“overlap” region in Figure 6(b)) bridge the
“gap” between the windows on either side of the ver-
tex ensuring that all windows are alongside one another.
In Section 4, we show how to extend works on discrete
(shortest) geodesics [4,23] to find quasi-geodesics.

3.4 Computational complexity

Let F , E, and V be the number of faces, edges, and
vertices in the input mesh and let n = max (F,E, V ).
In the first stage of the algorithm the initial geodesic is
constructed using the geodesic walk algorithm described
in Section 3.1. To do so the algorithm must “walk” over
O(F ) faces (with each face requiring constant time) for
each of the geodesic curves that are to be output.

The second stage of the algorithm involves the iter-
ative search for a neighboring geodesic given a source
geodesic. This stage includes the following steps:

1. Construction of the upper bound curve by extend-
ing windows from the source geodesic (Figure 7) in-
cluding the construction of O(F +V ) (i.e. linear and
vertex) windows each propagating over O(F ) faces

2. Creating butterfly windows at O(V ) convex corners
of the upper bound (Figure 8) and searching each
for area optimizing geodesics (Figure 9) using O(V )
windows each containing O(F ) faces

Step 2 dominates resulting in a worst-case complexity
of O(n3). Note that the area calculation described in Sec-
tion 3.3 requires only constant time for each window and
thus does contribute to the asymptotic complexity anal-
ysis. Also, we do not require the O(log V ) steps needed
to perform the window sorting required by shortest-path
algorithms [23], as we explain in Section 4.

Now let us take a more practical view on the com-
putational complexity. On a sufficiently smooth mesh,
the butterfly windows from Step 2 do not overlap appre-
ciably, which means that there should be approximately
O(V ), instead of O(V 2), windows within all of the but-
terflies over the entire mesh. Moreover, each of these win-
dows need propagate over only the width of the patch
which should only be O(

√
F ), instead of O(F ), faces on

a uniform mesh that is reasonably close to being square
(i.e., its width and length are of the same order).

Under these simplifying assumptions, the complex-
ity reduces to O(n1.5). It is important to note here that

this argument does not constitute a rigorous average-
case complexity analysis but rather a best guess at the
expected performance of our algorithm under what we
consider as reasonable input conditions: smooth, uni-
formly tessellated, and square meshes with a material
width that is not much smaller than the average mesh
edge length. Note also that smoothness and uniformity
of tessellation can always be achieved by preprocessing
of the input mesh.

3.5 Strip severing

The algorithm described thus far attempts to cover an
open mesh with nonintersecting geodesics. For highly
curved surfaces, this is not always possible. However if
we allow the constructed geodesics to touch each other,
we can then remove this limitation and extend the al-
gorithm’s applicability to any surface on which a valid
source geodesic can be found. That is, if a source geodesic
starting from and ending on the mesh boundary that
does not intersect itself can be found, then using this
technique our algorithm will succeed.

This amounts to relaxing the constraint that can-
didate geodesics do not intersect the source. That is,
candidate geodesics with one or both endpoints on the
source geodesic are now permitted. When we select one
of these segment candidates as our greedy choice, our
source curve in the next iteration will be a connected set
of geodesic segments rather than a single geodesic curve.
The corresponding upper bound curve will simply be
the union of each geodesic segment’s upper bound. They
should always meet due to the fact that these geodesic
segments must always join at convex angles, but we do
not have a formal proof of this claim as it is left for future
work. In practice, this technique has always worked as
expected and we demonstrate these results in Section 5.
In particular, Figure 11 (b), (c) and (d) show many strips
severed by other strips meeting at junctions of arbitrary
angle.

4 Window propagation

The implementation of our algorithm follows closely the
published works of Surazhsky et al. [23] and Bommes
and Kobbelt [4]. In this section, we provide details on
window propagation, which form the most notable differ-
ences from and additions to the previous works.

Window propagation is the process of constructing
windows starting from a source point or line segment and
preceding forward face by face. In our implementation,
windows are propagated from the source curve to form
the upper bound (Figure 5) as well as from butterfly
windows to find candidate neighbor geodesic curves.

The objective of both of these window propagations
is to find all quasi-geodesics. This differs from previous



Width-Bounded Geodesic Strips for Surface Tiling 9

works [4,23] that seek only the shortest geodesics. As
such, our implementation contains a number of differ-
ences and extensions.

Spherical Vertices As mentioned in Sections 3.2 and 3.3,
instead of being ignored, spherical vertices give rise to
windows emanating from between the two rays at an
angle π from the incident ray; see Figure 6.

Window Intersections Window intersections, as were used
to eliminate nonshortest path windows [4,23], should not
be used as they would eliminate valid geodesics.

Backtracking Care must be taken when backtracking (fol-
lowing a window back to the source) over vertices since
the simple rule of selecting the shortest path back to the
source no longer applies and since overlapping windows
potentially give rise to multiple back-path choices.

Instead, any back-path between the two rays at an
angle π from the incident back-path are potentially valid.
Either application-dependent rules or back-path tracing
can to be used to choose between more than one valid
back-path.

Boundary Vertices In shortest-path algorithms, bound-
ary vertices give rise to new pseudo-sources to allow
shortest paths to curve around edges of the mesh. Dur-
ing our butterfly window propagation, boundary ver-
tices should be ignored since candidate curves must be
geodesic.

On the other hand, during source curve propagation,
boundary vertices require special processing. As we do
not propagate circular distance windows from the source
curve’s end points as do Bommes and Kobbelt [4] (our
source curve effectively has no end points) our computed
upper bound may not always reach the boundary of the
mesh. This happens when the mesh boundary proceeds
“outward” from the end of the source curve.

To resolve this problem, when an unreached bound-
ary vertex is encountered, we unfold the boundary faces
into the plane searching for the first point along the
boundary that is δ away from the line supporting the
source geodesic. Then we simply attach this boundary
point to the end of our foreshortened upper bound.

Window Sorting As mentioned in Section 3.4, windows
do not need to be sorted and propagated in path length
order since we are not looking for the shortest path. In-
stead, windows need to be kept in sequential order to
facilitate construction of a connected upper bound and
propagation of areas from window to window.

Triangle Decimation Rather than an interpolated esti-
mate combined with decimation as used in Bommes and
Kobbelt [4], we need to find an exact iso-distance curve
when forming our upper bound. Fortunately, candidates
cannot contact these arc sections of this iso-distance curve
(that always curve back toward the source) without im-
mediately crossing the upper bound and violating the
upper bound constraint (see Section 3.2 and Figure 7)
— removing them from our consideration. We replace
these arcs with line segments without loss of generality,
simplifying the construction of our upper bound curve.

Aside from these differences, windows are propagated
as described in the previous works mentioned.

5 Results

We now present results produced by our algorithm. First,
we examine different factors that influence such results
(Figure 10): the width bound δ, the initial curve orien-
tation v, and surface undulation.

Surface undulation appears to have the greatest effect
on the strip tiling results, as shown in Figures 10(1-a)
and 10(1-b). Our experiments show that while p, v and
δ are held constant, increasing the surface undulation
gives rise to a relatively abrupt transition from unsevered
tilings as in 10(1-a) to highly severed tilings as in 10(1-
b). Note that while the small triangles in 10(1-b) appear
large, the width constraint is in fact satisfied as every
point on the neighboring geodesic is within a geodesic
distance δ from a point on its source.

Initial orientation With the surface and the width bound
δ held constant, we observe that tilings are also relatively
sensitive to the initial curve orientation v. As shown in
Figures 10(2-a) and 10(2-b), when the same geodesics
are forced to travel through multiple regions of extreme
curvature, they are more subject to severing than when
these extremes are “spread out” amongst the geodesics.

It is also interesting to note that even though the
altered orientation is noticeable in the top middle por-
tions of 10(2-a) and 10(2-b), the severing process of the
algorithm in 10(2-b) in effect reverts the orientation back
toward the more favorable one in 10(2-a). It is not clear
whether this is to be expected or is merely a coincidence
as finding a favorable orientation was not a goal we hoped
to achieve in this version of our algorithm.

Material width As Figures 10(3-a) and 10(3-b) show,
once a tiling without severing is found, reducing δ does
not necessarily induce severing as might be expected. In-
tuitively, this independence may be due to the expected
existence of a continuum of nonintersecting geodesics
between any two “parallel” geodesics (nonintersecting
geodesics no more than δ geodesic distance away from



10 Joe Kahlert et al.

(1-a) (1-b)

(2-a) (2-b)

(3-a) (3-b)

Fig. 10 Effects of different factors on straight strip tiling for
a synthetic surface mimicking the roof of the Southern Cross
Station (Figure 2). Row 1: Increased surface undulation in (1-
b), holding v and δ fixed, causes the algorithm to sever tile
lines (Section 3.5). Row 2: On the same surface and holding
δ constant, a change in the curve orientation v again causes
severing (2-b) as the geodesics are forced to travel through
multiple regions of high curvature. Row 3: On the same sur-
face while holding v unchanged, reducing the width bound δ
in (3-b) does not introduce severing.

each other) on a sufficiently smooth surface. In fact, if
the two geodesics belong to the same geodesic flow, then
this is exactly the case. Exploring the applicability of
geodesic flows to the tiling problem is left for future work.

Additional results, timing, material usage A set of addi-
tional results is shown in Figure 11 with the correspond-
ing timing and material usage statistics provided in Ta-
ble 1. Material usage is estimated as the surface area
enclosed by neighboring geodesics divided by the area of
the material strip, which is computed by the product of
the longer length of the two neighboring geodesics and
the width bound δ. When reporting timing, we do not
vary v or δ as we recall from Section 3.4 that the algorith-
mic complexity depends only on the number of faces and
number of (spherical) vertices in the input mesh. Fig-
ure 12 compares the observed run times to the expected
computational complexity we claim in Section 3.4.

Limitations Since the algorithm requires an initial, finite
geodesic that spans the mesh, it does not work on closed

(a) Skull of the Max Planck. (b) A face mesh.

(c) A cowboy hat. (d) A “taller” hat.

(e) An airplane fuselage. (f) Hood of a car.

Fig. 11 A gallery of straight strip tiling results. See Table 1
for run times and material usage.

Mesh Faces Time Material Usage
Skull 1,000 < 1 s 71 %
Hood 1,000 < 1 s 86 %

Hat 4,600 3 s 59 %
Taller hat 4,600 3 s 65 %

Face 6,100 4 s 66 %
Ship hull 7,800 5 s 79 %

Plane fuselage 9,700 15 s 81 %
Synthetic roof 19,600 20 s 75 %

Table 1 Numerical results of our experiments. All tests were
run on a 2.60 GHz Pentium 4 with 2 GB of RAM. Timing
results are reported in seconds.

surfaces. However, if a small hole is punched and a non-
self-intersecting initial geodesic can be found that starts
and ends at the hole boundary, then the algorithm should
succeed under reasonable parameters. Also, since there is
no provision for joining separated upper bound curves,
the algorithm does not work on surfaces with interior
holes. An effective means of handling both limitations is



Width-Bounded Geodesic Strips for Surface Tiling 11

Fig. 12 Run times from Table 1 plotted against the claimed
algorithmic complexity of O(n1.5) from Section 3.4 (arbitrary
constant chosen to fit curve to sample points). A reasonable
correspondence exists with two outliers, the plane fuselage
and the synthetic roof. Their deviation from the norm is due
to the large difference in the proportion of spherical vertices
on these models.

to first segment the given surface into open patches with
simple boundaries before tiling.

Finally, we emphasize again that creating actual pla-
nar strips from the geodesics curves we obtain that can
be joined to approximate an input surface with bounded
error is a complex optimization problem which has been
the subject of recent work [20]. The planar (yellow) strips
shown in Figure 1(b) are merely meant to indicate the
geodesic widths (over the input mesh) of the surface
strips. While these plots primarily show that our chosen
geodesics satisfy the prescribed width constraint, they
are also intended to suggest how straight strips of ma-
terial may be trimmed and joined to approximate the
original surface. However it is important to note that
the shapes in Figure 1(b) themselves generally cannot
be joined together to approximate the surface.

6 Conclusion and future work

In this paper, we tackle the straight strip tiling prob-
lem on surfaces. Our approach relies on a width-bounded
geodesic marching strategy, whereby starting from a user-
specified initial point and orientation which define a source
geodesic, subsequent geodesics are constructed in a greedy
fashion one at a time to respect the width bound while
attempting to minimize material waste. The algorithm
proposed is only a preliminary attempt and it still leaves
much room for improvement. In particular, although the
geodesic construction component of the algorithm is ex-
act with respect to the polyhedral geometry of the input
mesh and the width bound is respected exactly as well,
the material optimization part is far from rigorous — we
have not provided a formal objective function.

The important question of when the algorithm would
fail is also left unanswered. It is conceivable that certain
curvature bounds may be found to address this issue.
The question of whether there exists a “straightness-

preserving” mesh parameterization scheme and the ap-
plicability of geodesic flows to the mesh setting to solve
our tiling problem are both interesting as it is likely that
a globally optimal technique, if found, would produce
better results. Finally, we would like to remove the need
for user initialization, seek an optimal general orientation
for strip placements, and handle more complex boundary
conditions arising from input surfaces with holes.

To the best of our knowledge, as we conduct the cur-
rent research, the straight strip tiling problem is new.
However during final preparation of the manuscript, we
became aware of the recent, yet to be published, work
of Pottmann et al. [19] which solves a similar problem.
Relying on geodesic marching guided by the Jacobi field,
they can obtain geodesic 1-patterns on a surface by start-
ing with a source geodesic and iteratively computing
neighboring geodesics approximately bounded by a ma-
terial width measured geodesically from the source at
sampled intervals. With their approach, constraints other
than width bounds can be integrated. In contrast, our
approach is designed specifically to satisfy the width
bound producing guaranteed results with modest com-
putational complexity.

Acknowledgements The authors would first like to thank
the anonymous reviewers for their valuable feedback. Thanks
should also go to Dr. Alla Sheffer and several members of the
Graphics Usability and Visualization (GrUVi) lab at Simon
Fraser University (SFU) — specifically Dr. Ramsay Dyer and
Oliver van Kaick, for their discussions on the paper and the
ideas therein. This work has been supported in part by an
MITACS Internship grant entitled “Covering Surfaces with
Strips”.

References

1. Aleksandrov, A.D.: Intrinsic Geometry of Surfaces.
American Mathematical Society (1967)

2. Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Re-
cent advances in remeshing of surfaces. Tech. rep.,
AIM@SHAPE Network of Excellence (2005)

3. Berger, M.: A panoramic view of Riemannian geometry.
Springer (2000)

4. Bommes, D., Kobbelt, L.: Accurate computation of
geodesic distance fields for polygonal curves on triangle
meshes. In: Proc. of Vision, Modeling, and Visualization
(VMV), pp. 151–160 (2007)

5. Carmo, M.P.D.: Differential Geometry of Curves and
Surfaces. Prentice-Hall (1976)

6. Dijkstra, E.: A note on two problems in connection with
graphs. Numerische Mathematik 1, 269–271 (1959)

7. Floater, M.S., Hormann, K.: Surface parameterization:
a tutorial and survey. Advances in Multiresolution for
Geometric Modelling pp. 157–186 (2005)

8. Grundig, L., Ekert, L., E., M.: Geodesic and semi-
geodesic line algorithms for cutting pattern generation
of architectural textile structures. Proc. of Asia-Pacific
Conference on Shell and Spatial Structures (1996)

9. Grundig, L., Singer, P., Strbel, D., E., M.: High-
performance cutting pattern generation of architectural
textile structures. Proc. of International Colloquium on
Computation of Shell And Spatial Structures (2000)



12 Joe Kahlert et al.

10. Kimmel, R., Sethian, J.: Computing geodesic paths on
manifolds (1998)

11. Liu, Y., Pottmann, H., Wallner, J., Yang, Y.L., Wang,
W.: Geometric modeling with conical meshes and de-
velopable surfaces. ACM Trans. Graph. 25(3), 681–689
(2006)

12. Liu, Y.J., Zhou, Q.Y., Hu, S.M.: Handling degenerate
cases in exact geodesic computation on triangle meshes.
The Visusal Computer 23(9), 661–668 (2007)

13. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The
discrete geodesic problem. SIAM J. Comput. 16(4), 647–
668 (1987)

14. Paternain, G.P.: Geodesic Flows. Birkhauser (1999)
15. Pogorelov, A.V.: Quasi-geodesic lines on a convex sur-

face. Mat. Sb. (N.S.) 25(67), 275–306 (1949)
16. Polthier, K., Schmies, M.: Geodesic flow on polyhedral

surfaces. In: Proc. of Eurographics-IEEE Symposium on
Scientific Visualization, pp. 179–188 (1999)

17. Polthier, K., Schmies, M.: Straightest geodesics on poly-
hedral surfaces. In: ACM SIGGRAPH 2006 Courses, pp.
30–38 (2006)

18. Pottmann, H., Asperl, A., Hofer, M., Kilian, A.: Archi-
tectural Geometry. Bentley Institute Press (2007)

19. Pottmann, H., Huang, Q., Deng, B., Schiftner, A.,
Kilian, M., Guibas, L., Wallner, J.: Geodesic pat-
terns. ACM Trans. Graphics 29(3) (2010). URL
http://www.geometrie.tugraz.at/wallner/geopattern.pdf.
To appear

20. Pottmann, H., Schiftner, A., Bo, P., Schmiedhofer, H.,
Wang, W., Baldassini, N., Wallner, J.: Freeform surfaces
from single curved panels. ACM Trans. Graphics 27(3)
(2008)

21. Pottmann, H., Schiftner, A., Wallner, J.: Geometry of
architectural freeform structures. International Mathe-
matical News 209, 15–28 (2008)

22. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization
methods and their applications. Found. Trends. Comput.
Graph. Vis. 2(2), 105–171 (2006)

23. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J.,
Hoppe, H.: Fast exact and approximate geodesics on
meshes. ACM Trans. Graph. 24(3), 553–560 (2005)

24. Vanček, P., Kolingerová, I.: Comparison of triangle strips
algorithms. Computers and Graphics 31(1), 100–118
(2007)

E. Joseph Kahlert is a Mas-
ter’s of Science graduate from
the Graphics, Usability, and
Visualization Lab in the School
of Computing Science at Simon
Fraser University, Canada. He
also holds an M.B.A. from
Nova Southeastern University
as well as a B.A.Sc. from the
University of British Columbia.

Matt Olson is a Ph.D. candi-
date in the Graphics, Usability,
and Visualization lab at Simon
Fraser University in Burnaby,
Canada. He also holds a B.Sc.
from the University of Alberta.
His research interests include
geometry processing and real-
time rendering.

Hao Zhang co-directs the
Graphics, Usability, and Visu-
alization Lab at Simon Fraser
University, Canada, where he
is an associate professor in
the School of Computing Sci-
ence. He received his Ph.D.
from the Dynamic Graphics
Project (DGP), Department
of Computer Science, Univer-
sity of Toronto in 2003 and
M.Math. and B.Math. degrees
from the University of Water-
loo. His research interests in-
clude geometry processing and
computer graphics. Recently,
he has served on the program

committees of Eurographics, SGP, Pacific Graphics, among
others. He was a winner of the Best Paper Award from SGP
2008.


