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Abstract

We present an algorithm for finding a meaningful vertex-
to-vertex correspondence between two 3D shapes given as
triangle meshes. Our algorithm operates on embeddings of
the two shapes in the spectral domain so as to normalize
them with respect to uniform scaling and rigid-body trans-
formation. Invariance to shape bending is achieved by re-
lying on geodesic point proximities on a mesh to capture its
shape. To deal with stretching, we propose to use non-rigid
alignment via thin-plate splines in the spectral domain. This
is combined with a refinement step based on the geodesic
proximities to improve dense correspondence. We show em-
pirically that our algorithm outperforms previous spectral
methods, as well as schemes that compute correspondence
in the spatial domain via non-rigid iterative closest points
or the use of local shape descriptors, e.g., 3D shape context.

1. Introduction

Given two 3D shapes represented as 2-manifold trian-
gle meshes, the correspondence problem seeks to establish
a meaningful mapping between them. The mapping can be
between the two sets of mesh vertices, between two coarse
sets of feature points selected on the meshes, or a continu-
ous one between all points on the two manifolds. This is a
fundamental problem in computer graphics and shape mod-
eling, with such applications as texture mapping [20], mesh
morphing [1], shape registration, and object recognition.

A recent trend in research into the mesh parameteriza-
tion problem, which essentially computes a dense surface
correspondence, is to look for effective techniques to con-
struct across parameterizationbetween two meshes di-
rectly [21, 29], i.e., without relying on an simple common
parameter domain. Such a parameterization allows one to
obtain compatible connectivity among a set of models in a
feature-sensitive way [21, 27], greatly facilitating tasks such

as shape blending and various forms of attribute transfer. A
crucial first step for constructing a cross parameterization is
the identification of a sparse set of matching feature points
on the two shapes. Most methods [27, 20, 21, 29] rely on the
user to specify the initial feature correspondence manually.
It is well known that even if the sets of feature points have
been given, finding a meaningful correspondence automati-
cally with robustness to both rigid and non-rigid geometric
transformations is notoriously difficult. This is the problem
we wish to address in this paper.

Given two 2-manifold triangle meshes, possibly with dif-
ferent vertex counts, we compute a correspondence between
the mesh vertices. The spatial coordinates of the mesh ver-
tices are first converted into two affinity matrices, which
are obtained by applying aGaussian kernelto the pair-
wise geodesic distancematrices for the two meshes. This
way, each vertex of a mesh is represented using intrinsic
structural information. The correspondence is obtained by
matching points based on this information and this is car-
ried out in ak-dimensionalspectraldomain via eigenspace
projections. Typically,k is much smaller than the size of the
affinity matrices. Thus the dimensionality of the structural
information has been effectively reduced.

Appropriate choice of the Gaussian kernel width and
the use of spectral embeddings described above ensure that
our matching procedure is invariant to rigid body transfor-
mations, uniform scaling, and shape bending. This is be-
cause the affinities we use are invariant to precisely these
transformations. We also propose to scale the eigenvectors
by the square root of the eigenvalues in forming the spec-
tral embeddings so as to achieve robustness against differ-
ence in mesh vertex counts and choice of the dimension-
ality of the embeddings. However, our experiments show
that matching based solely on such embeddings, e.g., us-
ing theL2 metric [31], can be non-robust to stretching in
the shapes. To this end, we perform a non-rigid alignment
in the spectral domain using thin-plate splines. A refine-
ment step using the original geodesic proximity data en-
hances the performances of the algorithm in the case of



dense correspondence. Through formal arguments and nu-
merous experiments, we demonstrate that our approach out-
performs previous methods which operate on spectral em-
beddings [7, 8, 31, 33], as well as schemes that find corre-
spondence in the spatial domain via non-rigid iterative clos-
est points [6] or the use of local shape descriptors, such as
shape contexts [3] and curvature maps [13].

The rest of the paper is organized as follows. Section 2
gives a brief survey of previous work. Section 3 gives an
overview of the problem in question and our algorithm; it
also establishes some notations used in subsequent sections.
In Section 4, we describe the construction of the spectral
embeddings in more details, argue for its various proper-
ties, and demonstrate its non-robustness to stretching. We
also explain our eigenvalue scaling scheme and its effect on
the spectral embeddings. In Section 5, we present the major
components of our correspondence algorithm. This is fol-
lowed by experimental results in Section 6, where we also
point out some limitations of our current approach. Finally,
we conclude in Section 7 and comment on future work.

2. Previous work

Point correspondence may be computed based on ei-
ther absolute coordinates or relative information, e.g., us-
ing weighted graphs. Two main classes of methods exist for
spatial correspondence: those using local shape descriptors
and those relying on iterative alignment schemes. The first
class of techniques describe every point on a shape by en-
coding shape information from the perspective of that point.
Point matching is then based on appropriate distances be-
tween the descriptors. Well-known descriptors for images
include shape contexts [3] and spin images [17], both uti-
lizing a histogram obtained by binning the space around a
point according to the Euclidean metric and collecting point
counts. These methods have subsequently been generalized
in a straightforward manner to handle 3D point sets [18].

Neither shape contexts nor spin images are invariant to
shape bending. A promising remedy is the curvature maps
of Gatzke et al. [13]. Local shape descriptors are con-
structed on a mesh by dividing the geodesic neighborhood
of a vertex into bins. Although geodesic binning is invari-
ant to bending (not stretching), the histograms computed are
based on curvature distributions, which, even if estimated
robustly, are not invariant to bending.

More recent shape signature based methods include
those by Gelfand et al. [14] and Li et al. [23]. Both meth-
ods are robust under only rigid transformations. The par-
tial matching scheme of the former do provide a way to de-
tect articulated subparts of a shape and subsequently match
them to the subparts of the second shape. However, their
work lacks a discussion and analysis of the performance and
robustness of the matching method when there are multiple
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Figure 1. TPS-RPM [6] failed by rotation.

pose changes in the models or when the models consist of a
large number of articulated subparts.

Iterative alignment schemes compute a correspondence
and a transformation which would transform one shape into
another at each step. The correspondence is usually based
on a “closest point” criteria and the transformation is ob-
tained by optimizing an energy. Such techniques include
the well known iterative closest point (ICP) algorithm of
Besl and Mckay [4] and its variants [28], which can han-
dle affine transformations. Recent works, most notably the
TPS-RPM method of Chui and Rangarajan [6], attempt to
incorporate non-rigid deformations into the ICP framework,
using thin-plate splines to model the deformation. However,
these methods can easily get trapped in bad local minima if
the shapes are not approximately aligned initially, since the
correspondence, which dictates the optimization, is com-
puted using an Euclidean closest point method. Thus rota-
tion alone can cause a bad matching, as shown in Figure 1.

Sumner et al. [32] and Zayer et al. [34] attempt to allevi-
ate this problem by fixing a small number of feature points
on the shapes to be matched. Sumner et al. rely on these
feature points as guidance to ICP in order to escape local
minima, whereas Zayer et al. use interpolation, based on
barycentric coordinates, of the correspondence between the
feature points to compute the remaining point correspon-
dences. In both methods, it is imperative that the feature
points selected on the two meshes be corresponding in a
meaningful way. This can only be done with user assistance
as automatic selection and matching of the feature points is
equivalent to the correspondence problem we are trying to
solve in the first place.

Spectral shape correspondence involves first construct-
ing intrinsic (relative) point representations of the two
shapes, in the form of weighted graph adjacency or affin-
ity matrices. Elad and Kimmel [10] make use of geodesic



proximities to construct bending-invariant surface signa-
tures through multi-dimensional scaling. Application to
object classification has been considered, but they do not
solve the harder correspondence problem. Given a proxim-
ity matrix, ak-dimensional spectral embedding can be com-
puted via principal component analysis (PCA). Shapiro and
Brady [31] useL2 distances between the embedded points
to compute a correspondence, while Umeyema [33] chooses
the correlation between the embedding coordinates. Both
Caelli and Kosinov [5] and Carcassoni and Hancock [8] rely
on spectral clustering and cluster correspondence to guide
point correspondence. The use of spectral embeddings has
traditionally been exploited in the computer vision and ma-
chine learning literature. Recently, they have found several
applications in geometry processing as well, including mesh
segmentation [22], spherical parameterization [16], and sur-
face reconstruction [19].

Common to all the existing spectral correspondence
techniques is the premise that the eigenmodes from two
similar shapes should match up, according to the magnitude
of their corresponding eigenvalues. One of our main obser-
vations is that this ordering of the eigenmodes is not always
reliable. As the eigenvalues characterize data variance in
the direction of the corresponding eigenvectors, eigenmode
ordering based on eigenvalues implies ordering by data vari-
ance. This may not be appropriate since variance only cap-
tures global information and does not reflect the way spe-
cific data points would vary. We observe that under shape
stretching, certain eigenmodes may be “switched”. Failure
to resolve such reflections or other non-rigid discrepancies
between spectral embeddings will lead to poor matching re-
sults. In this paper, we propose heuristics to handle such
switchings in the spectral domain, where the spectral em-
beddings will be corresponded after alignment using non-
rigid ICP based on thin-plate splines.

3. Overview

Let us first give a brief overview of the problem we ad-
dress and the algorithm we propose. Given two 3D shapes
M1 andM2, in the form of triangular meshes and withnM1

andnM2 vertices, respectively, we wish to compute a cor-
respondenceC between the two sets of vertices inM1 and
M2. That is,C(i) is the vertex inM2 that best corresponds
to vertexi in M1. Note that the correspondence computed
is not required to be bijective. However, in the case where
nM1 = nM2 and a one-to-one correspondence is sought, we
can easily modify our method to meet the goal.

Our method of computingC is as follows: first, we es-
tablish annM1 × nM1 affinity matrix A whereAij is the
affinity between verticesi andj of M1. Similarly, we com-
pute annM2 × nM2 matrix B, the affinity matrix forM2.
The affinities that we use in our implementation are based

on geodesic distances in order to attain invariance to bend-
ing. Next we find the spectral embeddingsÂk andB̂k of the
matricesA andB, respectively. These embeddings givek-
dimensional coordinates of all the vertices ofM1 andM2.
The embeddings are based on the eigenvectors ofA andB,
properly processed as we describe in Section 4. The pur-
pose of transforming the 3D mesh from the spacial domain
to thek-D spectral domain is to attain invariance to bend-
ing, rigid transformations, and uniform scaling, as well as
robustness to difference in mesh sizes, for example.

Once we have the twok-D meshes that are already prop-
erly normalized, we use iterative alignment to robustly align
them and then obtain a correspondence via best matching
based on theL2 distance. As we shall explain in Section 4,
rigid alignment is insufficient to deal with moderate stretch-
ings in the shapes to be matched. Hence, we modify the
well-known iterative closest point (ICP) algorithm to in-
clude non-rigid transformations. Specifically, we use thin
plate splines to model non-rigid transformations and com-
pute a registration between the meshes in the spectral do-
main. As mentioned earlier, this registration is not required
to be one-to-one, but can be forced to be bijective by using
the Hungarian algorithm for bipartite matching.

4. Spectral embedding

In general, intrinsic point representations can be ob-
tained via pairwise point proximities, specified by a sym-
metric affinity matrixA = {aij}, whereaij ≥ 0 charac-
terizes the similarity or simply the graph adjacency [5, 33]
between pointsi andj. One may view the affinity matrix
A as a data vector whosen columns (or rows) representn-
dimensional data points.

The most common proximity measure used to define re-
lationship between points for shape matching is the Eu-
clidean distance [7, 8, 30, 31], which implies invariance to
rotation and translation. For mesh correspondence, we use
geodesic distances between the mesh vertices, computed via
fast marching [10], to include invariance to bending as well.
Invariance to uniform scaling is achieved by mapping the
geodesic proximities into the interval[0, 1] using ascale-
dependent, positive semi-definitekernel function. In this
paper, we use Gaussian kernels which is a common choice
for spectral correspondence [7, 8, 30, 31].

Although the point proximities contain a great deal of
shape information, without a proper point mapping, one
cannot compare such representations for two data sets di-
rectly. Also, the size of the data sets, or the dimensionality
of the point representations, may not be the same. Last but
not the least, the high dimensional representations may con-
tain a great deal of redundancy, resulting in unnecessarily
high computational cost. These observations naturally lead
us to consider transforming two data sets, respectively, into



Figure 2. A human mesh (left) and its 3D
spectral embedding, constructed using the
second, third, and fourth eigenvectors. This
particular choice of the eigenvectors is ex-
plained in Section 5.

some information-preserving subspaces that share the same
low dimensionality. This can be accomplished through prin-
cipal component analysis (PCA) on the affinity data.

4.1. Principal component analysis

Given the data (affinity) matrixA ∈ Rn×n, we first
compute its principal componentse1, . . . , en, which are
the normalizedeigenvectors of the autocorrelation matrix
R = AAT . SinceA is symmetric,R = A2 ande1, . . . , en

are simply the eigenvectors of the affinity matrixA. Let
λ1, . . . , λn be the corresponding eigenvalues ofA and sup-
pose thatλ1 ≥ . . . ≥ λn. Projecting the data matrix onto
the firstk principal components yield

Âk = ET
k A = ΛkET

K , (1)

whereEk = [e1| . . . |ek], Λk = diag(λ1, . . . , λk), and the
columns ofÂk represent ak-dimensionalspectral embed-
ding of the data points. Note that a point permutation in-
duces the same permutation of the embedded coordinates
but leaves the spectrum invariant.

In the case of mesh spectral embeddings, the data points
are mesh vertices. A spectral embedding associates with
each mesh vertex ak-dimensional coordinate. In the 3D
spectral domain, one can visualize the embedding of a mesh
M by rendering a mesh whose connectivity is the same as
M and whose vertices are given by the embedding coordi-
nates, as shown in Figure 2.

Although Âk gives a provably bestk-dimensional ap-
proximation ofA (in terms of the Frobenius norm), it may
not be suitable for matching. The more important require-
ment is for the projection axes, derived from the principal
components, to be compatible between two data sets.

4.2. Eigenvalue scaling

Given two affinity matricesA andB characterizing two
shapes, possibly in different scales, a scale-dependent ker-
nel can normalize the affinity values inA and B. If the
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number of vertices,nA andnB , in the two (mesh) shapes
differ however, we first need to truncate both spectral em-
beddings to the same dimensionk ≤ min{nA, nB}. In
addition, since we normalize each eigenvector, the cardi-
nality of a data set affects the magnitude of the entries in its
eigenvectors, which in turn affects the embeddings.

Correspondence algorithms that use unscaled eigen-
modes [7, 8, 31] as spectral embeddings are common.
Shapiro and Brady [31] first suggest a scaling of the the
eigenmodes by eigenvalues, as in (1), but did not elaborate.
Caelli and Kosinov [5] scale the eigenmodes usingsquared
eigenvalues and then project the resulting embeddings onto
the unit k-sphere for matching graphs of different vertex
counts. Evidently, proper scaling of the eigenmodes is a
crucial normalization step. None of these approaches ade-
quately resolves the discrepancies in the scales of the prin-
cipal components (or embeddings) due to difference in the
cardinality of the data sets. In this paper, we propose to
scale the principal components by thesquare rootof the
eigenvalues, yielding projections

Âk = Λ
1
2
k UT

k and B̂k = Γ
1
2
k V T

k , (2)

whereA = UΛUT andB = V ΓV T are the eigenvalue de-
compositions ofA andB, respectively, withUk, Vk,Λk, Γk

defined as in (1). Spectral embeddings of this form are well
known in the spectral clustering literature [26].

Justifications: Consider the vector of projectionŝai from
setA. We can estimate the scale of these projections by
sA,i = ||âi||2/nA. From (2), we have

âi =
√

λiui and b̂i =
√

γivi.

It follows thatsA,i = λi/nA andsB,i = γi/nB . With the
affinity matrices having unit diagonal elements, signaling



that a point has maximal affinity to itself, we have

sA,i =
λi

trace(A)
=

λi∑nA

j=1 λj
and sB,i =

γi∑nB

j=1 γj
.

We do not normalize these scales to some constant, since
they represent data variations along the projection axes and
thus contain shape information. We only wish to remove the
effect of different data size; this is achieved by normalizing
the eigenvalues, which represent data variations.

Another justification for (2) is that the dot-product ma-
tricesÂT

k Âk andB̂T
k B̂k are respectively the best rank-k ap-

proximations, in Frobenius norms, ofA andB [9], which
are already normalized to scale. Using the same argu-
ment, we see that the dot product matrices resulting from
eigenmode scaling with eigenvalues themselves [31] be-
come best rank-k approximations of the autocorrelation ma-
tricesAAT = A2 andB2, respectively, whose entries do
depend on the size of the data sets.

Experimental results: The effectiveness of our eigenvalue
scaling scheme is shown in Figure 3, where we plot the
correspondence errors in the case of scaled versus unscaled
spectral embeddings. The correspondence error is measured
as the total geodesic distance

∑n
i=1 g(vi, v

′
i), wheren is the

number of vertices to be matched,vi is the vertex corre-
sponding toi that is computed by an algorithm, andv′i is
the ground-truth match fori. The plots are against the dif-
ference in the number of vertices of the two meshes to be
matched. The correspondence algorithm used is our own
and it is described in Section 5. In producing the two plots,
the only difference is whether the eigenmodes are scaled.

Measuring error for dense correspondence is not easy
since the ground-truth correspondence is impractical to es-
tablish manually. In our evaluation, we first construct suc-
cessively decimated copies of the same 3D mesh using the
QSlim mesh decimation program of Garland [12]. Next we
use our algorithm to find correspondences between the deci-
mated copies and the original mesh and measure correspon-
dence errors. The ground-truth can be trivially established
since QSlim retains the positions of undecimated vertices.

4.3. Non-robustness of eigenmodes

Eigenmode switching: Perturbation theory predicts that
when eigenvalues move close to each other, the correspond-
ing eigenvectors may switch order [15]. We have observed
that such switching can occur early in the eigenvalue or-
der, e.g., between 4 and 8, even when the two shapes be-
ing matched are perceptually similar. But there is no gen-
eral pattern of eigenvalue clustering that is sufficiently reli-
able to detect the switchings. As switching of two coordi-
nates, the eigenvectors, induces a reflection in the spectral
domain, spectral correspondence based on theL2 distance

measure or correlations [31, 33], even with the aid of clus-
tering [5, 8], can fail.

For a visual illustration of eigenmode switching, we
color-plot the eigenvectors in MATLAB, where the entries
in an eigenvector are used as indices into the color map. To
enhance our illustration, we nonlinearly warp the color map.
As shown in Figure 6, given in the color plate, two simi-
lar shapes have compatible eigenmodes, reflected by con-
sistent color plots, only up to the4th eigenvalue. The5th

and6th eigenmodes are switched and color patterns for the
next a few eigenvectors, those exhibiting higher-frequency
color variations, do not exhibit any discernible patterns. Ev-
idently, correspondence analysis using eigenvalue orderings
to pair up eigenmodes beyond the4th one would be hard to
justify in this case.

Relevance to eigenvalue scaling:One interesting point
to note is that as the magnitude of the eigenvalues of the
geodesic affinity matrices exhibit rapid decay, as shown in
the caption of Figure 6, eigenvalue scaling has the effect
of rapidly attenuating the effects of higher-frequency eigen-
vectors. This would be quite appropriate since these eigen-
vectors are less reliable to use for correspondence analysis.
As a side effect, the resulting correspondence algorithm will
be less sensitive to the number of eigenmodes chosen. In
previous works, e.g., [8], some heuristic has to be adopted
to determine the proper dimensionality to use.

Sign flips: Besides reflections induced by switching, other
transformations in the spectral domain also need to be han-
dled to achieve robust spectral correspondence. One such
transformation is due to the arbitrary determination of the
signs of the eigenvectors by the numerical eigenvalue pro-
gram, as already noted in previous works [5, 31]. Note that
this is another form of reflection. Caelli and Kosinov [5]
propose to use a dominant sign correction, always ensuring
that there are more positive entries in each eigenvector. This
is highly unreliable however since in practice, most eigen-
vectors have about the same number of positive and nega-
tive entries. Shapiro and Brady [31] use a greedy approach
to correct one sign at a time by optimizing for a correspon-
dence cost. In the presence of eigenmode switchings, this
approach is not robust either.

Other transformations: Consider the spectral embeddings
of two similar human meshes using the2nd, 3rd and4th

eigenvectors (this particular choice of the eigenvectors is
explained in Section 5), as shown in Figure 4(a). Ideally,
the embeddings would be perfectly aligned. However, a ro-
tational difference in the embeddings is clearly visible. In
addition, there are also other discrepancies of a non-rigid
nature. Another example is given in Figure 4(b), where
the second (light gray) mesh is merely a scaled version
(scaled along thex direction) of the first (dark gray) mesh.
But there again is a rotation in the embedding. We be-



(a) Two similar human meshes with their spectral
embeddings differ by a rotation and some stretching.

(b) A human mesh and its stretched version. Their spectral
embeddings differ by a rotation.

Figure 4. Stretching in spatial domain in-
duces rotation and non-rigid transformations
in the spectral domain.

lieve that such transformations in the spectral domain, as
well as eigenmode switchings, are the result of non-uniform
stretching in the shapes. Obviously, a matching algorithm
must be able to deal with all these transformations in order
to operate robustly.

5. Our algorithm

Observe that iterative alignment techniques, e.g., [6],
can work quite well when the initial shapes are approx-
imately aligned, while spectral embedding can automati-
cally remove the effects of rigid-body transformations, uni-
form scaling, and shape bending. Hence, a natural approach
would be to perform non-rigid alignment in the spectral do-
main before computing the matching. The only obstacle
now is to handle reflections caused by eigenvector switch-
ing and sign flips, as they can introduce large discrepancies
into the initial configurations of the shapes to be matched.
An exhaustive solution would be to consider all possible
eigenvector orderings and sign flips and choose the one that
gives the best matching. However, ifk eigenvectors are
used for embedding, there arek! × 2k possibilities to ex-
haust; this is quite expensive even for small values ofk.

We can use a simple, greedy heuristic. Let us first con-
sider a very low dimensional embedding, e.g., with only two

eigenvectors. We exhaustively find the best possible order-
ing and signs of these few eigenvectors. Now we incremen-
tally add one eigenvector at a time and at each step, com-
pute the best possible position and sign of the new eigenvec-
tor. This results inO(k2) possibilities to compare, greatly
reducing the time complexity. Due to the rapid decay of
eigenvalues and eigenvalue scaling, we never find it nec-
essary to use more thank = 6 eigenvectors to arrive at a
satisfactory mesh correspondence. Sok is always small.

Once we have aligned the two spectral embeddings prop-
erly, we attempt to transform one embedding into another.
Due to the presence of non-rigid deformations in the spec-
tral domain, we modify the original rigid ICP algorithm
[4] by replacing its transformation model with the use of
thin-plate splines. Thin-plate splines are well-known and
have been applied to model non-rigid transformations be-
fore [3, 6] in the context of 2D shape registration. A brief
overview of this technique is given in the Appendix.

Now consider two 3D meshesM1 andM2 with nM1 and
nM2 vertices, respectively. Without loss of generality, as-
sume thatnM1 ≤ nM2 . Let us describe each step of our
spectral correspondence algorithm in details below.

1. Geodesic affinities: Construct Gaussian affinity ma-
trix A where

Aij = e

−d2
ij

2σ2
M1

wheredij is the geodesic distance between vertexi and
j in M1. The Gaussian kernel widthσM1 is set to be
the maximum geodesic distance between any two ver-
tices inM1. The performance of our method is rela-
tively invariant to the choice ofσM1 as long as it is set
to a sufficiently large value. Similarly, we constructB,
the Gaussian affinity matrix for meshM2.

2. Spectral embeddings:The affinity matricesA andB
are eigenvalue decomposed and the resulting spectrum
are truncated tok. Each of thek eigenvectors is scaled
with the square root of its corresponding eigenvalue.
These steps have already been described in details in
Section 4.1 and 4.2.

Note that if the Gaussian width is sufficiently large,
the row-sums of the affinity matrix are almost con-
stant. As a result, the first eigenvector of the matrix
will be close to a constant vector and can be safely ig-
nored. From now on, we denote bŷA ∈ RnM1×(k−1)

andB̂ ∈ RnM2×(k−1), as first defined in Equation 2,
the (k − 1)-dimensional embeddings ofM1 andM2,
respectively, where the first eigenvector is disregarded.
Â andB̂ are essentiallynM1×(k−1) andnM2×(k−1)
matrices where theith rows ofÂ andB̂ are the(k−1)-
dimensional spectral embedding coordinates of theith

vertices of meshesM1 andM2 respectively. In all our



experiments, we have usedk = 5 or 6 hence giving a
4 or 5-dimensional spectral embedding after disregard-
ing the first eigenvector.

3. Eigenvector reordering and sign correction: We
keep the ordering and signs of the eigenvectors of
one mesh, e.g.,M1, fixed. With either the exhaustive
search or the greedy heuristic, we need to compute the
cost of a correspondence, which we describe below.
First, we obtain a best matchingC based simply on
theL2 metric; other metric, such as the Chi-square or
Mahalanobis distance is also possible. Specifically, for
a vertexvM1

i of meshM1, vM2
C(i) is the corresponding

vertex ofM2, where

C(i) = argminj‖Âi − B̂j‖. (3)

HereÂi andB̂j denote the spectral embedding coordi-
nates of vertexi in meshM1 and vertexj in meshM2

respectively (i.e. theith and thejth row of the matrices
Â andB̂ respectively). The cost of the correspondence
C is given by the sum:

cost(C) =
nM1∑

i=1

‖Âi − B̂C(i)‖

We choose the ordering and signs of the eigenvectors
for meshM2 which give the minimumcost(C).

4. Non-rigid alignment: Once the eigenvectors for two
shapes have consistent ordering and signs, we perform
a non-rigid alignment using ICP modified by thin-plate
splines (Refer to the Appendix). The pseudo-code for
this alignment procedure is given below.

Given two spectral embeddingŝA andB̂,

(a) Initialize parametersd, w, λ.

(b) TransformB̂ into ˆ̂
B using the transformation pa-

rametersd andw.

(c) Update correspondenceC using Equation (3) af-

ter replacingB̂j with ˆ̂
Bj .

(d) Given the correspondenceC, update transforma-
tion parameters using Equation (5).

(e) Update the regularization parameterλ.

(f) Repeat from Step 2 until convergence.

We have found experimentally that 5 to 10 iterations
of the iterative alignment are sufficient to align the em-
beddings. The value of the regularization parameterλ
is set to be the mean distance between all embedded
point pairs. As shown in [3], this scale-dependent as-
signment ofλ is robust to scaling of the point sets.

5. Proximity-aided matching: For dense correspon-
dence it is hard to distinguish between near-by points
using an alignment and correspondence procedure
based on optimizing a global energy, which is the case
in our approach. In order to improve correspondence
locally, we perform matching using a heuristic based
on point proximity. Specifically, we first select a small
number ofanchor pointpairs. These are point pairs
that are best matched (that is, pairs contributing least
to the correspondence cost), but that are also not too
close to each other. Now for finding the correspon-
dence cost between two points, we not only consider
the L2 distance between their (non-rigidly aligned)
spectral embeddings, but also the difference between
their geodesic proximities to these anchor points.

The anchor point pairs are computed as follows. Con-
sider the(nM1 × nM2) matrix Z of correspondence
costs between all points ofM1 andM2. That is,

Zij = ‖Âi − B̂j‖.

The first anchor point pair(a(1)
1 , a

(1)
2 ), wherea

(1)
1 is a

vertex ofM1 anda
(1)
2 is a vertex ofM2, is selected as

the pair with least correspondence cost. That is,

(a(1)
1 , a

(1)
2 ) = argmin(i,j)(Zij).

The second anchor point pair is calculated in the same
way. However, we would need the anchor points to
be far from each other over the mesh. Hence, before
finding the second pair, we modify the matrixZ so that
points close to the first anchor point are penalized. The
new correspondence cost matrix is given by:

Z
(1)
ij = Zij − 1

2
[distM1(i, a(1)

1 ) + distM2(j, a(1)
2 )]

wheredistM (i, j) is the geodesic distance between the
ith andjth vertex of meshM . Now, the second anchor
point pair is given by:

(a(2)
1 , a

(2)
2 ) = argmin(i,j)(Z

(1)
ij ).

This process can be repeated to obtain more anchor
point pairs. With the anchor points, we modify Equa-
tion (3) for finding the best correspondenceC to incor-
porate the proximity cost:

C(i) = argminj
[
‖Âi − B̂j‖

h∑

l=1

αl · ‖distM1(i, a(l)
1 )− distM2(j, a(l)

2 )‖
]

whereh is the number of anchor point pairs chosen
and theαl’s are free parameters set by the user.



The success of the proximity heuristic depends on two
factors: quality of the anchor point pairs and geodesic
distances. Since the meshes are already well aligned,
choosing the anchor point pairs to be the most trusted
matches are expected to be robust. However, the de-
pendence on geodesic distances may cause sensitivity
of the heuristic to stretching in the shapes. Hence, fix-
ing a large number of anchor point pairs can render the
matching non-robust. Thus we restrict to fixing only
three anchor pairs and setα1 = α2 = α3 = 1 for all
our experiments.

6. Experimental results

To evaluate a mesh correspondence algorithm, we hand-
pick a small number (17 to 20) of feature points on both of
the meshes to be matched, where the number of vertices in
these meshes vary between 100 to 300. The ground-truth
correspondence between the features is determined by hu-
man. Now we compute a correspondence using the algo-
rithm and record the percentage of correct correspondences
obtained. Figure 6 shows a comparison between our algo-
rithm and other well-known schemes, on eight test cases.
The shapes to be matched in the test cases are shown in Fig-
ure 7; each pair of shapes exhibit some degree of non-rigid
deformations. We now describe briefly the other schemes
we have experimented with and our experimental setup.

• TPS-RPM [6] in spatial domain: This is one of the
most successful non-rigid ICP algorithms. It combines
thin-plate splines, soft assign, and deterministic an-
nealing to achieve robust correspondence. But as we
have shown in Figure 1, it is susceptible to poor initial
alignment, such as a difference in rotation.

To improve its performance, wemanuallyand rigidly
align the two shapes to be matched, attempting to neu-
tralize any rotation or translation between them; this is
done for all the three spatial-domain schemes we have
experimented with. However, bending in the shapes
still cause the algorithm to perform poorly.

• Robust ICP [35] in spatial domain: This method is a
recent variant of the original ICP [4] algorithm. It uses
a hierarchical approach to achieve robust registration
of 3D point sets. We use it as a representative of the
rigid iterative alignment schemes.

• Shape context [3] in spatial domain:We use a triv-
ial 3D extension of the original 2D shape context of
Belongie et al. [3] as a representative correspondence
scheme based on local shape descriptors. Shape con-
text is one of the most successful local descriptors for
image analysis [25].

• Shapiro and Brady [31]: This is one of the early and
best-known spectral point correspondence algorithms.
It usesL2 distance to compute a best matching, using
their greedy sign correction but with no eigenvector
reordering or eigenvalue scaling of eigenvectors.

• Improved Shapiro and Brady: Only eigenvalue scal-
ing is incorporated into the original algorithm.

In each test case,k = 6 eigenvectors are used. Us-
ing more eigenvectors does not change the result due to
eigenvalue scaling. Three out of the eight cases, Armadillo-
Human, the Hands-1, and the Hands-3, have eigenvector
switching occurring. In six of the eight cases, the greedy
heuristic for eigenvector reordering and sign correction is
successful; we shall provide a remark on this issue in the
next section. The results shown are obtained by the ex-
pensive exhaustive search. Hence all results are limited to
meshes with a few hundred vertices. In all test cases, no
more than 10 iterations of our non-rigid ICP procedure are
needed. In several cases, the procedure converges in less
than 5 iterations. In terms of results, as can be seen from
Figure 6, our algorithm clearly outperforms the state-of-the-
art correspondence schemes mentioned above.

In Figure 7, we show some matching results obtained
from our algorithm. The matching is shown by coloring the
vertices of the meshes in an appropriate way. We first as-
sign colors to the vertices of one of the two meshes, e.g.,
M2. Then the color for theith vertex of meshM1 is set
to be the color of theC(i)th vertex ofM2, whereC is the
correspondence found by our algorithm. This way, a good
correspondence will induce a coloring that is consistent on
both meshes. To show the meaningfulness of the correspon-
dence obtained, we carefully assign different colors to dif-
ferent parts of the meshM2. Clearly, our algorithm matches
bent shapes well, as well, it behaves robustly against mod-
erate stretching in the shapes, e.g., the Armadillo vs. the
human and the lion vs. the horse.

Note that in the Human:Human and Lion:Horse pairs,
in Figure 7, which are of symmetric shapes, the correspon-
dence is symmetrically switched. Namely, the right hand of
one human is matched to the left hand of the other, etc. Sim-
ilarly, the right leg of the lion is matched to the left leg of the
horse, etc. This occurs since we define affinities based on
geodesic distance, which is an intrinsic measure that can-
not distinguish between symmetric points. As such, the
left hand and the right hand of the human are equally good
matches for the right hand of the other human. By chance,
the Armadillo:Human, Cow:Lion, and Airplanes pairs re-
turn the right correspondences.

One solution to the above symmetry problem would be
to carefully select the right sign of the eigenvectors. For
shapes where there is one plane of symmetry, there will
be two possible sign configurations of the eigenvectors that
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Figure 5. A comparison between several correspondence algorithms, including ours. The percent-
age of correct correspondences is plotted.

would give the minimum correspondence cost. These can
be detected and the right configuration can be picked by
inspecting it visually. As the number of symmetry planes
increase, more sign configurations will give the minimum
correspondence cost. A more analytical solution would be
to define affinities in a symmetry-distinguishing way.

Figure 8 gives additional correspondence results ob-
tained using our algorithm on numerous articulated shapes.
In each of shape class, one per row, all the shapes are
matched to a single reference shape (the first shape in each
row of 8) and correspondence obtained is color coded in ac-
cordance with the colors on the reference shape. Apart from
showing the effectiveness of our method, e.g., see the sec-
ond row of Figure 8, these examples also reveal some of its
limitations which we discuss below:

1. Effect of intrinsic shape symmetry: As explained
earlier, due to the intrinsic nature of the affinity ma-
trix, our method is not guaranteed to match symmetric
shapes correctly, as shown in Figure 8(1-c) and Fig-
ure 8(4-c) and (4-d). In all three cases, the sign con-
figuration of the eigenvectors that gives the lowest cor-
respondence cost leads to counterintuitive correspon-
dence results. Our method succeeds in all the remain-
ing cases in row 1, 2, and 4, although in each case, the
next best eigenvector sign configuration, which has a
correspondence cost extremely close to the lowest cost,
would give a symmetrically flipped matching. This
shows that the correspondence might very well have
been symmetrically flipped in these cases too. Note
that the correspondence may be symmetrically flipped,
but it is nevertheless still consistent across the shape.

2. Effect of topological changes: Since our method
largely depends on geodesic distances, topological

changes can seriously harm the correspondence com-
putation. This effect is visible in Figure 8(3-e) and
(3-f), where the fingers of the hands are connected to
the palm which would change the connectivity of the
mesh, as well as the geodesic distances, drastically, re-
sulting in unnatural correspondence results. Correct
recovery of the correspondence between the fingers in
this case appears to be a rather difficult problem, with-
out some level ofa prior knowledge.

3. Unreliable geodesic distances:Figure 8(4-e) shows
a bird shape that is very similar to the reference fig-
ure for this group, Figure 8(4-a). However, the corre-
spondence obtained is incorrect. We suspect that this is
mainly due to the unreliability of geodesic distances on
the wings of the bird that contains many “cuts”. Hence,
even though the shapes look similar in the spatial do-
main, their embeddings are rather different.

4. Non-robustness ofL2 cost for exhaustive search:
Close inspection of Figure 8(1-b) reveals that the cor-
respondence obtained is inconsistent: the left arm is
colored orange which means that the left leg must be
colored blue which is not the case (note that this is
different from the symmetry issue discussed above).
This should not have been the case as the shapes are
topologically sound and the geodesic distances are
computed robustly. The problem becomes clear when
we examine the result of the exhaustive reordering of
eigenvectors. It turns out that for this shape, the ex-
haustive reordering does not give the right ordering of
the eigenvectors, as shown in Figure 9. After further
investigation we find that that the problem lies with the
crudeL2 cost measure used in arriving at the reorder-
ing. A more robust cost measure should be sought.



7. Conclusion and future work

In this paper, we present a hybrid approach to finding
a one-to-one correspondence between the vertices of two
3D meshes. We first transform the meshes into the spectral
domain, based on geodesic affinities, and then match the
spectral embeddings after taking appropriate steps to ensure
a consistent ordering and sign assignment of the eigenvec-
tors. Eigenvalue scaling of the eigenvectors renders our al-
gorithm robust against difference in mesh sizes and choice
of the dimensionality of the embeddings. Our method does
not need a pre-selected set of feature vertices and can be
completely automated. It is invariant against rigid transfor-
mations, uniform scaling, and shape bending. Experimen-
tally, we find it to be robust against moderate stretching in
the shapes as well, relying on thin-plate splines for non-
rigid alignment in the spectral domain, and it outperforms
well-known existing shape correspondence schemes.

The time complexity for computing the spectral embed-
dings and the correspondence cost, provided that an order-
ing and signs of the eigenvectors have been determined, is
O(n2 log n), wheren is the number of vertices in the larger
mesh. Note that this is inherent to the spectral approach,
since the first step, which computes the pair-wise affinities,
already requiresO(n2 log n) time. One effective remedy
is to use sub-sampling techniques and extrapolation, e.g.,
Nyström method [11], to obtain approximate spectral em-
beddings. This reduces the cost of computing the spectral
embeddings toO(pn log n), wherep is the number of sam-
ples chosen. In our subsequent work [24], we demonstrate
that excellent correspondence results can be obtained with
only p = 10 samples for meshes with hundreds of vertices.
To reduce the cost of extracting correspondences, where
the näıve best matching would requireO(n2) time, we can
take advantage of the accurate alignments that have already
been obtained and apply spatial partitioning to speed up the
search for correspondence pairs.

The other limitation of our current approach, in terms of
computational cost, is its reliance on an exhaustive search
to find a consistent eigenvector ordering and sign assign-
ment. The greedy reordering approach is fast but it does not
always give the correct result. Analytically, the problem of
finding a reordering and sign assignment which would lead
to the best correspondence, e.g., according to the simpleL2

distance, is as hard as the graph isomorphism problem. We
would like to look into fast approximation algorithms for
this problem and adopt it for our purpose.

Quality-wise, an important issue is related to the quality
of the correspondence cost used in determining the eigen-
vector ordering and sign assignment. Currently, we are us-
ing L2 and in some rare cases as shown earlier, even the
exhaustive search would return a poor eigenvector ordering
or sign assignment. This shows that a better cost function

is still required. In addition, we plan to address the other
limitations of our current method, including the handling of
shape symmetry and non-manifold meshes.

Finally, we would like to investigate possible definitions
of the point affinities that are robust, if not invariant, to
stretching within perceptually salient parts of a shape. This
would offer an alternative to using non-rigid alignment in
the spectral domain and avoid having to find a consistent
eigenvector ordering or sign assignment.
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[18] M. Körtgen, G-J. Park, M. Novotni, R. Klein, “3D Shape
Matching with 3D Shape Contexts,”Seventh Central Euro-
pean Seminar on Computer Graphics,2003.

[19] R. Kolluri, J. R. Shewchuk, and J. F. O’Brien, “Spectral sur-
face reconstruction from noisy point clouds,”Proc. of the
2004 Eurographics/ACM SIGGRAPH symposium on Ge-
ometry processing,pp. 11-21, 2004.

[20] V. Kraevoy, A. Sheffer, and C. Gotsman, “Matchmaker:
Constructing Constrained Texture Maps,”ACM SIG-
GRAPH,pp. 326-333, 2003.

[21] V. Kraevoy and A. Sheffer, “Cross-Parameterization and
Compatible Remeshing of 3D Models,”ACM SIGGRAPH,
2004.

[22] R. Liu and H. Zhang, “Segmentation of 3D Meshes through
Spectral Clustering,”Proc. of Pacific Graphics,pp. 298-305,
2004.

[23] X. Li, I. Guskov, “Multiscale Features for Approximate
Alignment of Point-based Surfaces,”SGP,2005.

[24] R. Liu, V. Jain, and H. Zhang, “Subsampling for Effi-
cient Spectral Mesh Processing,”Computer Graphics Inter-
nationalJune, 2006 (to appear).

[25] K. Mikolajczyk and C. Schimid, “A Performance Evaluation
of Local Descriptors,”IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence,Vol. 27, No. 10, pp. 1615-
1630, 2005.

[26] A. Y. Ng, M. I. Jordan, Y. Weiss, “On Spectral Clustering:
Analysis and An Algorithm,” inAdvances in Neural Infor-
mation Processing Systems14, pp. 857-864, 2002.

[27] E. Praun, W. Sweldens, and P. Schröder, “Consistent Mesh
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Appendix: Thin-plate splines

The thin plate spline is a generalization of cubic splines to
higher dimensions and it contains affine transformations as a spe-
cial case. With non-rigid transformations, there are infinitely
many ways of transforming a point set into another. Thin plate
splines are effective because of their smoothness constraints which
discourage arbitrary mappings. In the limit of this smoothness
constraint the thin plate spline model reduces to an affine trans-
formation model. The thin plate spline transformation function
f : x ∈ Rk → y ∈ Rk maps a point setX = {x1, x2, . . . , xn}
in k (say k = 2) dimensional space to another point setY =
{y1, y2, . . . , yn} by minimizing the following energy function:

E(f) =

nX
i=1

‖yi − f(xi)‖+

λ

Z Z »
(
∂2f

∂x2
)2 + 2(

∂2f

∂x∂y
)2 + (

∂2f

∂y2
)2
–

dxdy

(4)

whereλ is the regularization (smoothing) parameter. Note that the
correspondence betweenX andY is assumed to be given. Hence,
pointyi is the matching point forxi. The uniquef that minimizes
the above energy function has the form:

f(xi, d, w) = xi · d + φ(xi) · w,

wherexi is now in(k+1)-dimensional homogeneous coordinates,
d is a (k + 1) × (k + 1) affine transformation matrix,w is an
n × (k + 1) warping coefficients matrix andΦ(xi) is a vector of
lengthn such thatφj(xi) = −‖xj − xi‖.

As shown in [3], the transformation(d, w) that minimizes the
energy can be calculated by solving the following system:

»
K XT

X 0

– »
w
d

–
=

»
Y
0

–
(5)

Here,K is the matrix(Φ − λI) where,I is an identity matrix
of appropriate size andΦ is an(n × n) matrix whoseith row is
φ(xi), that is,Φij = −‖xj − xi‖.

Using these transformation parameters, we transform the point
setX to point setY and then recompute the correspondence. This
process is iterated until convergence.



Figure 6. Eigenvector plots for two shapes, both with 252 vertices. The first 8 eigenvalues are [205.6,
11.4, 4.7, 3.8, 1.8, 0.4, 0.26, 0.1] and [201.9, 10.9, 6.3, 3.4, 1.8, 1.2, 0.31, 0.25], respectively.

Armadillo:Human Human:Human Hands-1 Hands-2

Hands-3 Airplanes Cow:Lion Lion:Horse

Figure 7. Correspondence results obtained from our algorithm, shown with color plots.
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Figure 8. Row 1: correspondence results for human shapes. Row 2: for animal shapes. Row 3: for
hand shapes. Row 4: for bird shapes.

Figure 9. Incorrect eigenvector ordering is obtained even after exhaustively reordering the eigenvec-
tors for shapes in Figure 8(1-a) and (1-b).


