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Abstract

We present an approach for robust shape retrieval from databases containing artic-
ulated 3D models. Each shape is represented by the eigenvectors of an appropriately
defined affinity matrix, forming a spectral embedding which achieves normalization
against rigid-body transformations, uniform scaling, and shape articulation (i.e.,
bending). Retrieval is performed in the spectral domain using global shape descrip-
tors. On the McGill database of articulated 3D shapes, the spectral approach leads
to absolute improvement in retrieval performance for both the spherical harmonic
and the light field shape descriptors. The best retrieval results are obtained using a
simple and novel eigenvalue-based descriptor we propose.
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1 Introduction

In recent years, there has been a tremendous advance in 3D model acquisition
technology and a large number of 3D models have become available on the
web, e.g., [1–3], or through other means. The problem of indexing and retrieval
of 3D shapes [3–19] has become as important, both in practice and in terms
of research interests, as that of indexing and retrieval of image or textual
data. Consider a database of 3D shapes represented in the form of triangle
meshes. Note that a liberal use of the term mesh is adopted in this paper: the
mesh can be non-manifold, open or closed, disconnected, or simply a triangle
soup [10]. Given a query shape, a shape retrieval algorithm seeks to return
shapes from the database that belong to the same class as the query, where
the classification is done by human. The shapes returned are typically ordered
by decreasing visual similarity to the query shape.
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Since the cognitive process of object recognition by human is not yet com-
pletely understood, we are still incapable of proving theoretically that one
particular shape retrieval algorithm is the best. In practice, several benchmark
data sets and their associated performance evaluations [2,3,5,18] are available
to empirically measure the quality of existing shape retrieval algorithms. The
most comprehensive comparative study of 3D shape retrieval algorithms to
date is due to Shilane et al. [3], based on the now well-known Princeton Shape
Benchmark.

A variety of shape retrieval algorithms have been proposed, e.g., see [14] for a
recent survey. Typically, each shape is characterized by a shape descriptor.
An appropriately defined similarity distance between the descriptors sorts
the retrieved models. Commonly used quality criteria for shape descriptors
include invariance to rigid-body transformations, scaling, bending and moder-
ate stretching, robustness against noise and data degeneracy, and storage and
computational costs. The discriminative power of a shape descriptor and its
associated similarity distance is most often judged by plotting the precision-
recall (PR) curve [3] generated from a benchmark database, but other evalu-
ation criteria also exist [15].

Most state-of-the-art descriptors, including the twelve compared by Shilane et
al. [3] on the Princeton Shape Benchmark, are designed to be invariant to only
rigid-body transformations and uniform scaling. Hence, it is no surprise that
they do not perform well when applied to shapes having non-rigid transfor-
mations such as bending or stretching, which are obviously harder to handle
due to their non-linearity and increased degrees of freedom. In this paper, we
propose a technique to render a descriptor invariant to bending, hence en-
hancing its performance over databases that contain articulated shapes. Our
experiments will thus be conducted on the McGill database of articulated 3D
models [2].

Given a shape represented as a triangle mesh, which may be disconnected,
we first convert it into a connected weighted graph. Shortest graph distances
between pairs of nodes, mimicking geodesic distances over the shape’s sur-
face, provide an intrinsic characterization of the shape structure. We filter
these distances appropriately to remove the effect of scaling and then com-
pute a low-dimensional spectral embedding of the shape to obtain invariance
to bending and rigid-body transformations. The spectral embeddings are given
by appropriately scaled eigenvectors of the matrix of filtered distances. The
corresponding eigenvalues can then be used to derive a simple and novel shape
descriptor that is shown to work effectively on the articulated models in the
McGill database.

Alternatively, any existing 3D shape descriptor can be applied to the 3D spec-
tral embeddings, to improve upon their retrieval performance on articulated
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shapes. In this paper, we demonstrate using the McGill benchmark data set
that this is indeed the case for the spherical harmonic shape (SHD) descriptor
of Kazhdan et al. [8] and the light field descriptor (LFD) of Chen et al. [5],
two of the best-performing descriptors from the Princeton benchmark test [3].
As an added advantage, the spectral embeddings can also be used to obtain
a meaningful correspondence between the vertices of two shapes [20], e.g.,
for cross parameterization [21] and other attribute transfer tasks. Finally, it is
worth noting that with the aid of sub-sampling and interpolation via Nyström
approximation [22], the spectral embeddings and the eigenvalue-based shape
descriptors are quite efficient to compute.

The rest of the paper is organized as follows. After briefly discussing previous
work on 3D shape retrieval in Section 2, we describe efficient construction of
the bending-invariant spectral embeddings for a mesh, possibly with discon-
nected components and other degeneracies. In Section 4, we give a comparative
study between various shape descriptors, including those derived from spec-
tral embeddings and our new eigenvalue-based descriptor, for shape retrieval.
Experimental results and discussions are presented in Section 5. Finally, we
conclude in Section 6 and suggest possible future work.

2 Previous work

It is quite conceivable that a great deal of prior knowledge is incorporated
into the process of human object recognition and classification, perhaps with
subpart matching [7,23] playing an important role. In this paper however, we
focus on purely shape-based approaches using global shape descriptors. At
a high level, a 3D shape retrieval algorithm either works on the 3D models
directly, e.g., [8,11], or relies on a set of projected images [5,6,10] taken from
different views. Let us call these the object-space and the image-space ap-
proaches, respectively. The latter, e.g., LFD [5], has a more intuitive appeal
to visual perception and thus often results in better benchmark results for
retrieval [3], but at the expense of a higher computational cost.

Many object-space shape descriptors construct one or a collection of spherical
functions, capturing the geometric information in a 3D shape extrinsically [3].
These spherical functions represent the distribution of one or more quantities,
e.g., curvatures [12], areas [4], surface normals [24], or distance from points
on the shape to the center of mass [17]. The bins are typically parameterized
by the sphere radius and angles. The spherical functions are, in most cases,
efficient to compute and robust to geometric and topological noise, but they
may be sensitive to the choice of sphere center or the bin structures. To align
the bins for two shapes properly, these approaches require pre-normalization
with respect to translation, rotation, and uniform, e.g., [4,17,24], or nonuni-
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form scaling [25]. As an alternative, rotation-invariant measures computed
from the spherical functions, e.g., energy norm at various spherical harmonic
frequencies [8], can be applied. However, non-rigid transformations cannot be
handled by these approaches.

As one of the most important intrinsic geometric measures, surface curvature,
as well as the principal curvature directions, has been utilized for shape charac-
terization and retrieval [12,18]. But these methods are sensitive to noise and
non-rigid transformations such as bending. Another intrinsic approach uses
shape distributions [11], where a histogram of pairwise distances between the
vertices of a mesh define the shape descriptor. Other form of statistics [9,11]
can also be adopted and bending-invariance can obviously be enforced if
geodesic distances are used in this context. However, in terms of discrimi-
native power, shape distribution may be too coarse of a shape descriptor to
compare favorably against its competitors, e.g., LFD and SHD [3].

The most common approach to handling shape articulation is via the use of
skeletal graphs to model geometry or topology [13,19,26,27] and then per-
form graph matching [28]. Some examples of such graphs include medial sur-
faces [19], multidimensional Reeb graphs [26], and shock graphs [29]. Another
advantage of using skeletal representations is that they accommodate part
matching [13]. However, the process of extracting the skeletons is typically
quite complex and associated with the computational cost of a voxelization
step [13,19]. Also, the subsequent graph matching step can be computation-
ally expensive and sensitive to geometric or topological noises. Our approach
also uses a graph-based intrinsic shape characterization, which is directly con-
structed on the input meshes. The spectral embeddings automatically nor-
malize the shapes against rigid-body transformations, uniform scaling, and
bending, and they are fast to compute. The resulting shape descriptors pro-
vide a more intuitive way of characterizing shapes, compared to shape distri-
bution [11]. In addition, our spectral approach is quite flexible and allows for
different choices of graph edge weights and distance computations, which can
render the approach robust against topological noise.

The idea of using spectral embeddings for data analysis, mostly for cluster-
ing [30,31] and correspondence analysis [32,20,33], is not new. Past work that is
most relevant to ours is the use of bending-invariant shape signatures by Elad
and Kimmel [34]. They work on manifold meshes and compute spectral em-
beddings using multidimensional scaling (MDS) based on geodesic distances.
A more efficient version of MDS, which is different from Nyström approxima-
tion, is adopted to approximate the true embeddings. They only tested shape
retrieval, using a descriptor based on moments, on a small set of manifold,
isometric shapes, e.g., shapes obtained by bending a set of seed models. In
practice, many 3D shapes are neither manifolds nor isometric to each other,
thus a more robust approach, based on more general graphs and distance
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measures, and a more complete experiment, are called for.

3 Construction of spectral embeddings

Point correspondence between two images or sets of extracted image features
has been well studied in computer vision. Spectral techniques are first applied
to this problem by Umeyama [35], Scott and Longuet-Higgins [36], and Shapiro
and Brady [33]. Since then, spectral 2D correspondence and graph matching
has received a great deal of attention, e.g., [28,32,37]. In machine learning,
spectral clustering [30] and its variants are quite well-known. However, the
use of spectral methods for 3D geometry processing is relatively new. For in-
stance, Zhang and Liu [31] apply the spectral approach to mesh segmentation,
while Gotsman et al. [38] utilize the spectral properties of mesh Laplacians for
spherical parameterization. Spectral analysis has also been applied to mesh
compression [39] and quite recently, to surface quadrangulation [40].

There is a fundamental difference between the spectral techniques mentioned
so far and the use of classical Fourier descriptors, e.g., [10], or spherical har-
monics, e.g., [8,16], for 3D shape retrieval. The former rely on spectral decom-
positions of shape-dependent, and often intrinsic, operators, while the latter
quantify shapes via frequency contents defined by a fixed set of bases. In
this section, we describe our spectral decomposition of a 3D mesh that can
be subsequently used for shape retrieval. To the best of our knowledge, the
use of spectral decomposition for 3D shape retrieval has only been reported on
skeletal graph representations, but the studies there have been quite extensive,
e.g., [13,19,27,41]. It would be interesting to compare the retrieval performance
of these algorithms with our surface-based graph spectra approach.

3.1 Affinity matrix and spectral embedding

Given a 3D triangle mesh with n vertices, we form an n× n affinity matrix A
such that the ijth entry of A is the affinity between the ith and the jth mesh
vertices; several possible choices for the affinities are discussed in subsequent
sections. Matrix A is then eigen-decomposed as, A = V ΛV T , where Λ is a
diagonal matrix with eigenvalues λ1 ≥ ... ≥ λn along the diagonal and V =
[v1| . . . |vn] is an n×n matrix with v1, . . . ,vn the corresponding eigenvectors.

As the eigenvectors are of unit length, their entries may vary in scale with a
change of the mesh size n. We normalize this variation by scaling the eigen-
vectors by the square-root of the corresponding eigenvalues and then consider
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only the first k scaled eigenvectors to give a k-dimensional spectral embedding :

V̂k = [v̂1| . . . |v̂k],

where v̂1, . . . , v̂k are the first k columns of V̂ = V Λ
1
2 . Specifically, the ith

row of the n × k matrix V̂k gives the k-dimensional coordinates of the ith

vertex of the mesh. The eigenvector scaling used in our work is well known in
the machine learning literature, e.g., [30], but it differs from other heuristics
suggested in the context of spectral correspondence [28,33]. We believe our
choice is the proper one as it has been well justified and is also shown to
produce more superior correspondence results [20].

An advantage of using this particular framework for shape characterization
is that if the affinities in the matrix A are invariant to a particular transfor-
mation, then the resulting embeddings will also be invariant to that trans-
formation. This property can be exploited to construct bending-invariant em-
beddings if we note that the geodesic distance between two points on a mesh
remains constant when the shape undergoes bending. We now explain the con-
struction of bending-invariant spectral embeddings using approximate geodesic
distances.

3.2 Bending-invariant spectral embedding

Conventional methods for geodesic distance estimation over a mesh depend
largely on the mesh being a manifold and connected. This limits the use of
geodesic distances for affinity definition, as we have noticed that many shapes
in all the well-known shape databases [3,2] have disconnected parts (a small
number of shapes are simply triangle soups). We thus turn to a heuristic as a
work-around.

Construction of structural graph: First, we use shortest path lengths over
a mesh graph to approximate geodesic distances. This not only leads to much
simplified implementation, but also removes the constraint that each shape
be defined using a manifold mesh. To handle disconnected meshes, we add
extra edges to the mesh graph composed of its original vertices and edges
while making an effort to ensure that the structure of the shape remains
largely unchanged. Specifically, given a 3D mesh M , let GM = (V, EM) be
its connectivity graph and C1, C2, . . . be its disconnected components. We
compute an r-connected graph Gr = (V,Er) over the mesh vertices which
approximates the shape well. This is done using the algorithm of Yang [42] for
constructing an r-connected graph over a point cloud in Euclidean space; the
graph locally minimizes edge lengths by computing and combining r Euclidean
minimum spanning trees of the given point cloud. With GM and Gr in hand,
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the final structural graph is defined as

G = (V,E), where E = EM ∪ {(i, j) | (i, j) ∈ Er, i ∈ Cs, j ∈ Ct, s 6= t}.

Clearly, G is connected and it includes all edges of GM and only those edges
of Gr that join two disconnected components in GM . The geodesic distance
between two mesh vertices is then approximated by the length of the shortest
path between the vertices in G, computed using Dijkstra’s algorithm. It is
worth noting that while the resulting graph G would typically approximate
the structure of a shape well, as shown in [42] and verified by our experiments,
its ability to infer shapes is limited by its reliance on Euclidean proximities.
This may cause connections between parts on a shape which should have been
disconnected, e.g., consider a person’s hand resting on his knee. It would seem
that the only possible resolution of this situation, which we would consider
correct, is via the incorporation of proper prior knowledge.

In our implementation, we restrict the parameter r = 1, since higher values of
r tend to result in edges formed between geodesically far away components.
This is illustrated in Fig. 1, where we plot the error (as a percentage of the
bounding box diagonal or BBD) of geodesic estimations using the approach
described above, against degeneracy levels in the meshes. In this experiment,
we add degeneracy into a mesh by randomly selecting a number of faces and
disconnecting them from the mesh and jittering the position of their vertices.
The degeneracy level plotted along the horizontal axis in Fig. 1 indicates the
number of such faces. Each plotted line shows an average error, collected over
ten test meshes. For each test mesh, which is a connected manifold mesh having
350 vertices to start with, we compute the ground-truth geodesic distances us-
ing an implementation [43] of the exact, quadratic geodesic algorithm of Chen
and Han [44]; we then add degeneracies as described. As can be confirmed,
increasing r tends to reduce the accuracy of geodesic distance estimation.

Gaussian affinities: With a robust way to estimate geodesic distances, we
can define the affinity matrix A, given by a Gaussian: Aij = exp (−d2

ij/2σ
2),

where dij is the approximate geodesic distance between the ith and jth vertices
of the mesh, and σ is the Gaussian width. As we can see, the affinity between
two vertices is inversely related to the (approximated) geodesic distance be-
tween them and the use of a Gaussian effectively diminishes the influence
placed on a vertex by vertices geodesically far away.

In our implementation, we simply set σ = max(i,j){dij}. Defining σ in this
data-dependent manner renders the embedding insensitive to uniform scaling.
We observe experimentally that the embeddings are relatively stable with
respect to σ as long as it is sufficiently large. As a consequence of selecting
a large σ, the row-sums of the matrix A become almost constant. It follows
that the first eigenvector v1 of A is close to being a constant vector whose
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Fig. 1. Plot of average error (as % of BBD) in geodesic distance approximations,
against mesh degeneracy levels. The parameter r used by Yang’s algorithm [42]
varies from 1 to 5.

Fig. 2. Spectral embeddings (bottom row) of some articulated 3D shapes (top row)
from the McGill shape database.

information content becomes negligible. Hence, we exclude the first eigenvector
and consider only a (k − 1)-dimensional embedding derived from v2, . . . ,vk.

For all the 3D shape retrieval results reported based on spectral embeddings in
this paper, we rely on 3D embeddings given by the 2nd, 3rd and 4th eigenvectors,
scaled by the square-root of the corresponding eigenvalues, of the Gaussian
affinity matrix. The 3D spectral embeddings of some articulated shapes from
the McGill database are shown in Fig. 2, where one can observe normalization
against rigid-body transformations and shape bending in the spectral domain.

3.3 Nyström approximation

The time complexity for constructing the full affinity matrix A for a mesh
with n vertices is O(n2 log n). Moreover, the eigen-decomposition of an n× n
matrix takes O(n3) time; O(kn2) if only the first k eigenvectors are computed.
This complexity does not affect the retrieval performance drastically, since
the spectral embeddings of all the shapes in the database can be precom-
puted. However, the query model needs to be processed at run-time. To speed
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things up, we use Nyström approximation [22] to efficiently approximate the
eigenvalues and eigenvectors of A. Nyström approximation is a sub-sampling
technique which reduces the time complexity of affinity matrix construction
and eigen-decomposition to O(ln log n + l3), where l is the number of sam-
ples selected; typically, l ¿ n. We adopt furthest point sampling, which at
each step, chooses a sample which maximizes the minimum (approximated)
geodesic distance from the new sample to the previously found samples; the
first sample can be chosen randomly. Our extensive experiments confirm that
for the purpose of shape retrieval, only 10 to 20 samples, from meshes with
thousands of vertices, are sufficient. For completeness, we provide a more de-
tailed coverage on Nyström method in the Appendix.

3.4 Other affinity measures

Although geodesic-based affinities lead to bending invariance, it might cause
adverse effects in some cases. For example, consider two chair models. Suppose
that the arm-rest of one model is connected directly to its back-rest, however,
on the other model, this connection is only through the seat. In the first case,
the geodesic distance between a point on the arm-rest and a point on the back-
rest is small, whereas in the second case this distance will be relatively large.
Hence, the spectral embeddings of the two chairs could be radically different
and the retrieval result will suffer. In general, geodesic distances are sensitive
to topological noise in the shapes. If we define affinities based on Euclidean
distances, the above problem would be resolved but the affinities can no longer
be expected to be invariant (or even robust) to bending. Nevertheless, the
current discussion reveals the flexibility of our approach, with the use of affinity
matrices, in that they can be easily tuned to render the retrieval process
invariant to a particular class of transformations depending on the nature of
the models in the database at hand. In Section 5, we compare retrieval results
using different affinity measures. In addition to (approximated) geodesic-based
affinities and affinities based on Euclidean distances, we also include combined
distance, where a uniform combination of the above two measures is used.

4 Global shape descriptors for shape retrieval

First, we conduct a comparative study concerning two existing global shape
descriptors: the spherical harmonic descriptor (SHD) [8] and the light field
descriptor (LFD) [5], for 3D shape retrieval. Both descriptors have been shown
to give excellent shape retrieval results for the Princeton shape benchmark [3];
in fact, the LFD is the top performer among all the descriptors compared in [3].
In this study, we wish to evaluate the performance of the SHD and the LFD

9



when they are applied to the original meshes as compared to when they are
applied to the 3D spectral embeddings. We also present two new spectral shape
descriptors. One is based on a simple L2 correspondence cost computed in the
spectral domain. The other relies purely on the (approximated) eigenvalues
computed using Nyström method.

We use the McGill database of articulated 3D shapes [2] for our experiments.
The complete McGill shape database contains 457 models but we only con-
sider shapes with articulating parts. This set of articulated shapes consists of
255 models in 10 categories: Ants, Crabs, Hands, Humans, Octopuses, Pliers,
Snakes, Spectacles, Spiders, and Teddy Bears. There are 20 to 30 models per
category. Some shapes from the database are shown in Fig. 2 and 4. We now
describe the descriptors we consider.

(1) Light Field Descriptor (LFD) [5]: represents a given model using
histograms of 2D images of the model captured from a set of positions
uniformly placed on an enclosing sphere. The dissimilarity between two
models is given by the distance between the two descriptors minimized
over all rotations with respect to the spheres, hence attaining some level
of robustness against rotations. The main idea behind the LFD is to
define shape similarity based on the projected visual images.

(2) Spherical Harmonic Descriptor (SHD) [8]: is a geometry-based rep-
resentation of a shape which is invariant to rotations. It is obtained by
recording the variation of the shape over a set of concentric spherical
shells; these variations are captured by the norm of the spherical har-
monic coefficients of appropriately defined shape functions.

(3) Spectral Shape Descriptors:

(a) Eigenvalue Descriptor (EVD): While the eigenvectors of the affin-
ity matrix form a spectral embedding which is a normalized represen-
tation of the shape, the eigenvalues specify the variation of the shape
along the axes given by the corresponding eigenvectors. This leads
us to consider eigenvalues as spectral shape descriptors. However, let
us note that the eigenvalues are affected by mesh sizes and there are
shapes with different number of vertices in a typical shape database.
Thus the eigenvalues of the original affinity matrices cannot be used
for shape comparison directly. But recall that for efficiency, we only
compute a sampled affinity matrix, required by Nyström approxima-
tion. Thus with the same number of samples taken on each shape,
the eigenvalues of the sampled affinity matrices are comparable.

As a simple spectral shape descriptor, which we call EVD, we use
the square root of the eigenvalues of a 20 × 20 sampled affinity ma-
trix for each shape. The reason for choosing 20 samples and thus 20
eigenvalues is experimental. We have found that the retrieval results
(PR curves) improve as the number of samples/eigenvalues increase,
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but only to a point, after which no conceivable improvement is ob-
tained by using more eigenvalues. Obviously, at this point, more sam-
ples/eigenvalues would only induce higher computational cost. With
EVD, we have chosen to use the χ2-distance to measure dissimilarity
so as to remove bias towards any particular eigenvalue. Specifically,
given two meshes P and Q with their respective eigenvalues, λP

i and
λQ

i , i = 1, . . . , 20, of the sampled affinity matrices, we define,

DistEV D(P,Q) =
1

2

20∑

i=1

[ |λP
i |

1
2 − |λQ

i |
1
2 ]2

|λP
i |

1
2 + |λQ

i |
1
2

.

(b) Correspondence Cost Descriptor (CCD): The distance between
two shapes in the CCD scheme is derived from the correspondence
between the vertices of the two shapes. Given the 3D spectral em-
beddings of two shapes P and Q in the form of an nP × 3 matrix VP

and an nQ×3 matrix VQ, respectively, the CCD distance is given by:

DistCCD(P, Q) =
∑

p∈P

‖VP (p)− VQ(match(p))‖,

where VP (p) and VQ(q) are the pth and qth rows of VP and VQ, respec-
tively, p represents a vertex of P , and match(p) gives the vertex in
Q that is corresponded with p. This correspondence can be obtained
using any correspondence algorithm, e.g., [20,33]. We have chosen
to use a simple best matching based on Euclidean distance in the
embedding space, as in Shapiro and Brady [33]. Namely,

match(p) = argminq∈Q‖VP (p)− VQ(q)‖.

The intuition behind defining such a similarity cost is that if two
shapes are similar (though they may differ by a bending transfor-
mation), their spectral embeddings would be similar, hence the Eu-
clidean distance between a point and its match will be small, result-
ing in a smaller value of DistCCD(P,Q). However, note that the time
complexity of finding the distance between two shapes in the CCD
scheme is O(n2), where n is the number of vertices. This is extremely
slow and is not feasible to apply for comparing the query model with
a large number of models in a database. Hence, we use CCD in con-
junction with EVD. We first use EVD to filter out all poor matches
via thresholding. Only the top few matches obtained from EVD are
further refined using CCD.
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5 Experimental results

In this section, we report results of our retrieval experiments conducted on
the McGill database of articulated 3D shapes [2]. The original models in the
database are quite large; most of them contain hundreds of thousand faces.
We have used the mesh simplification software, QSlim, of M. Garland [45] to
decimate all the models down to having 20,000 faces. Due to the existence of
many non-manifold edges in the original models, the decimated versions also
have many non-manifold edges, resulting in a small vertex count, of about
500, for these meshes with 20,000 faces.

In Fig. 3, we plot the precision-recall (PR) curves for the four descriptors given
in the last section. For (a), approximate geodesic distances are used to con-
struct affinities. Clearly, both LFD and SHD show significant improvements
for shape retrieval in the spectral domain, compared to their spatial domain
counterparts. Moreover, the two spectral shape descriptors perform absolutely
better than both LFD and SHD, with EVD achieving the best PR plot. In (b),
we show PR curves of the same set of descriptors with Euclidean-based affini-
ties. Clearly, the performance of spectral descriptors degrades considerably.
This is mainly because these are naive descriptors that rely on the ability of
the affinity matrix to normalize proper transformations between the shapes.
Since Euclidean distance based affinity matrix does not normalize the shapes
against bending and the database in question is particularly that of articulated
shapes, a poor performance is expected.

Fig. 3(c) shows the performance of the descriptors where the affinities are
calculated using an average of geodesic and Euclidean distances. For LFD
and SHD, both geodesic affinities and combined affinities lead to considerable
improvements in the PR curves, whereas Euclidean affinities show only minor
improvements since they fail to normalize the shapes against bending. EVD
and CCD perform the best only when the embeddings are normalized against
bending for reasons mentioned above. Overall, the best-performing descriptor
is EVD operating on geodesic-based affinities.

In terms of running times, the EVD’s are quite efficient to compute. Account-
ing for structural graph construction, subsampling, graph distance compu-
tation, as well as eigenvalue decomposition and Nyström approximation, it
takes on average about 1.6 seconds to derive an EVD of size k = 20, for a
given 500-vertex, 20,000-face mesh. In contrast, SHD takes about 5.15 second
to compute. The time taken to compare the descriptors are about the same
for EVD and SHD, both in the order of 10−2 seconds. These timing results
are measured on an Intel Pentium M 1.7GHz machine with 1GB RAM. Note
that as reported previously [3], the LFDs take more time to compute and to
compare, than the SHDs.
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Fig. 3. Precision-recall (PR) plots for various global descriptors, derived from affini-
ties based on different distance measures, when applied to the McGill database of
articulated shapes [2]. (a) Affinities are based on geodesic distance. (b) Affinities are
based on Euclidean distance. (c) Affinities are based on a combination of geodesic
and Euclidean distances. Legends are shown in (d).

Next, we show some visual results in Fig. 4 which emphasize the need for
bending-invariant spectral embeddings in order to obtain more robust retrieval
of articulated shapes. The spectral embeddings used in these results are all
constructed using geodesic distance based affinities. The top group in Fig. 4
shows the results of retrieving an ant shape from the database. Note the poor
performance of SHD on original shapes (third row) even when the amount of
bending is moderate; all other descriptors return correct results. The remaining
two groups in Fig. 4 show results for querying the database with a pliers and
a human shape, respectively, that have a relatively large amount of bending.
As we can see, LFD performs rather poorly on the original shapes. It is quite
evident that shape descriptors applied to spectral embeddings show clear and
consistent improvement over their spatial domain counterparts.

Despite of its simplicity, EVD appears to work the best. For the pliers shape,
EVD with 20 eigenvalues outperforms both LFD and SHD on spectral embed-
dings. While for the human shape query, the retrieval performance of EVD
with 20 eigenvalues only varies slightly from that of LFD on spectral embed-
dings; both descriptors retrieved two hand shapes with EVD having the first
incorrect retrieval appearing one spot behind. We have observed that most
of the incorrect retrieval results using EVD are caused by having parts of a
shape incorrectly connected in our construction of the structural graph. Re-
covering the correct shape information from a soup of triangles or sparsely
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Fig. 4. Some retrieval results from the McGill database [2]: First column is the
query shape (top group: ant; middle: pliers; bottom: human), followed by the top
ten matches. In each group, the rows correspond to the following shape descriptors
in order: LFD, LFD on spectral embeddings, SHD, SHD on embeddings, and EVD
with 20 eigenvalues. The last row in the last group is for EVD with 6 eigenvalues.
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and nonuniformly sampled points (which occur often in the shape databases)
is not easy, but any improvements in this regard will improve the performance
of the EVD even further. Our current heuristic is quite primitive and we shall
investigate this problem further in our future work.

It is interesting to observe that if we were to choose less number of eigenval-
ues for the EVD descriptor, e.g., 6, then no hand shapes would be retrieved
in the top 10 matches for the human shape query and instead, several Teddy
bears would appear, as shown in the last row of Fig. 4. The latter is more
acceptable to us due to the similar part structures possessed by a Teddy bear
and a human; these structures appear to have been captured effectively by
the 6 leading eigenvalues. However, the stretching transformation between a
human and a Teddy bear appears to have been captured by later eigenval-
ues, which causes the Teddy bears to disappear from the list of top matches
when 20 eigenvalues are used. This phenomenon illustrates the effect of choos-
ing different number of eigenvalues. It would be highly desirable to have an
automatic way to determine such a number for effective shape retrieval.

Finally, in Fig. 5, we show an image representation of the similarity matrix for
all the shapes in the database, computed using the EVD with 20 eigenvalues.
Here, a brighter pixel represents greater similarity. The rather prominent di-
agonal structure of the image matrix illustrates the effectiveness of the EVD
and the associated χ2-distance measure.

6 Conclusion and future work

In this paper, we consider the problem of shape-based retrieval of 3D models,
focusing on articulated shapes. We present a method which renders conven-
tional shape descriptors invariant to shape articulation, with the use of spectral
embeddings derived from an appropriately defined affinity matrix. The affinity
matrix encodes pairwise relations between the data points and invariance to a
particular type of transformation can be achieved through a judicious choice
of a distance measure. When conventional shape descriptors, e.g., LFD and
SHD, are applied to spectral embeddings derived from approximated geodesic
distances, on the McGill database of articulated 3D shapes, one obtains ab-
solute performance gains for shape retrieval. The robustness of the affinity
matrices is also shown, as in Fig. 3(b), where we can observe minor improve-
ments for the LFD and SHD descriptors, even with Euclidean distance based
affinities that are not invariant to bending. In the future, we would like to ex-
plore more ways to define affinities that are robust and/or invariant to other
complex shape transformations such as non-uniform linear scaling and mod-
erate stretching (note that allowing arbitrary stretching and bending would
then only enable us to distinguish shapes having different topology).
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Fig. 5. Similarity matrix computed based on the EVD, for all the articulated shapes
from the McGill database [2]. Brighter colors imply greater degree of similarity.

Another interesting study is the design of novel spectral shape descriptors that
can be used for effective 3D shape retrieval. We have suggested two simple
ones, EVD and CCD, in this paper and their performances are already better
than that of the state of the art, when applied to the McGill articulated shape
database. However, issues such as, the number of eigenvalues or eigenvectors
to choose and the distance norm (other than L2) to use for computing corre-
spondence costs, all require further investigation. In general, spectral methods
can be sensitive to the presence of outliers in the data. However, this problem
is not of great concern for 3D shape retrieval, as the 3D models are mostly
free of outliers. Moreover, since most models define a surface, outliers are
easy to detect and remove. Studies into ways of making the spectral approach
more robust against outliers is more interesting and necessary with respect to
retrieval and recognition of more general forms of data.

Finally, we would like to improve the applicability of our method to data sets
other than that of articulated shapes, most notably the Princeton benchmark
database [3]. Our method depends only on the successful representation of a
shape using pairwise affinities (based on geodesic or other distance measures).
The key issue would be how to construct graph representations, in the pres-
ence of severe geometric and topological noise in an input model, that can
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faithfully characterize the intended shape and structure of the model. For ex-
ample, it would be interesting to look into robust distance measures that are
applicable to disconnected geometry, e.g., polygon soups, instead of resorting
to appearance-based approaches [10].
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Appendix: Nyström Approximation

Consider a set of n points Z = X ⋃Y , where X and Y , X ⋂Y = ∅, of sizes l
and m, respectively, give a partition of Z. Write the symmetric affinity matrix
W ∈ Rn×n in block form:

W =




A B

BT C


 ,

where A ∈ Rl×l and C ∈ Rm×m are affinity matrices for points in X and Y ,
respectively; B ∈ Rl×m contains the cross-affinities between points in X and
Y . Without loss of generality, we designate the points in X as sample points .
Let A = UΛUT be the eigenvalue decomposition of A, then the eigenvectors
of W can be approximated, using the Nyström method [22], as

Ū =




U

BT UΛ−1


 .

This allows us to approximate the eigenvectors of W by only knowing the
sampled sub-block [A B]. The overall complexity is thus reduced from O(n3),
without sub-sampling, down to O(ln log n + l3), where l ¿ n, in practice.

The rows of Ū define the spectral embeddings of the original data points from
Z. We see that the ith row of U , which is completely determined by A, gives
the embedding x̄i of point xi in X and the jth row of BT UΛ−1 is the embedding
ȳj of point yj in Y . If we let ȳd

j denote the dth component of ȳj, then the above
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equation can be rewritten as

ȳd
j =

1

λd

l∑

i=1

x̄d
i B(i, j) =

1

λd

l∑

i=1

x̄d
i W (i, j + l), 1 ≤ d ≤ l.

Namely, the embedding ȳj is extrapolated using the coordinates of the x̄i’s,
weighted by the corresponding cross-affinities in B.

With Ū , we obtain an approximation W̄ of the original affinity matrix W ,

W̄ = ŪΛŪT =




A B

BT BT A−1B


 .
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