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Abstract as shape blending and various forms of attribute transfer. A
crucial first step for constructing a cross parameterization is
We present an algorithm for finding a meaningful vertex- the identification of a sparse set of matching feature points
to-vertex correspondence between two 3D shapes given asn the two shapes. Most methods [27, 20, 21, 29] rely on the
triangle meshes. Our algorithm operates on embeddings ofuser to specify the initial feature correspondence manually.
the two shapes in the spectral domain so as to normalizelt is well known that even if the sets of feature points have
them with respect to uniform scaling and rigid-body trans- been given, finding a meaningful correspondence automati-
formation. Invariance to shape bending is achieved by re- cally with robustness to both rigid and non-rigid geometric
lying on geodesic point proximities on a mesh to capture its transformations is notoriously difficult. This is the problem
shape. To deal with stretching, we propose to use non-rigid we wish to address in this paper.
alignment via thin-plate splines in the spectral domain. This  Given two 2-manifold triangle meshes, possibly with dif-
is combined with a refinement step based on the geodesigerent vertex counts, we compute a correspondence between
proximities to improve dense correspondence. We show emthe mesh vertices. The spatial coordinates of the mesh ver-
pirically that our algorithm outperforms previous spectral tices are first converted into two affinity matrices, which
methods, as well as schemes that compute correspondencgre obtained by applying Gaussian kerneto the pair-
in the spatial domain via non-rigid iterative closest points wise geodesic distancmatrices for the two meshes. This
or the use of local shape descriptors, e.g., 3D shape contextway, each vertex of a mesh is represented using intrinsic
structural information. The correspondence is obtained by
matching points based on this information and this is car-
ried out in ak-dimensionakpectraldomain via eigenspace
1. Introduction projections. Typicallyk is much smaller than the size of the
affinity matrices. Thus the dimensionality of the structural
Given two 3D shapes represented as 2-manifold trian-information has been effectively reduced.
gle meshes, the correspondence problem seeks to establish Appropriate choice of the Gaussian kernel width and
a meaningful mapping between them. The mapping can bethe use of spectral embeddings described above ensure that
between the two sets of mesh vertices, between two coars@ur matching procedure is invariant to rigid body transfor-
sets of feature points selected on the meshes, or a continumations, uniform scaling, and shape bending. This is be-
ous one between all points on the two manifolds. This is a cause the affinities we use are invariant to precisely these
fundamental problem in computer graphics and shape mod+transformations. We also propose to scale the eigenvectors
eling, with such applications as texture mapping [20], mesh by the square root of the eigenvalues in forming the spec-
morphing [1], shape registration, and object recognition.  tral embeddings so as to achieve robustness against differ-
A recent trend in research into the mesh parameteriza-ence in mesh vertex counts and choice of the dimension-
tion problem, which essentially computes a dense surfaceality of the embeddings. However, our experiments show
correspondence, is to look for effective techniques to con-that matching based solely on such embeddings, e.g., us-
struct across parameterizatioetween two meshes di- ing the L, metric [31], can be non-robust to stretching in
rectly [21, 29], i.e., without relying on an simple common the shapes. To this end, we perform a non-rigid alignment
parameter domain. Such a parameterization allows one tdn the spectral domain using thin-plate splines. A refine-
obtain compatible connectivity among a set of models in a ment step using the original geodesic proximity data en-
feature-sensitive way [21, 27], greatly facilitating tasks such hances the performances of the algorithm in the case of



dense correspondence. Through formal arguments and nu-
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merous experiments, we demonstrate that our approach out- ; Ji

performs previous methods which operate on spectral em- i3 . ] ! §

beddings [7, 8, 31, 33], as well as schemes that find corre- MM § g

spondence in the spatial domain via non-rigid iterative clos- NS u

est points [6] or the use of local shape descriptors, such as Two 2D shapes Correct matching is

shape contexts [3] and curvature maps [13]. approximately aligned. obtained.
The rest of the paper is organized as follows. Section 2

gives a brief survey of previous work. Section 3 gives an \

overview of the problem in question and our algorithm; it

also establishes some notations used in subsequent sections. ... \ . j

In Section 4, we describe the construction of the spectral - "\/’ B

embeddings in more details, argue for its various proper- =

ties, and demonstrate its non-robustness to stretching. WeDne of the shapes is rotated.  Incorrect matching.

also explain our eigenvalue scaling scheme and its effect on

the spectral embeddings. In Section 5, we present the major Figure 1. TPS-RPM [6] failed by rotation.

components of our correspondence algorithm. This is fol-

lowed by experimental results in Section 6, where we also

point out some limitations of our current approach. Finally, pose changes in the models or when the models consist of a

we conclude in Section 7 and comment on future work. large number of articulated subparts.
Iterative alignment schemes compute a correspondence
2. Previous work and a transformation which would transform one shape into

another at each step. The correspondence is usually based

Point correspondence may be computed based on eion @ “closest point” criteria and the transformation is ob-

ther absolute coordinates or relative information, e.g., us—t‘:]"neOI lllaykopt|m|_2|ng an er|1ergy. Such techm(?ues_ énclu?e
ing weighted graphs. Two main classes of methods exist forth® Well known iterative closest point (ICP) algorithm o

spatial correspondence: those using local shape descriptorglesI Tff‘,nd Mckafy [4] and its variants [ZE]' which canb:wanh-
and those relying on iterative alignment schemes. The first € affine transformations. Recent works, most notably the

class of techniques describe every point on a shape by end PS-RPM method of Chui and Rangarajan [6], attempt to

coding shape information from the perspective of that point. incorporate non-rigid deformations into the ICP framework,

Point matching is then based on appropriate distances beYSing thin-plate splines to model the deformation. However,
tween the descriptors. Well-known descriptors for images these methods can easily get trapped in bad local minima if

include shape contexts [3] and spin images [17], both uti- the shapes are not approximately aligned initially, since the

lizing a histogram obtained by binning the space around acorrequndence, Whlch dictates the'optlmlzatlon, is com-
point according to the Euclidean metric and collecting point PUted using an Euclidean closest point method. Thus rota-
counts. These methods have subsequently been generalizdifn @lone can cause a bad matching, as shown in Figure 1.
in a straightforward manner to handle 3D point sets [18]. Sumner et al. [32] and Zayer et al. [34] attempt to allevi-
Neither shape contexts nor spin images are invariant toate this problem by fixing a small number of feature points
Shape bending_ A promising remedy is the curvature mapson the Shapes to be matched. Sumner et al. rely on these
of Gatzke et al. [13]. Local shape descriptors are con- feature points as guidance to ICP in order to escape local
structed on a mesh by dividing the geodesic neighborhoodminima, whereas Zayer et al. use interpolation, based on
of a vertex into bins. Although geodesic binning is invari- barycentric coordinates, of the correspondence between the
ant to bending (not stretching), the histograms computed areféature points to compute the remaining point correspon-
based on curvature distributions, which, even if estimateddences. In both methods, it is imperative that the feature
robustly, are not invariant to bending. points selected on the two meshes be corresponding in a
More recent shape signature based methods includgneaningful way. This can only be done with user assistance
those by Gelfand et al. [14] and Li et al. [23]. Both meth- as automatic selection and matching of the feature points is
ods are robust under only rigid transformations. The par- €quivalent to the correspondence problem we are trying to
tial matching scheme of the former do provide a way to de- Solve in the first place.
tect articulated subparts of a shape and subsequently match Spectral shape correspondence involves first construct-
them to the subparts of the second shape. However, theiing intrinsic (relative) point representations of the two
work lacks a discussion and analysis of the performance andshapes, in the form of weighted graph adjacency or affin-
robustness of the matching method when there are multipleity matrices. Elad and Kimmel [10] make use of geodesic



proximities to construct bending-invariant surface signa- on geodesic distances in order to attain invariance to bend-
tures through multi-dimensional scaling. Application to ing. Nextwe find the spectral embeddinds andB;, of the
object classification has been considered, but they do notmatricesA and B, respectively. These embeddings give
solve the harder correspondence problem. Given a proxim-dimensional coordinates of all the vertices/di and M.
ity matrix, ak-dimensional spectral embedding can be com- The embeddings are based on the eigenvectaossarfd B,
puted via principal component analysis (PCA). Shapiro and properly processed as we describe in Section 4. The pur-
Brady [31] useL, distances between the embedded points pose of transforming the 3D mesh from the spacial domain
to compute a correspondence, while Umeyema [33] chooseso the k-D spectral domain is to attain invariance to bend-
the correlation between the embedding coordinates. Bothing, rigid transformations, and uniform scaling, as well as
Caelliand Kosinov [5] and Carcassoni and Hancock [8] rely robustness to difference in mesh sizes, for example.
on spectral clustering and cluster correspondence to guide Once we have the twb-D meshes that are already prop-
point correspondence. The use of spectral embeddings haerly normalized, we use iterative alignment to robustly align
traditionally been exploited in the computer vision and ma- them and then obtain a correspondence via best matching
chine learning literature. Recently, they have found severalbased on thd.,; distance. As we shall explain in Section 4,
applications in geometry processing as well, including meshrigid alignment is insufficient to deal with moderate stretch-
segmentation [22], spherical parameterization [16], and sur-ings in the shapes to be matched. Hence, we modify the
face reconstruction [19]. well-known iterative closest point (ICP) algorithm to in-
Common to all the existing spectral correspondence clude non-rigid transformations. Specifically, we use thin
techniques is the premise that the eigenmodes from twoplate splines to model non-rigid transformations and com-
similar shapes should match up, according to the magnitudepute a registration between the meshes in the spectral do-
of their corresponding eigenvalues. One of our main obser-main. As mentioned earlier, this registration is not required
vations is that this ordering of the eigenmodes is not alwaysto be one-to-one, but can be forced to be bijective by using
reliable. As the eigenvalues characterize data variance inthe Hungarian algorithm for bipartite matching.
the direction of the corresponding eigenvectors, eigenmode
ordering based on eigenvalues implies ordering by data vari-4_ Spectral embedding
ance. This may not be appropriate since variance only cap-
tures global information and does not reflect the way spe-
cific data points would vary. We observe that under shape
stretching, certain eigenmodes may be “switched”. Failure
to resolve such reflections or other non-rigid discrepancies, L . .
between spectral embeddings will lead to poor matching re-(erizes the §|m|_lar|ty _or simply the graph adjal_cgncy [5’. 33]
sults. In this paper, we propose heuristics to handle Suchbetween points and;j. One may view the affinity matrix
switchings in the spectral domain, where the spectral em—A as a data vector whosecolumns (or rows) represent

beddings will be corresponded after alignment using non- d|rr_1re;]n5|0na: data points. imit d to defi
rigid ICP based on thin-plate splines. e most common proximity measure used to define re-

lationship between points for shape matching is the Eu-
. clidean distance [7, 8, 30, 31], which implies invariance to
3. Overview rotation and translation. For mesh correspondence, we use
geodesic distances between the mesh vertices, computed via
Let us first give a brief overview of the problem we ad- fast marching [10], to include invariance to bending as well.
dress and the algorithm we propose. Given two 3D shapednvariance to uniform scaling is achieved by mapping the
M; andMs, in the form of triangular meshes and wiily, geodesic proximities into the intervfll, 1] using ascale-
andnjy, vertices, respectively, we wish to compute a cor- dependentpositive semi-definit&ernel function. In this
respondenc€’ between the two sets of verticesif; and paper, we use Gaussian kernels which is a common choice
Ms. Thatis,C(q) is the vertex inM, that best corresponds  for spectral correspondence [7, 8, 30, 31].
to vertex: in M;. Note that the correspondence computed  Although the point proximities contain a great deal of
is not required to be bijective. However, in the case where shape information, without a proper point mapping, one
ny, = nag, and a one-to-one correspondence is sought, wecannot compare such representations for two data sets di-
can easily modify our method to meet the goal. rectly. Also, the size of the data sets, or the dimensionality
Our method of computing’ is as follows: first, we es-  of the point representations, may not be the same. Last but
tablish annas, x nyy, affinity matrix A where A;; is the not the least, the high dimensional representations may con-
affinity between verticesandj of M;. Similarly, we com- tain a great deal of redundancy, resulting in unnecessarily
pute annas, x mag, Matrix B, the affinity matrix forMs. high computational cost. These observations naturally lead
The affinities that we use in our implementation are basedus to consider transforming two data sets, respectively, into

In general, intrinsic point representations can be ob-
tained via pairwise point proximities, specified by a sym-
metric affinity matrix A = {a;;}, wherea,; > 0 charac-
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Figure 2. A human mesh (left) anc_i its 3D 5 \
spectral er_nbeddmg, constructed using th_e o0 oe 1000 1200 1400
second, third, and fourth eigenvectors. This Difference in the number of vertices

particular choice of the eigenvectors is ex-

plained in Section 5. . . .
Figure 3. Effect of eigevalue scaling on cor-

respondence, based on the correspondence
error plots.

some information-preserving subspaces that share the same
low dimensionality. This can be accomplished through prin-

cipal component analysis (PCA) on the affinity data. number of verticesy 4 andn, in the two (mesh) shapes

differ however, we first need to truncate both spectral em-
beddings to the same dimensién< min{n4,ng}. In
addition, since we normalize each eigenvector, the cardi-
nality of a data set affects the magnitude of the entries in its
eigenvectors, which in turn affects the embeddings.
Correspondence algorithms that use unscaled eigen-
modes [7, 8, 31] as spectral embeddings are common.
Shapiro and Brady [31] first suggest a scaling of the the
eigenmodes by eigenvalues, as in (1), but did not elaborate.
Caelli and Kosinov [5] scale the eigenmodes usiggared
) eigenvalues and then project the resulting embeddings onto
Ay = Ef A= AEE, 1) the unit k-sphere for matching graphs of different vertex
), and the counts. Evidently, proper scaling of the eigenmodes is a

4.1. Principal component analysis

Given the data (affinity) matrixd € R™*", we first
compute its principal components, ..., e,, which are
the normalizedeigenvectors of the autocorrelation matrix
R = AAT. SinceA is symmetric,R = A? andey, ..., e,
are simply the eigenvectors of the affinity mateix Let
A1, ..., A, be the corresponding eigenvaluessond sup-
pose that\; > ... > \,. Projecting the data matrix onto
the firstk principal components yield

whereEy = [eq]...|ex], Ay = diag(\q,. .., X Y
A crucial normalization step. None of these approaches ade-

columns ofAj represent &-dimensionalkpectral embed- i o )

ding of the data points. Note that a point permutation in- q.uately resolves the dlscrepar?ues in the scgles of thg prin-

duces the same permutation of the embedded coordinateg'pal_ components (or embeddmgs) due to difference in the

but leaves the spectrum invariant. cardinality o_f the data sets. In this paper, we propose to
In the case of mesh spectral embeddings, the data point§(_:ale the prln(_:|pa_l comp_one_nts by thguare rootof the

are mesh vertices. A spectral embedding associates wittf19€nvalues, yielding projections

each mesh vertex A-dimensional coordinate. In the 3D . L R .

spectral domain, one can visualize the embedding of a mesh A=A} Ul and By = I'? VI, 2)

M by rendering a mesh whose connectivity is the same as

M and whose vertices are given by the embedding coordi-whereA = UAUT andB = VI'V7T are the eigenvalue de-

nates, as shown in Figure 2. compositions ofd and B, respectively, withUy, Vi, Ay, T
Although A, gives a provably best-dimensional ap-  defined as in (1). Spectral embeddings of this form are well

proximation of A (in terms of the Frobenius norm), it may known in the spectral clustering literature [26].

not be suitable for matching. The more important require-

ment is for the projection axes, derived from the principal

components, to be compatible between two data sets.

Justifications: Consider the vector of projectioris from
set A. We can estimate the scale of these projections by
s = ||ail|*/na. From (2), we have

4.2. Eigenvalue scaling R
fli = \//\jui and bi = ﬁvi.
Given two affinity matricesdA and B characterizing two
shapes, possibly in different scales, a scale-dependent kerit follows thats, ; = A\;/n4 andsp,; = v;/npg. With the
nel can normalize the affinity values it and B. If the affinity matrices having unit diagonal elements, signaling



that a point has maximal affinity to itself, we have measure or correlations [31, 33], even with the aid of clus-
tering [5, 8], can fail.

. For a visual illustration of eigenmode switching, we
Zj:l Vi color-plot the eigenvectors in MATLAB, where the entries

in an eigenvector are used as indices into the color map. To

We do not normalize these scales to some constant, Sinc@npnance our llustration, we nonlinearly warp the color map.
they represent data variations along the projection axes anthg shown in Figure 6, given in the color plate, two simi-

thus contain shape information. We only wish to remove the |, shapes have compatible eigenmodes, reflected by con-
effect of different data size; this is achieved by normalizing gistent color plots, only up to th&" eigenvalue. Thet"
the eigenvalues, which represent data variations.

Another justification for (2) is that the dot-product ma-

SA; = Al = nAZ andSBi:L
T trace(A) YA A '

and6t" eigenmodes are switched and color patterns for the
. At o i next a few eigenvectors, those exhibiting higher-frequency
t”Ce_SAzAk a”_dBisz are respectively the best rartkap- color variations, do not exhibit any discernible patterns. Ev-
proximations, in Frobenius norms, df and B [9], which jgently, correspondence analysis using eigenvalue orderings

are already normalized to scale. Using the same argu-, pair up eigenmodes beyond & one would be hard to
ment, we see that the dot product matrices resulting fromjustify in this case.

eigenmode scaling with eigenvalues themselves [31] be-

come best rank-approximations of the autocorrelation ma- Relevance to eigenvalue scalingOne interesting point
trices AAT = A2 and B2, respectively, whose entries do 0 note is that as the magnitude of the eigenvalues of the
depend on the size of the data sets. geodesic affinity matrices exhibit rapid decay, as shown in

. , . the caption of Figure 6, eigenvalue scaling has the effect
Expgnmental resplts: The e.ffec_'uveness of our eigenvalue rapidly attenuating the effects of higher-frequency eigen-
scaling scheme is shown in Figure 3, where we plot the \ectors “This would be quite appropriate since these eigen-
correspondence errors in the case of scaled versus unscalgfh s are less reliable to use for correspondence analysis.
spectral embeddings. The correspondence error is measuregs 5 sige effect, the resulting correspondence algorithm will
as the total geodesic distankg,_, g(vi, v;), wherenisthe e |og5 sensitive to the number of eigenmodes chosen. In

i
number of vertices to be matched, is the vertex corre- previous works, e.g., [8], some heuristic has to be adopted
to determine the proper dimensionality to use.

sponding toi that is computed by an algorithm, anfis
the ground-truth match far The plots are against the dif-
ference in the number of vertices of the two meshes to beSign flips: Besides reflections induced by switching, other
matched. The correspondence algorithm used is our owntransformations in the spectral domain also need to be han-
and it is described in Section 5. In producing the two plots, dled to achieve robust spectral correspondence. One such
the only difference is whether the eigenmodes are scaled. transformation is due to the arbitrary determination of the
Measuring error for dense correspondence is not easysigns of the eigenvectors by the numerical eigenvalue pro-
since the ground-truth correspondence is impractical to es-gram, as already noted in previous works [5, 31]. Note that
tablish manually. In our evaluation, we first construct suc- this is another form of reflection. Caelli and Kosinov [3]
cessively decimated copies of the same 3D mesh using thdropose to use a dominant sign correction, always ensuring
QSlim mesh decimation program of Garland [12] Next we that there are more pOSitiVE entries in each eigenvector. This
use our algorithm to find correspondences between the deciis highly unreliable however since in practice, most eigen-
mated copies and the original mesh and measure corresporiectors have about the same number of positive and nega-
dence errors. The ground-truth can be trivially establishedtive entries. Shapiro and Brady [31] use a greedy approach

since QSlim retains the positions of undecimated vertices. 0 correct one sign at a time by optimizing for a correspon-
dence cost. In the presence of eigenmode switchings, this

4.3. Non-robustness of eigenmodes approach is not robust either.

Other transformations: Consider the spectral embeddings
Eigenmode switching: Perturbation theory predicts that of two similar human meshes using thg?, 37¢ and 4"
when eigenvalues move close to each other, the correspondeigenvectors (this particular choice of the eigenvectors is
ing eigenvectors may switch order [15]. We have observedexplained in Section 5), as shown in Figure 4(a). Ideally,
that such switching can occur early in the eigenvalue or- the embeddings would be perfectly aligned. However, a ro-
der, e.g., between 4 and 8, even when the two shapes betational difference in the embeddings is clearly visible. In
ing matched are perceptually similar. But there is no gen- addition, there are also other discrepancies of a non-rigid
eral pattern of eigenvalue clustering that is sufficiently reli- nature. Another example is given in Figure 4(b), where
able to detect the switchings. As switching of two coordi- the second (light gray) mesh is merely a scaled version
nates, the eigenvectors, induces a reflection in the spectraf{scaled along the direction) of the first (dark gray) mesh.
domain, spectral correspondence based o thdistance But there again is a rotation in the embedding. We be-



R

(a) Two similar human meshes with their spectral
embeddings differ by a rotation and some stretching.

i x

(b) A human mesh and its stretched version. Their spectral
embeddings differ by a rotation.

Figure 4. Stretching in spatial domain in-
duces rotation and non-rigid transformations
in the spectral domain.

lieve that such transformations in the spectral domain, as
well as eigenmode switchings, are the result of non-uniform
stretching in the shapes. Obviously, a matching algorithm
must be able to deal with all these transformations in order
to operate robustly.

5. Our algorithm

Observe that iterative alignment techniques, e.g., [6],
can work quite well when the initial shapes are approx-
imately aligned, while spectral embedding can automati-
cally remove the effects of rigid-body transformations, uni-

form scaling, and shape bending. Hence, a natural approach

would be to perform non-rigid alignment in the spectral do-
main before computing the matching. The only obstacle
now is to handle reflections caused by eigenvector switch-

ing and sign flips, as they can introduce large discrepancies

into the initial configurations of the shapes to be matched.
An exhaustive solution would be to consider all possible

eigenvector orderings and sign flips and choose the one that

gives the best matching. However, kifeigenvectors are
used for embedding, there ak& x 2% possibilities to ex-
haust; this is quite expensive even for small valuek. of

We can use a simple, greedy heuristic. Let us first con-
sider a very low dimensional embedding, e.g., with only two

eigenvectors. We exhaustively find the best possible order-
ing and signs of these few eigenvectors. Now we incremen-
tally add one eigenvector at a time and at each step, com-
pute the best possible position and sign of the new eigenvec-
tor. This results inD(k?) possibilities to compare, greatly
reducing the time complexity. Due to the rapid decay of
eigenvalues and eigenvalue scaling, we never find it nec-
essary to use more thdagn= 6 eigenvectors to arrive at a
satisfactory mesh correspondence.kSs always small.

Once we have aligned the two spectral embeddings prop-
erly, we attempt to transform one embedding into another.
Due to the presence of non-rigid deformations in the spec-
tral domain, we modify the original rigid ICP algorithm
[4] by replacing its transformation model with the use of
thin-plate splines. Thin-plate splines are well-known and
have been applied to model non-rigid transformations be-
fore [3, 6] in the context of 2D shape registration. A brief
overview of this technique is given in the Appendix.

Now consider two 3D meshed; and M, with ny,, and
nyz, vertices, respectively. Without loss of generality, as-
sume thatvy;, < nag,. Let us describe each step of our
spectral correspondence algorithm in details below.

1. Geodesic affinities: Construct Gaussian affinity ma-
trix A where
,dl?j

202
My

Aij:(E

whered;; is the geodesic distance between veitard

jin M;. The Gaussian kernel width,,, is set to be
the maximum geodesic distance between any two ver-
tices in M. The performance of our method is rela-
tively invariant to the choice af 5, as long as it is set

to a sufficiently large value. Similarly, we construgt

the Gaussian affinity matrix for mes¥,.

. Spectral embeddings:The affinity matricesA and B
are eigenvalue decomposed and the resulting spectrum
are truncated té. Each of thek eigenvectors is scaled
with the square root of its corresponding eigenvalue.
These steps have already been described in details in
Section 4.1 and 4.2.

Note that if the Gaussian width is sufficiently large,
the row-sums of the affinity matrix are almost con-
stant. As a result, the first eigenvector of the matrix
will be close to a constant vector and can be safely ig-
nored. From now on, we denote bye R > (k=1)
andB € R™2*(k~1) as first defined in Equation 2,
the (k — 1)-dimensional embeddings @f; and M-,
respectively, where the first eigenvector is disregarded.
AandB are essentially. s, x (k—1) andnz, x (k—1)
matrices where th&” rows of A andB are the(k—1)-
dimensional spectral embedding coordinates ofthe
vertices of meshes/; and M, respectively. In all our



experiments, we have uséd= 5 or 6 hence giving a
4 or 5-dimensional spectral embedding after disregard-
ing the first eigenvector.

. Eigenvector reordering and sign correction We
keep the ordering and signs of the eigenvectors of
one mesh, e.gl/, fixed. With either the exhaustive
search or the greedy heuristic, we need to compute the
cost of a correspondence, which we describe below.
First, we obtain a best matching based simply on
the L, metric; other metric, such as the Chi-square or
Mahalanobis distance is also possible. Specifically, for
a vertexv! of meshiy, vg(";) is the corresponding
vertex of M5, where

C(i) = argmin; || A; — B ©)

Here A, andBj denote the spectral embedding coordi-
nates of vertex in meshM; and vertexj in meshi/,
respectively (i.e. thé" and thej*” row of the matrices

A andB respectively). The cost of the correspondence
C'is given by the sum:

n My

cost(C) =Y _ [|Ai = Bog |
i=1

We choose the ordering and signs of the eigenvectors
for mesh/, which give the minimunzost(C').

. Non-rigid alignment: Once the eigenvectors for two
shapes have consistent ordering and signs, we perform
a non-rigid alignment using ICP modified by thin-plate
splines (Refer to the Appendix). The pseudo-code for
this alignment procedure is given below.

Given two spectral embeddingsand 5,
(a) Initialize parameterd, w, A.
(b) TransformB into B using the transformation pa-
rametersi andw.
(c) Update correspondencéusing Equation (3) af-
ter replacingB; with B;.
(d) Given the correspondencg update transforma-
tion parameters using Equation (5).
(e) Update the regularization parameker
(f) Repeat from Step 2 until convergence.
We have found experimentally that 5 to 10 iterations
of the iterative alignment are sufficient to align the em-
beddings. The value of the regularization paramater
is set to be the mean distance between all embedded

point pairs. As shown in [3], this scale-dependent as-
signment of) is robust to scaling of the point sets.

5. Proximity-aided matching: For dense correspon-

dence it is hard to distinguish between near-by points
using an alignment and correspondence procedure
based on optimizing a global energy, which is the case
in our approach. In order to improve correspondence
locally, we perform matching using a heuristic based
on point proximity. Specifically, we first select a small
number ofanchor pointpairs. These are point pairs
that are best matched (that is, pairs contributing least
to the correspondence cost), but that are also not too
close to each other. Now for finding the correspon-
dence cost between two points, we not only consider
the L, distance between their (non-rigidly aligned)
spectral embeddings, but also the difference between
their geodesic proximities to these anchor points.

The anchor point pairs are computed as follows. Con-
sider the(nas, x nag,) matrix Z of correspondence
costs between all points éff; and M. That is,
Zij = ||Ai — Bj].
The first anchor point paifa{" , a$"), wherea!" is a
vertex of M, andagl) is a vertex ofM,, is selected as
the pair with least correspondence cost. That is,
1 1 .
(ag >,a; )) = argmlrhj)(Zij).
The second anchor point pair is calculated in the same
way. However, we would need the anchor points to
be far from each other over the mesh. Hence, before
finding the second pair, we modify the matfixso that
points close to the first anchor point are penalized. The
new correspondence cost matrix is given by:

| . .

Zi(jl) =Z;i — §[c1lzstM1 (1, agl)) + dist™2 (],aél))]
wheredistM (i, j) is the geodesic distance between the
it" andj*" vertex of mesh\/. Now, the second anchor
point pair is given by:

2 2 . 1
(ag ),a; )) = argm'rb,j)(zi(j))~
This process can be repeated to obtain more anchor
point pairs. With the anchor points, we modify Equa-
tion (3) for finding the best corresponderncéo incor-
porate the proximity cost:

C(i) = argmin, {H/li - By
h

> - dist™ (i) - dist*(j,a{) |
=1

whereh is the number of anchor point pairs chosen
and theq;’s are free parameters set by the user.



The success of the proximity heuristic depends ontwo e Shapiro and Brady [31]: This is one of the early and
factors: quality of the anchor point pairs and geodesic best-known spectral point correspondence algorithms.
distances. Since the meshes are already well aligned, It usesL, distance to compute a best matching, using
choosing the anchor point pairs to be the most trusted their greedy sign correction but with no eigenvector
matches are expected to be robust. However, the de- reordering or eigenvalue scaling of eigenvectors.
pendence on geodesic distances may cause sensitivity ) )

of the heuristic to stretching in the shapes. Hence, fix- ® !mproved Shapiro and Brady: Only eigenvalue scal-
ing a large number of anchor point pairs can render the ing is incorporated into the original algorithm.
matching non-robust. Thus we restrict to fixing only
three anchor pairs and set = a; = a3 = 1 for all
our experiments.

In each test cases = 6 eigenvectors are used. Us-
ing more eigenvectors does not change the result due to
eigenvalue scaling. Three out of the eight cases, Armadillo-
. Human, the Hands-1, and the Hands-3, have eigenvector
6. Experimental results switching occurring. In six of the eight cases, the greedy

heuristic for eigenvector reordering and sign correction is

To evaluate a mesh correspondence algorithm, we handsuccessful; we shall provide a remark on this issue in the
pick a small number (17 to 20) of feature points on both of next section. The results shown are obtained by the ex-
the meshes to be matched, where the number of vertices ipensive exhaustive search. Hence all results are limited to
these meshes vary between 100 to 300. The ground-trutimeshes with a few hundred vertices. In all test cases, no
correspondence between the features is determined by humore than 10 iterations of our non-rigid ICP procedure are
man. Now we compute a correspondence using the algo-needed. In several cases, the procedure converges in less
rithm and record the percentage of correct correspondenceghan 5 iterations. In terms of results, as can be seen from
obtained. Figure 6 shows a comparison between our algoFigure 6, our algorithm clearly outperforms the state-of-the-
rithm and other well-known schemes, on eight test cases.art correspondence schemes mentioned above.

The shapes to be matched in the test cases are shown in Fig- In Figure 7, we show some matching results obtained
ure 7; each pair of shapes exhibit some degree of non-rigidfrom our algorithm. The matching is shown by coloring the
deformations. We now describe briefly the other schemesvertices of the meshes in an appropriate way. We first as-
we have experimented with and our experimental setup.  Sign colors to the vertices of one of the two meshes, e.g.,
M. Then the color for thet” vertex of meshi/; is set
e TPS-RPM [6] in spatial domain: This is one of the  to be the color of the(i)!" vertex of M,, whereC is the
most successful non-rigid ICP algorithms. It combines correspondence found by our algorithm. This way, a good
thin-plate splines, soft assign, and deterministic an- correspondence will induce a coloring that is consistent on
nealing to achieve robust correspondence. But as weboth meshes. To show the meaningfulness of the correspon-
have shown in Figure 1, it is susceptible to poor initial dence obtained, we carefully assign different colors to dif-
alignment, such as a difference in rotation. ferent parts of the mest/;. Clearly, our algorithm matches
bent shapes well, as well, it behaves robustly against mod-

To improve its performance, waanuallyand rigidl S ,
Improve 1is b uary 91y erate stretching in the shapes, e.g., the Armadillo vs. the

align the two shapes to be matched, attempting to neu—h dthe I the h
tralize any rotation or translation between them; this is uman and the fion vs. the norse.

done for all the three spatial-domain schemes we have, Il:\!ote th7at 'E.tue Hur?an:Humtgn arr:d L|ont:hHorse pairs,
experimented with. However, bending in the shapes Idn gure 7, w ICt .arﬁ ° s_);mhmg r;\f S alpe;,] gcr:]ct)rr:eszor;-
still cause the algorithm to perform poorly. ence 1S symmetrically switched. INamely, the right hand o

one human is matched to the left hand of the other, etc. Sim-

e Robust ICP [35] in spatial domain: This methodisa  ilarly, the right leg of the lion is matched to the left leg of the
recent variant of the original ICP [4] algorithm. It uses horse, etc. This occurs since we define affinities based on
a hierarchical approach to achieve robust registration 9eodesic distance, which is an intrinsic measure that can-

of 3D point sets. We use it as a representative of the Not distinguish between symmetric points. As such, the
rigid iterative alignment schemes. left hand and the right hand of the human are equally good

matches for the right hand of the other human. By chance,
e Shape context [3] in spatial domain:We use a triv-  the Armadillo:Human, Cow:Lion, and Airplanes pairs re-
ial 3D extension of the original 2D shape context of turn the right correspondences.
Belongie et al. [3] as a representative correspondence One solution to the above symmetry problem would be
scheme based on local shape descriptors. Shape corto carefully select the right sign of the eigenvectors. For
text is one of the most successful local descriptors for shapes where there is one plane of symmetry, there will
image analysis [25]. be two possible sign configurations of the eigenvectors that
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Figure 5. A comparison between several correspondence algorithms, including ours. The percent-

age of correct correspondences is plotted.

would give the minimum correspondence cost. These can
be detected and the right configuration can be picked by
inspecting it visually. As the number of symmetry planes
increase, more sign configurations will give the minimum
correspondence cost. A more analytical solution would be
to define affinities in a symmetry-distinguishing way.

Figure 8 gives additional correspondence results ob-
tained using our algorithm on numerous articulated shapes.
In each of shape class, one per row, all the shapes are
matched to a single reference shape (the first shape in each
row of 8) and correspondence obtained is color coded in ac-
cordance with the colors on the reference shape. Apart from
showing the effectiveness of our method, e.g., see the sec-
ond row of Figure 8, these examples also reveal some of its
limitations which we discuss below:

1. Effect of intrinsic shape symmetry: As explained
earlier, due to the intrinsic nature of the affinity ma-
trix, our method is not guaranteed to match symmetric
shapes correctly, as shown in Figure 8(1-c) and Fig-
ure 8(4-c) and (4-d). In all three cases, the sign con-
figuration of the eigenvectors that gives the lowest cor-
respondence cost leads to counterintuitive correspon-
dence results. Our method succeeds in all the remain-
ing cases inrow 1, 2, and 4, although in each case, the
next best eigenvector sign configuration, which has a
correspondence cost extremely close to the lowest cost,
would give a symmetrically flipped matching. This
shows that the correspondence might very well have
been symmetrically flipped in these cases too. Note
that the correspondence may be symmetrically flipped,
but it is nevertheless still consistent across the shape.

2. Effect of topological changes: Since our method
largely depends on geodesic distances, topological

changes can seriously harm the correspondence com-
putation. This effect is visible in Figure 8(3-e) and
(3-f), where the fingers of the hands are connected to
the palm which would change the connectivity of the
mesh, as well as the geodesic distances, drastically, re-
sulting in unnatural correspondence results. Correct
recovery of the correspondence between the fingers in
this case appears to be a rather difficult problem, with-
out some level o& prior knowledge.

3. Unreliable geodesic distancesfigure 8(4-e) shows

a bird shape that is very similar to the reference fig-
ure for this group, Figure 8(4-a). However, the corre-
spondence obtained is incorrect. We suspect that this is
mainly due to the unreliability of geodesic distances on
the wings of the bird that contains many “cuts”. Hence,
even though the shapes look similar in the spatial do-
main, their embeddings are rather different.

. Non-robustness ofL, cost for exhaustive search:

Close inspection of Figure 8(1-b) reveals that the cor-
respondence obtained is inconsistent: the left arm is
colored orange which means that the left leg must be
colored blue which is not the case (note that this is
different from the symmetry issue discussed above).
This should not have been the case as the shapes are
topologically sound and the geodesic distances are
computed robustly. The problem becomes clear when
we examine the result of the exhaustive reordering of
eigenvectors. It turns out that for this shape, the ex-
haustive reordering does not give the right ordering of
the eigenvectors, as shown in Figure 9. After further
investigation we find that that the problem lies with the
crudeL, cost measure used in arriving at the reorder-
ing. A more robust cost measure should be sought.



7. Conclusion and future work is still required. In addition, we plan to address the other
limitations of our current method, including the handling of

In this paper, we present a hybrid approach to finding shape symmetry and non-manifold meshes.

a one-to-one correspondence between the vertices of two Finally,_ we W_Ol_Jl_d like o investigate p_ossibl_e def_initions
3D meshes. We first transform the meshes into the spectran the _p0|nt_aff|n|t|es that are rqbust, if not invariant, to_
domain, based on geodesic affinities, and then match theStretching within perceptually saﬁent parts .Of a;hape. T.hls
spectral embeddings after taking appropriate steps to ensur(\évou'd offer an altgrnatlve to using non-r|g|_d allgnment In
a consistent ordering and sign assignment of the eigenvecme spectral domgln and_av0|d havmg to find a consistent
tors. Eigenvalue scaling of the eigenvectors renders our al-e1genvector ordering or sign assignment.

gorithm robust against difference in mesh sizes and choice
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Appendix: Thin-plate splines

The thin plate spline is a generalization of cubic splines to
higher dimensions and it contains affine transformations as a spe-
cial case. With non-rigid transformations, there are infinitely
many ways of transforming a point set into another. Thin plate
splines are effective because of their smoothness constraints which
discourage arbitrary mappings. In the limit of this smoothness
constraint the thin plate spline model reduces to an affine trans-
formation model. The thin plate spline transformation function
f:z€RF =y e RF maps apointsek = {z1,z2,...,%,}
in k (sayk = 2) dimensional space to another point 3&t=
{y1,¥2,.-.,yn} by minimizing the following energy function:

E(f) =Z\|yz' — f@a)ll+

P >’f
— 2
)\// [( (%U?) + (&ray
where) is the regularization (smoothing) parameter. Note that the
correspondence betweghandY is assumed to be given. Hence,

pointy; is the matching point fox;. The uniquef that minimizes
the above energy function has the form:

N @)
2+ (a—yff dady

wherez; is now in(k+1)-dimensional homogeneous coordinates,
disa(k+ 1) x (k+ 1) affine transformation matrixw is an
n x (k + 1) warping coefficients matrix andt(x;) is a vector of
lengthn such that; (z;) = —||z; — x|
As shown in [3], the transformatiofi, w) that minimizes the
energy can be calculated by solving the following system:
[ K X7

o llulslv]l e

Here, K is the matrix(® — AI') where,[ is an identity matrix
of appropriate size and is an(n x n) matrix whosei*" row is
qZS(JL'»L), that iS,‘I)ij = —||1']' — 1‘1”

Using these transformation parameters, we transform the point
setX to point sety” and then recompute the correspondence. This
process is iterated until convergence.
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Figure 6. Eigenvector plots for two shapes, both with 252 vertices. The first 8 eigenvalues are [205.6,
11.4,4.7,3.8,1.8,0.4,0.26, 0.1] and [201.9, 10.9, 6.3, 3.4, 1.8, 1.2, 0.31, 0.25], respectively.
i
Armadillo:Human Human:Human
=  x
Hands-3 Airplanes Cow:Lion Lion:Horse
Figure 7. Correspondence results obtained from our algorithm, shown with color plots.
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Figure 8. Row 1: correspondence results for human shapes. Row 2: for animal shapes. Row 3: for
hand shapes. Row 4: for bird shapes.
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Figure 9. Incorrect eigenvector ordering is obtained even after exhaustively reordering the eigenvec-
tors for shapes in Figure 8(1-a) and (1-b).




