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Abstract

We present a deformation-driven approach to topology-varying 3D
shape correspondence. In this paradigm, the best correspondence
between two shapes is the one that results in a minimal-energy, pos-
sibly topology-varying, deformation that transforms one shape to
conform to the other while respecting the correspondence. Our de-
formation model, called GeoTopo transform, allows both geometric
and topological operations such as part split, duplication, and merg-
ing, leading to fine-grained and piecewise continuous correspon-
dence results. The key ingredient of our correspondence scheme
is a deformation energy that penalizes geometric distortion, en-
courages structure preservation, and simultaneously allows topol-
ogy changes. This is accomplished by connecting shape parts using
structural rods, which behave similarly to virtual springs but simul-
taneously allow the encoding of energies arising from geometric,
structural, and topological shape variations. Driven by the com-
bined deformation energy, an optimal shape correspondence is ob-
tained via a pruned beam search. We demonstrate our deformation-
driven correspondence scheme on extensive sets of man-made mod-
els with rich geometric and topological variation and compare the
results to state-of-the-art approaches.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems

Keywords: shape correspondence, deformation-driven, topology-
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1 Introduction

Shape correspondence is one of the most fundamental problems in
geometry processing [van Kaick et al. 2010]. Earlier approaches
have mostly been designed to deal with rigid alignments [Gelfand
et al. 2005; Aiger et al. 2008], near-isometric shape articula-
tions [Huang et al. 2008; Kim et al. 2011], or non-rigid shape de-
formations involving part stretching [Zhang et al. 2008; Wand et al.
2009]. Naturally, with increasing dissimilarity between the shapes
being matched, the correspondence search becomes more difficult,
both in problem formulation and computational cost.

To handle shapes that differ significantly in geometry and structure,
more recent approaches are predominantly knowledge- or data-
driven, and resort to supervised learning [van Kaick et al. 2011;
Huang et al. 2013] or unsupervised co-analysis [Golovinskiy and

Figure 1: Topology-varying correspondence between man-made
shapes exhibiting significant geometry and topology variations.
Note the fine-grained and one-to-many matchings between parts.

Funkhouser 2009; Sidi et al. 2011; Xu et al. 2012; Kim et al. 2013;
Zheng et al. 2014] of shape collections. By design, these methods
only return coarse and discrete correspondences, leaving the struc-
tural or topological discrepancies between matched parts or part en-
sembles unresolved. For example, the wheel assembly of a bicycle
is typically matched with that of a tricycle in its entirety.

In this paper, we introduce a novel shape correspondence al-
gorithm which computes a fine-grained mapping between two
3D shapes whose fopologies may differ. For example, for the
bicycle-tricycle pair above, the fine-level part structures of the
two wheel assemblies are matched (see top-left of Figure 1).
The fine-grained matching may ne-
cessitate part split (e.g., between the o

front wheel supports in cyan color)

and duplication (e.g., between the h Q
rear wheels in purple). The resulting - -
correspondence is piecewise contin- o

uous. Such a part matching defines )

a continuous dense correspondence
within each pair of matched parts or
subparts (see the inset).

Our correspondence approach follows a deformation-driven cri-
terion [Sederberg and Greenwood 1992; Blanz and Vetter 1999;
Zhang et al. 2008]: the best correspondence between two shapes is
the one that incurs a minimum-energy deformation (with an appro-
priately defined energy) which transforms one shape to conform to
the other while respecting the correspondence.

Given two shapes, our correspondence algorithm searches through
a space of feasible part correspondences using a pruned beam
search [Lowerre 1976], rating them according to the deformation-
driven criterion. The key component of our algorithm is a novel de-
formation model with an associated energy that produces fopology-
varying and structure-preserving shape transformations; we call it
the GeoTopo transform. The main challenge in developing such a
model arises from the many factors that influence its design. Some
factors, such as those related to relative part positioning, are dis-
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Figure 2: An overview of our correspondence scheme. Given a source and a target shape to be matched, we convert each into a skeletal curve-
sheet representation (a). A combinatorial tree search explores possible one-to-one and one-to-many correspondences between the shape parts
(b). Each node in the search tree adds one or more parts to be matched from the source to its parent node. Each assigned correspondence
induces a deformation of the source to conform to the target, possibly introducing topological changes (see part splits occurring at nodes
marked in purple). The best correspondence from the source to the target (c) is selected from the search path resulting in the least deformation
energy. All parts in the source, but not all parts in the target, are matched; unmatched parts are colored in gray.

crete in nature, while others, such as part stretching, are continu-
ous measures. Some factors involve local shape analysis, e.g., part
proximity, while others may take a global view of the shapes, e.g.,
symmetry. The challenge lies in how to unify such a diverse set
of factors into a simple and coherent deformation model. The de-
formation energy needs to penalize geometric distortion, encourage
structure preservation, and simultaneously allow topology changes
as constrained by the prescribed shape correspondence.

To define the deformation energy, we represent each 3D shape us-
ing a structural graph whose nodes are curve and sheet abstractions
of the shape parts [Alhashim et al. 2014]. We sample the curves
and sheets and connect pairs of sample points between adjacent
parts using structural rods. These rods behave like virtual springs
in classical physical simulation, but encode energies arising from
geometric, structural, and topological shape variations, with more
emphasis placed on relative rather than absolute measures. For ex-
ample, we de-emphasize penalties from stretching or bending of
individual parts. Instead, we focus more on structural changes such
as connected parts becoming disconnected or angles between two
parts changing between two shapes. The energies incurred to de-
form one shape to another while respecting a prescribed part cor-
respondence between the two shapes are used to rate that shape
correspondence during the combinatorial correspondence search.

Our approach is designed to match man-made shapes rich with ge-
ometric and topological variation. We show numerous correspon-
dence results over such models, evaluate our method against ground
truth data, and compare to prior art, including co-analysis tech-
niques. We also present a key and natural application enabled by the
piecewise continuous correspondences obtained: topology-varying
shape blending [Alhashim et al. 2014].

2 Related work

Shape correspondence, deformation, and structure-aware process-
ing are all well-studied topics with extensive coverage available in
recent surveys [van Kaick et al. 2010; Botsch and Sorkine 2008;
Mitra et al. 2013]. Most approaches to shape correspondence,
including those that are deformation-driven, compute continuous
mappings between surfaces to minimize metric distortion. The best
known correspondence benchmark [Kim et al. 2011] measures the
quality of correspondences using geodesic distortion.

In our work, we compute shape correspondences of a rather differ-
ent nature. In particular, we allow topological differences between
the shapes to be matched and still seek a fine-grained matching be-
tween their parts. As such, the matched parts are necessarily split,
duplicated, or merged to account for the topological discrepancies.
The resulting mapping cannot be continuous; it is, at best, piece-
wise continuous. In our work, we indeed obtain such mappings

through a deformation-driven combinatorial search. This section
focuses the discussion to works that are most closely related to our
development. Emphasis will be placed on structure-aware deforma-
tion models, deformation-driven correspondence, and methods for
topological shape processing.

Matching discrete structures. Recent research on shape corre-
spondence is showing an increasing emphasis on dealing with ge-
ometric and structural variabilities in the analyzed shapes. Super-
vised learning is a viable option where correspondence is solved
through recognition or semantic labeling [van Kaick et al. 2011].
Unsupervised co-analysis [Mitra et al. 2013] relies on a set, not just
a pair, of related shapes to facilitate the discovery of what is com-
mon, hence matchable, across the set of shapes.

Recent works on computing discrete part matching between shape
pairs address geometric and topological variations by incorporat-
ing analysis of part symmetry and contextual relations. The work
by Tevs et al. [2014] shows the importance of symmetry in structure
matching, resulting in many-to-many correspondences between dif-
ferent shape topologies. However, topological operations are not
part of their search and the matching remains at the symmetry group
level. Laga et al. [2013] compliment the use of geometric proper-
ties with contextual relations between parts when computing shape
similarity at a coarse level. Their main goal is to identify shape re-
gions with similar semantics in a supervised manner. Our method
is unsupervised and it implicitly encodes contextual relations by
considering changes in relative part positioning without the need to
explicitly identify and compare such relations.

In contrast to all of these works, which produce discrete and coarse
correspondences at the part or part-ensemble level, our work com-
putes fine-grained correspondences, beyond symmetry matching,
as well as associated GeoTopo deformations. Our method is unsu-
pervised, works on a pair of shapes only, and is able to deal with
significant geometric and topological shape variations.

Deformation-driven correspondence. Early work by Seder-
berg and Greenwood [1992] takes a deformation-driven approach
to compute 2D shape correspondence and blending. Blanz and Vet-
ter [1999] develop a morphable model for correspondence and syn-
thesis of 3D face models. In both cases, the use of shape defor-
mation naturally fits the applications at hand. Huang et al. [2008]
perform non-rigid registration of articulated shapes by searching for
isometric deformations. The work by Zhang et al. [2008] represents
an early attempt at handling significant geometric variation across
the shapes being matched. As local feature matching and isomet-
ric constraints are no longer applicable, their work searches for a
sparse point correspondence that results in a minimal-energy, non-
rigid surface deformation. All of these works adopt deformation
models for shape boundaries without topology variations.



Structure-aware deformation. Recent developments on the
editing of man-made shapes, led by works on iWires [Gal et al.
2009] and component-wise controllers [Zheng et al. 2011], focus
on structure preservation, where shape structures are typically char-
acterized by symmetry and other inter-part relations, such as prox-
imity and co-planarity. Structure-aware retargeting [Bokeloh et al.
2011; Lin et al. 2011] can alter shape topology, but is limited to in-
creasing or decreasing repetition counts in regular or semi-regular
patterns. Our work utilizes structure-aware deformation in a corre-
spondence search. The GeoTopo transform models structure preser-
vation similarly to previous works, but the deformation energy must
also account for broader topology variations.

Topology matching and blending. There have been works de-
veloped to match topological shape characterizations such as Reeb
graphs [Hilaga et al. 2001] and curve skeletons [Au et al. 2010],
arriving at an estimate of shape similarity and a sparse point corre-
spondence, respectively. In contrast, our method computes a fine-
grained and piecewise-continuous shape correspondence. More rel-
evant is the recent work by Alhashim et al. [2014], which com-
putes topology-varying blendings between two 3D shapes. They
rely on user assistance to establish correspondence between topo-
logically different shapes, which is the task our work attempts to au-
tomate. Representation-wise, we adopt the same curve-sheet struc-
tural graphs as shape abstractions and a similar set of topology-
altering graph-editing operations. However, we define and rely on
a deformation energy to search for the optimal GeoTopo transform,
while in their work, the deformations were generated stochastically.

Co-analysis. Unsupervised co-analysis of shape collections has
been an intensely studied problem in recent years [Golovinskiy and
Funkhouser 2009; Xu et al. 2010; Sidi et al. 2011; Huang et al.
2011; Hu et al. 2012; Xu et al. 2012; Kim et al. 2013; van Kaick
et al. 2013; Meng et al. 2013; Zheng et al. 2014]. The essence of
co-analysis is to best utilize a set of shapes to infer correspondences
across pairs of member shapes. Our work and co-analysis share the
common goal of dealing with significant geometric and structural
shape variations between the matched shapes. However, in terms of
input, co-analysis expects a set of shapes while our work takes a sin-
gle pair of shapes. In terms of output, co-analysis typically returns
a co-segmentation and/or labeling of the shapes that is consistent
over the set. Simultaneously addressing a diverse collection in its
entirety has meant that a semantically consistent co-segmentation
of all member shapes is necessarily coarse. On the other hand, our
work aims to return a fine-grained correspondence between a sin-
gle pair of shapes and their structural differences need not imply a
coarsening of the correspondence. Rather, we focus on designing a
matching process that allows for such topological differences.

Technique-wise, the co-analysis of Xu et al. [2012] returns a fuzzy
part correspondence based primarily on rigid part alignment and
Hausdorff distance. The method is applicable both to a pair and a
set of shapes, making it a suitable baseline to compare our algo-
rithm. Van Kaick et al. [2013] perform co-hierarchical analysis to
obtain one-to-many part correspondences. However, their method
does not produce hierarchical matchings with a granularity compa-
rable to that of our algorithm; it also heavily utilizes the entire input
set. Perhaps the co-analysis method most relevant to our work is
[Kim et al. 2013] due to its use of deforming templates. However,
their deformation model does not account for topological variation
and, again, the method relies heavily on the entire input set.

3 Overview

The input to our algorithm consists of a pair of 3D shapes. We as-
sume that the input shapes are oriented upright and pre-segmented

into meaningful parts in a symmetry-aware manner [Wang et al.
2011]. We represent both shapes with structural graphs, which en-
code the shape’s topology using medial abstractions of the parts
and the structural relations between these abstractions, including
symmetry and connectivity. The part correspondence is found by
traversing a combinatorial correspondence tree with priority-based
pruning where the priority is measured by a self-distortion energy
evaluated during deformation of one shape to the other under the
constraint of previously matched parts.

The output of our algorithm is a piecewise continuous part-to-part
mapping. For example, matched parts abstracted by medial curves
would have a continuous mapping between the curves. Figure 2
shows an overview of our correspondence method. To deal with
shapes with a large number of parts, we follow a coarse-to-fine
strategy when searching for the best correspondence. We enforce
correspondence from every part in the source to some part or parts
on the target, not vice versa. Thus, multiple source parts could be
matched to the same target part, while some target parts might be
unmatched. We rely on the deformation energy to decide which
source-target designation results in the better solution.

Initial segmentation. Since our method aims to compute fine-
grained part correspondence, the input shapes are finely segmented.
Such segmentations are available from the work of Alhasim et
al. [2014], which were obtained manually, and the majority of mod-
els appearing in this work come from their dataset. We note that no
effort was made to obtain compatible segmentations; each shape
was segmented independently.

Structural graph representation. For each 3D shape, we use
the shape representation of Alhashim et al. [2014], where segments
of the shape represent meaningful parts that are abstracted as me-
dial parametric 1D curves or 2D sheets, extracted via skeletoniza-
tion, and their interrelations are encoded in a structural graph; see
Figure 2(a). While, in their original graph representation, nodes
in the graph represent the individual parts, we define each node to
represent a symmetry relation (a group of parts) that can be part
of a single self-reflectional, -rotational, or -translational symmetry.
Each node is labeled with its symmetry group properties and the
geometry of a representative part abstraction for the group. Parts
colored the same in each shape in Figure 2 (a) visualize the groups
we consider in our correspondence search.

Since parts are represented by geometrically simple constructs, the
identification of symmetry groups and connectivity is both robust
and easy to compute. This is the case especially for the fixed set
of supported symmetry groups. Edges of the graph encode connec-
tivity relations between pairs of groups that are in close proximity,
connecting a point from each part with minimum distance. We as-
sume that such relations have been computed or provided as part
of the input. While the representation of [Alhashim et al. 2014]
also encodes a mapping between surface points and the skeletal ab-
stractions, we solely focus on correspondence at the level of ab-
stractions, which can be robust with respect to small topological
inconsistencies and large geometric differences.

Self-distortion energy. The key to our correspondence search is
a self-distortion energy measured on the source shape. It is formu-
lated to guide the search process to favor and explore correspon-
dence assignments that minimally distort the structure of the orig-
inal shape. The energy takes into account corresponding groups
of parts, which possibly have different cardinalities or abstractions
with large geometric differences. We evaluate distortion of the
shapes’ structure by considering three structural components eval-
uated before and after the deformation: 1) deviation of spatial ar-
rangement of connected parts, encoded by changes in orientation
between sample points on the abstractions; 2) distance between



parts, encoded by the change in distances between the two closest
points across two connected parts; and 3) the measure of solidity
for parts having their topology altered by a splitting or merging op-
eration induced by a one-to-many part correspondence.

Correspondence search. Since our method allows both one-to-
one and one-to-many part correspondences, the problem becomes
a combinatorial one, for which finding a globally-optimal solution
is NP-hard [van Kaick et al. 2010]. We cast this problem as a tree
search and solve it using a beam search method augmented with
heuristic pruning schemes. The beam search encompasses both
global and local pruning. Globally, we keep only the top K op-
timal solutions for all open search nodes to keep the search space
tractable. Locally, for each open search node, we keep only k ex-
pansions to ensure an approximately balanced search tree. We fur-
ther prune based on symmetry groups, requiring all parts within a
group to match to some corresponding part or part group.

4 Energy-driven GeoTopo transform

Let M and M’ be the input shapes with corresponding structural
graphs G and G and a given (potentially sparse) set of node corre-
spondences between G and G’. The correspondences may be one-
to-one, one-to-many, or many-to-many. In this section, we present
the core component of our algorithm: the energy-driven GeoTopo
transform, which deforms M to M’ in an energy-minimizing man-
ner while respecting the given correspondence.

Defining the proper energy to drive the GeoTopo deformation
model is key. We first postulate a set of criteria that we believe
should influence the design of such a model. The set is fairly sub-
stantial and diverse. Some factors are discrete in nature while others
are continuous measures. Some factors involve local shape analy-
sis while others take a global view of the shapes. The technical
challenge lies in unifying this diverse set of factors into a coherent
deformation model. The simplicity of said model and the associated
driving energy are an important design choice to achieve efficiency,
since the deformation is carried out repeatedly during the combina-
torial correspondence search.

4.1 Factors and motivation

The GeoTopo deformation model and its energy are designed to
simultaneously enforce structure preservation, penalize geometric
distortion, and allow topology changes as dictated by the prescribed
shape correspondence. In this section, let us describe each of the
factors in turn, at a high level.

Structure preservation. We consider terms for enforcing the
preservation of symmetry, relative positioning, and connectivity be-
tween parts. Symmetries considered include reflectional, rotational,
and translational symmetries. With respect to relative positioning,
our energy attempts to preserve the spatial relationships between
object parts, but not necessarily their exact positioning. Given two
parts A and B of the same shape, from a semantic and functional
point of view, it is often more important whether A is above, in
front, to the left, etc. of B, rather than how far above, in front, to
the left, etc. A is of B. We view these relationships as key aspects
of the shape’s nature to be preserved in order for it to be remain in
its semantic class. Finally, we attempt to preserve all connections
between adjacent parts. As we will see, in many cases such con-
straints must be violated, e.g., when a topology change occurs due
to a one-to-many correspondence in parts between the source and
target shapes.

Geometric distortion. We consider terms enforcing part distor-
tion and proximity. Part distortion will refer to the degree of defor-

mation that a source part will undergo in order to best approximate
a part in the target. Parts which were adjacent should remain adja-
cent if possible, and as proximal as possible otherwise. It should be
noted that this term is only applied between parts that are adjacent
in the source shape.

Topology changes. We allow for a reduced list of operations to
be carried out on the parts of the source shape: split, duplicate, and
merge. These operations will allow us to address cases where the
number of parts, or their extent, is not in agreement between the
source and the target.

The above factors constitute a diverse list of criteria to be taken
under consideration. It is very difficult to combine all these fac-
tors into a weighted-sum energy function in a principled manner.
The required weights for all the terms would yield a high number
of parameters that would be difficult to adequately calibrate. This
motivates our deformation model, which we present next.

4.2 Deformation model

Our approach is to incorporate the factors discussed above into a
propagation model. The overarching goal of the deformation model
is to respect the given correspondence by moving and deforming
parts in shape M to align with the corresponding parts in M’. As
this happens, topology changes may be forced, e.g., when there is
a one-to-many correspondence. At the same time, geometric and
structural distortions may occur. The unconstrained parts need to
be displaced and deformed to minimize the energy resulting from
these unavoidable distortions.

First, a correspondence of parts will be determined and these parts
will be moved and deformed to fit those of the target shape using
the previously-discussed operations. Then, informed by this cor-
respondence, we move the remaining parts via constraint propaga-
tion. In this propagation, we wish to preserve structures, including
those established by symmetry and connectivity, while simultane-
ously satisfying constraints given by adjacency. Once a deformed
candidate is obtained, we measure the energy of its configuration.

A strong advantage of using the propagation model is that it decou-
ples some of the aspects we wish to consider from the energy for-
mulation, allowing us to keep the latter as light-weight as possible
so that it can be effectively used in the correspondence search. The
two key properties that are delegated to the propagation are sym-
metry relations and proximity (“soft” connectivity). We consider
these properties to be hard constraints, i.e. shape invariants that, as
such, should not be lost during the deformation process. In a sense,
these hard constraints can be seen as analogous to mesh connec-
tivity in classical surface deformation. The combined energy and
propagation models can thus account for the diverse set of criteria
in a compartmentalized and tractable way.

4.3 Deformation energy

Existing shape-deformation methods work on satisfying user con-
straints while minimizing a deformation energy that measures
stretching or bending of the shape’s initial state. This energy, often
modeled with springs, is suitable when the goal is to preserve the
overall initial shape of the source as closely as possible. In contrast,
we wish to deform the source so that it conforms geometrically to a
semantically-related target that is possibly very different in overall
shape. Thus, we wish to allow each individual part to undergo large
changes in bending and stretching with relatively little penalty.

Similarly to springs, we begin with a system of connected point
samples for all pairs of adjacent parts. In traditional mass-spring
systems, the energy measures changes in distances between two



Figure 3: Deformation energy. For each pair of connected parts,
structural rods connect two sample points on the curve-sheet ab-
stractions (only a few rods are shown for clarity) (a). The shortest
structural rod is shown before and after (d and d' respectively) a
search step for part p, when assigned to part q, on target shape
(right) (b). In (c) we show the three top choices when searching for
correspondence for part p, for the shown target shape (left), and
their solidity value s. Note that while the last choice (red) gives the
highest S (and thus lowest Es split cost), our total energy favors
the middle one (green) as it is lower in both Eq and E..

linked points. In contrast, our energy is related to changes in the
angle of these connections. These rod-like connections, which we
refer to as structural rods, define structural arrangements between
parts. A key advantage of this structural-rod paradigm is that it pro-
vides a unified treatment of part arrangements and (soft) shape con-
nectivity while minimizing the effect that changes, such as stretch-
ing and bending of parts themselves, have on the overall energy.

The key idea of our shape distortion measure is to compute the
changes in structural properties resulting from deformation by look-
ing at geometric changes between all pairs of connected parts in
the source with an additional penalty function for when topological
changes must occur. Conceptually, for each pair of connected parts,
we encode an average of bending or twisting on the arrangement of
the connected pair before and after a deformation. Our energy con-
sists of three terms:

E: Ed+chc+wsEs; (1)

where E/; measures geometric deformation, F. measures pair con-
nectivity, Fs is the split penalty for one-to-many and many-to-one
part correspondences, and w. and w, are scalar weights.

Part arrangements distortion: The first term, E4, captures the
geometric changes of two parts p, and p, adjacent in GG in terms
of their relative spatial arrangement. We begin by uniformly sam-
pling all abstractions (curves and sheets). For each pair of adjacent
parts we record a structural rod vector r;; from the ¢-th sample

point on part p, to the j-th sample point on the neighboring part
py, © € [1,n] and j € [1,m], where n and m are the sample
counts of parts p,, and p, respectively; see Figure 3(a). The energy
of the term is defined by the Frobenius norm of the deformation
matrix D comprising all dot products between pairs of pre- and
post-deformation structural rods, the latter denoted r7;:
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where J,,.,, is the unit matrix (one for all elements) of size n X m.
Note that the final E4; will be the sum of the above term for the
entire set of connect pairs on the graph.

Shape connectedness: The second term, F., is the connectiv-
ity term, which penalizes disconnection between two originally-
adjacent parts by looking at their closest distance. Let d =
miny; ||rg;|| and d' = ming; ||r};|| be the length of the short-
est pre- and post-deformation structural rods respectively; let f =
max;; ||rs;|| be the length of the longest pre-deformation structural
rod; see Figure 3(b). If ' < d (i.e., the parts have actually gotten
closer), then we let E. = 0. Otherwise, we define this term for a
pair of adjacent parts as:

Eec(ps,py) =1 —min(1,d'/f). @

Here too, the final E. will be the sum of the above term for the
entire set of connected pairs in the graph.

Topological changes: The final term E; represents the split-
ting/merging penalty for when such topological changes are needed
in the case of one-to-many matches. Since our correspondence
works on shapes with differing numbers of parts, it is often the case
that many possible matchings can have similarly low energy in both
deformation and connection. Figure 3(c) shows one such case. We
define a heuristic that takes into account how a split might reflect the
apparent intent of a group of similar parts. For example, sparsely-
placed bars often function as supports, while a tightly-packed set of
bars, or a part abstracted by a sheet, represents a solid part. We de-
fine the splitting penalty Es as the deviation in ratio s between the
volume of the part to the volume of its convex hull before and after
a split (or merge). This shape measure is known as shape solidity
in the 2D shape recognition literature where it is defined in terms
of areas [Russ 2011]. We encode these ratios for all parts in G in
a vector S, where S; = min(s;, sj)/ max(s;, s;) fori € [1,n], n
being the number of relations in the source. This penalty does not
apply for parts yet to be matched, when matching between single
parts, or when matching a rational symmetry group, in which case
we set the value of S; to 1. Similar to Equation 3, we normalize
this term as follows:
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Each of the three energy terms might individually favor different
correspondence choices for the same part (see Figure 4). While,
ideally, preservation of the overall structure results in lower values
for all terms, a purely geometric approach cannot distinguish be-
tween semantically clear but geometrically ambiguous cases. In our
energy formulation, we place more value on part arrangements and
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(a) No connection (b) No splitting
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(d) Only deformation  (e) Only splitting  (f) Only connection
Figure 4: Effect of energy terms. Here we highlight obviously bad
correspondences between some source and target parts. Connec-
tion refers to E., splitting is Es, and deformation is Eq. The entire
correspondence computed when enabling all energy terms for this
pair of chairs can be found in the gallery.

add the weights w. and w, to balance the contribution of connectiv-
ity and topological penalty. We experimentally found the weights
we = 0.6 and ws = 0.4 to produce the best results, and we fix
these values for all our experiments.

Asymmetry in distortion cost. Input shape pairs, especially
ones having different topology, are not expected to share the same
connectivity among their corresponding parts. For example, the
armrests of chairs might only connect to the seat in one chair while
in another they might connect to both the seat and the back. This, in
turn, results in an asymmetry of the distortion cost; i.e., deforming
M to M’ may require an energy different from that of deforming
M’ to M. In order to symmetrize the distortion cost, one possible
heuristic is to take the minimum cost of matching in each direc-
tion. However, this heuristic is not guaranteed to always result in
the best correspondence and would tend to favor matching the sim-
pler model to the more complex one. This is due to the fact that
the simpler model has less elements contributing to the structural
distortion. In all of our experiments, we choose the correspondence
that incurs the least deformation energy. In practice, this strategy
often has the result of leaving extraneous parts of the more complex
shape of the input pair unmatched.

Sampling. We sample the parametric curve-sheet part abstrac-
tions uniformly at 1/e intervals resulting in curves having e sam-
ples and sheets having e? samples. This results in relatively equal
contribution for the different parts of the shape. While this sam-
pling might seem counterintuitive, as not all parts of the shape are
of equal importance, it ensures that differences between extents of
semantically-corresponding parts across different shapes do not sig-
nificantly bias the results.

5 Correspondence search

During correspondence search, we first find correspondences at the
group level following a beam search strategy. Then, for a pair
of source and target groups in correspondence, we perform part-
level correspondence by first normalizing the bounding boxes of
the two groups in order to match individual parts by proximity, and
then performing deform-to-fit for the corresponding parts within the
source group. Different correspondence choices result in different
deformations and thus different energy costs.
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Figure S: Illustration of matching graph and tree search. Left: The
two input structure graphs G and G', and their matching graph
G constructed from G. The red edges, together with the original
edges from G, constitute a solution graph. Right: The search tree
constructed while traversing the matching graph in order, where
each node corresponds to a matching pair.
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Figure 6: Illustration of the local and global pruning in beam
search. When expanding each node with new nodes of matching
pairs, we keep only the top k = 4l. Among all expanded partial
solutions in L;, we allow only the top K = 20 to expand into L 1.

Beam search. Suppose we are given two input shapes, repre-
sented by structural graphs G = {V, E} and G’ = {V',E’} re-
spectively, where each node in the structural graphs represents a
group of parts. Two nodes are connected by an edge if their cor-
responding surfaces are connected. We construct a super graph G
from G and G’ by extending each node v € V with a set of edges
representing matching pairs from v to all nodes in G’, as shown in
Figure 5. A matching in G covering all nodes in G represents a full
correspondence solution from G to G’. This is illustrated by the set
of red edges in Figure 5. Thus, our problem is reduced to finding
such a matching in G that minimizes the self-distortion energy; see
Equation (1). We employ tree search to solve this problem. The
search tree is shown on the right of Figure 5, where each level con-
tains correspondences between a fixed node in G and all other nodes
in G’ and a path from the root to a leaf represents a full correspon-
dence solution between G and G’ at the group level. Starting from
the first node of G, our algorithm progressively grows the partial
solution by traversing the search tree in a branch-and-bound man-
ner. Note that we enforce the correspondence of all groups from the
source to match some group(s) on the target. Thus, a target group
could be matched from multiple source groups while other target
groups might remain unmatched. The correspondence at the part
level is resolved in the deform-to-fit step.

To reduce the search space, we introduce two strategies. The first
is the use of both local and global pruning during beam search.
Locally, when expanding a node in the search tree with different
matching nodes, we keep only the k best expansions according
to the deformation energy. Globally at each level, among all the
newly expanded partial solutions, we retain the top K partial so-
lutions. While the global pruning keeps the overall search space
tractable, the local one ensures that the top K partial solutions are



Figure 7: Illustration of deform-to-fit between curves and sheets.
(a): To register a pair of curves(top)/sheets(bottom), we first
aligned them at their centers and then find end/corner point match-
ing. (b): To deform a curve into a sheet, we need to project the
curve onto the sheet; see the deformation sequence to the right.
(c): A deformation sequence from three curves to one sheet, which
are also matched by projection.

symmetry symmetry contact contact
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Figure 8: Structure preservation. (a): Two beds with their
matched front legs shaded in orange and left-right reflective sym-
metry marked. (b): When aligning the matched front legs, the red
parts are distorted due to imprecisions in the input (left). Symmetry
preservation helps recover the structure (right). (c) After further
aligning their back legs, the middle bar in red is detached. Con-
tact constraints are used to recover the connection. Our structure
preservation is actually performed on the curve/sheet representa-
tion. We show the surfaces for better illustration.

left-right symmetry

well-distributed among all branches (see Figure 6). This makes our
search tree more balanced so that it can cover a wider search space
and thus have a higher chance of finding a global optimum. Using
lower values of k and K results in faster search times at the risk of
missing non-local, closer-to-optimal solutions. We find via experi-
ments that our method is relatively stable to the selection of the two
parameters, and £ = 4 and K = 20 seem to result in a reasonably
good trade-off for models containing tens of parts.

The other pruning is based on symmetry groups, requiring parts in
the same source group to all match to parts in the corresponding tar-
get symmetry group or to a single part that is self-symmetric. In our
implementation, we consider only linear-translational, reflectional,
and rotational symmetry groups. More aggressive part grouping
schemes, such as those based on a symmetry hierarchy [Wang et al.
2011] or recurring part arrangements [Zheng et al. 2014], could also
be adopted, but with higher computational cost. Note that the corre-
spondence at the group level is always one-to-one. Required topo-
logical changes, including splitting and merging, are decided on
during the correspondence search over individual group elements
of the source and the target, where the group cardinality may differ.

Deform-to-fit. For each pair of symmetry groups in correspon-
dence, we match their underlying parts by first normalizing the
bounding boxes of the two symmetry groups into the unit box and
then deforming the parts from the source shape to fit and match
against those of the target shape. When each of the two groups
contains more than one shape part, we resolve the many-to-many
cases into one-to-many instances by looking at the parts’ centroids
within the unit box and matching them based on proximity. Each
source part abstraction, which is a parametric 1D curve or 2D sheet,

is deformed to conform to the geometry of its matched part on the
target. The deformation of curves or sheets is performed by first
aligning their centers, matching their extremities by spatial prox-
imity, and then aligning the extremities by transforming the corre-
sponding end/corner points of the curves/sheets, as shown in Fig-
ure 7(a). After aligning the extremities, we linearly interpolate the
deformation to the remaining control points.

We also allow parts that are abstracted by curves or sheets to de-
form into one another. To this end, we first match the extremities
between the curve and the sheet. This is achieved by projecting the
curve onto the sheet and matching each end of the curve to two cor-
ners of the sheet by spatial proximity; see Figure 7(b). This also
determines the orthogonal direction in which the curve/sheet will
extrude/shrink; see Figure 7(b). To allow groups with differing car-
dinalities to transform into one another, we need to deal with topo-
logical differences; see Figure 7(c). When corresponding one sheet
or curve to several curves, we split the sheet or curve part accord-
ingly where appropriate. For one-to-many curve correspondences,
we also consider the option of splitting or cutting the source curve
into equal-length segments, as shown for the leg and back parts in
Figure 2. For all many-to-one cases, we merge multiple parts into a
single one as an inverse of the splitting process.

Structure preservation. Deforming parts during the search can
result in disconnected shapes, which in turn may break some of
the connectivity and/or symmetry relations in the original shape.
The evaluation of deformation energy assumes structural plausibil-
ity throughout the search, for which we apply an edit propagation
step to preserve part relations, similar to prior methods on structure-
aware shape editing [Gal et al. 2009; Zheng et al. 2011]. In our
method, the propagation is constrained by two factors, namely, the
connectivity and symmetry relations between parts. For proxim-
ity constraints, we preserve the displacement vector between the
two connected parts in the source structural graph. This vector is
determined by the closest pair of points across the two connected
parts. Symmetry is preserved for each symmetry group by simply
applying the generation transformation on a single representative
element. For reflectional symmetry, this entails a reflection with re-
spect to a plane. For rotational and translational symmetry, transfor-
mations are defined with the rotation axis and translation path, re-
spectively. See Figure 8 for a few examples of structure preserving
deformation. While our greedy structure-aware deformation bet-
ter preserves the structural properties of the original shape, there is
no guarantee that all constraints are satisfied. More sophisticated
constraint satisfactions and their impact on the correspondence per-
formance are worth investigating in future work.

Initial alignment. In order to factor out the large distortions
caused by differences in shape scale and rotation, we perform a
preprocessing step to roughly align the two shapes to be matched.
Specifically, we first scale both models into similar height and then
rigidly align them so that their global symmetry planes are paral-
lel. While such an alignment does not resolve symmetric flips, our
energy definition would identify such cases by assigning them rel-
atively high distortion costs. In practice, we detect such cases by
performing the search with different alignments, choosing the one
resulting in the lowest energy cost.

6 Results, evaluation, and applications

We show results of topology-varying shape correspondence ob-
tained by our algorithm, evaluate its performance against user-
specified ground-truth data, and compare to related correspondence
methods, including those designed for co-analysis. We also demon-
strate applications that are made possible only when correspon-
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Figure 10: Cost and quality trade-off on two pairs of models. Com-
putational cost is reflected by the beam search width k. Quality is
defined by the GeoTopo deformation energy.

dences between topologically different shapes are available. All
source code and data can be found in the supplementary material.

6.1 Results and applications

Input models. In our experiments, we focus exclusively on man-
made objects, since all the methods considered are designed to pro-
cess such objects. We experimented with all shapes (110 of them)
from the work of Alhashim et al. [2014] on topology-varying shape
blending; these shapes all exhibit rich topological and structural
variations. Additional models, including bicycles and tricycles that
possess richer variations, were also added into the mix. All the
models had been taken from the 3D Warehouse, TurboSquid, and
other online sources. Their part counts range between 4 and 35.

Correspondence results. Figures 1 and 9 show two galleries
of shape correspondence results, where we use color matching to
visualize the part correspondences with unmatched parts colored
gray. Note the significant geometric and structural variations in the
matched shapes throughout, as well as the variety of topological
changes our algorithm is able to handle, leading to meaningful one-
to-many and many-to-many correspondences.

Our algorithm is able to obtain correspondences at a high level of
granularity; e.g., see the bicycle-tricycle and table pairs in Figure 1
and the bicycle, boat, cart, and several chair pairs in Figure 9, where
fine-scale parts are matched properly.

That being said, it is worth emphasizing that our correspondence
scheme is entirely unsupervised. As a result, some of the returned
correspondences may not accurately reflect shape semantics or part
functionality. One such example is the matching between the legs
and leg connections for the fourth pair of chairs in Figure 9.

Statistics and parameters. Table 1 provides timing and other
informative statistics for running our algorithm on the model pairs
shown in Figure 9. Unless otherwise specified, all correspondence
results reported were obtained using the same parameter setting.
For controlling the correspondence search, we set kK = 4 and K =
20. For evaluating the correspondences, we fix the weights to w. =
0.6 and ws = 0.4 in the GeoTopo energy. Note that our method
does not require tuning any parameters, making it easily applicable
to a set of diverse shape classes.

Computation and quality trade-off. There is an obvious trade-
off between search cost and quality of correspondence results. We
provide a simple illustration in Figure 10, where we plot how the
deformation energy associated with the final correspondence varies
over beam search width k, which is a direct indicator for the com-
putational cost of the search. The plots are typical for most model
pairs and they allow us to empirically choose a proper set of param-
eters to obtain a satisfactory trade-off.

Pair #Ps #P. #Gs #G: T (s)
Airplane 1 6 7 2 3 0.06
Airplane 2 8 29 3 9 071

Cart 13 14 5 5  1.09

Table 1 7 16 3 7 032
Weights 17 16 8 5 1.07
Bicycle 18 15 4 3259
Table 2 13 10 3 3 013
Lamp 12 13 2 1 0.19
Bed 27 29 5 10 1.66
Boat 25 17 15 5 290
Chair 1 12 24 5 8 0.96
Chair 2 22 21 8 7 148
Chair 3 14 12 6 5 081
Chair 4 12 16 4 4 092
Chair 5 12 17 7 6 220

Table 1: Statistics and timing for our shape correspondence algo-
rithm, when applied to model pairs shown in Figure 9; the models
are listed in left-to-right and top-down order. We report various
statistics which influence the search cost: the total number of parts
in the source (# Ps) and target shapes (# P ), and the total number
of symmetry groups in the source (#Gs) and target (#G¢) shapes.
Execution times (T), in seconds, account for all correspondence
search operations leading to the final result. Timing is measured on
an Intel(R) Core(TM) i7, 3.4GHz with 16 GB RAM.
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Figure 11: Coarse correspondences returned by limiting the search
to only K parts in the source shape. Here, we consider the K most
prominent parts as determined by their volume.

Figure 12: Topology-varying shape blending. Given a source and
target shape (left), we show four blending results using part corre-
spondences automatically computed by our method.

Coarse correspondence. While our algorithm can excel at
computing fine-grained shape correspondence, it is straightforward
to adjust it to return only a coarse set of results. Bounding the part
count to K in the final correspondence simply amounts to having
the combinatorial search enumerate correspondences with only K
parts selected in the source shape. One can also be selective about
which K parts to match; e.g., they can be the most prominent ones;
see Figure 11. If an application only requires a sparse correspon-
dence, then setting a small K is a viable option for efficiency. With
a small K, the search can also afford to expand its width, leading
to quality improvement in the results.



Figure 9: A gallery of fine-grained part correspondence computed by our algorithm. For each pair of input 3D models, we show the best
correspondence as rated by the minimal GeoTopo energy. Matched parts share the same color; unmatched parts are in gray.
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Figure 13: Transitive shape correspondence. Corresponding the
original pairs S1 and S2 (red arrow) results in improper corre-
spondences with a high energy cost. Whereas computing corre-
spondences by way of S (green and yellow arrows) yields a much-
improved result and a lower sum for the energy cost.

Topology-varying shape blending. A key application enabled
by our work is topology-varying blending [Alhashim et al. 2014].
The output of our algorithm is precisely what their tool would re-
quire as input. In their work, with significant variation between
the source and target shapes, the part correspondences were mostly
specified by the user on top of the initial segmentations. Figure 12
shows a few results obtained by their blending tool based on our
automatically computed correspondence.

Transitive shape correspondence. Despite our efforts, the cor-
respondence scheme can sometimes fail; e.g., see the result for
shapes 51 and S> at the top of Figure 13(a). An interesting idea
is to have a third shape S that can serve as a bridge or transition
between two significantly dissimilar shapes when computing cor-
respondences. By computing correspondences from such a shape
S more similar to both shapes (in terms of a proper “correspon-
dence distance”) and transitively identifying correspondences from
S1 to S2 through S, we obtain an improved result, as shown in
Figure 13(b). This idea is most desirable when analyzing a diverse
shape collection, among which topology variations are expected.
To realize the idea, a topology-varying correspondence scheme is
a basic requirement. Our algorithm serves the purpose, with the
GeoTopo energy working as a suitable “correspondence distance.”

Figure 14: [llustration of topological medoid shapes (blue) com-
puted for different object categories.

“Topological medoids”. Related to the use of GeoTopo defor-
mation energy as a correspondence distance between topologically
different shapes, we are able to compute a fopological medoid for a
set of shapes. Give a set of related shapes that differ in their topolo-
gies, such a medoid shape is the one in the set having the small-
est sum of GeoTopo transformation distances to all other shapes.
Specifically, we perform our correspondence algorithm on all shape
pairs from the set and assign the deformation energy associated with
the final correspondence as the corresponding distance. Similar to
a mean shape, the medoid shape can be regarded as a representa-
tive shape for the given set. Figure 14 shows topological medoids
computed for several small shape collections.

6.2 Comparison and evaluation

Ground truth correspondences. In the absence of a benchmark
for topology-varying shape correspondence, we have established a
dataset for preliminary experiments which consists of 75 shapes
covering 5 object categories (chairs, airplanes, tables, beds, and ve-
locipedes) and exhibiting significant geometry and topology vari-
ations. Each shape is semantically segmented at a high-level of
granularity (e.g., chairs down to individual legs and bicycles down
to individual pedals and cross bars). Semantic correspondences be-
tween parts within a shape pair or across a set define ground-truth
(GT) part correspondences at multiple levels of granularities:

e At the coarse level, the GT correspondences are consistent
over the set of 15 shapes for each of the 5 object categories.



Figure 15: A few shapes and their GT correspondences from our
dataset to highlight the challenge the data presents.

For example, the legs of a swivel chair and the four legs of
a farm chair would all be labeled as legs. We adopt these
correspondences when comparing to co-analysis methods.

e At the finer level, GT correspondences are set up between
each pair of shapes belonging to the same category, with the
granularity depending on the pair. For example, between a
swivel and a four-legged chair, the legs are matched in their
entirety, while two four-legged chairs are matched down to
“left-front” and “right-back” legs with refined labeling.

Figure 15 shows several shapes with GT correspondences from our
dataset, which can well-reflect the difficulty of our test data for the
correspondence problem. All shapes and associated multi-level cor-
respondences from the GT dataset are available in the supplemen-
tary material, as is the complete source code for our method.

Correspondence measure by precision+recall. Given a pair
of shapes with a GT correspondence set (of part pairs) G, we would
like to assess the quality of a correspondence set M returned by a
particular matching scheme. An obvious measure would be the per-
centage of part pairs in M which belong to GG [Zheng et al. 2014].
However, if we make an analogy to retrieval, and regard G as the
set of relevant instances and M as the set of retrieved instances,
then such a measure would only be accounting for precision, not
recall. For example, the fact that some GT correspondences are
not found in M would be overlooked. Let R = M () G. Then,
we measure both precision |R|/|M| and recall |R|/|G| for a com-
puted correspondence M. When making comparisons, we report
both precision and recall rates averaged over sets of shape pairs.

Comparison for co-analysis. To compare our method, which is
designed to match a shape pair, to co-analysis, we need to adapt
our method to handle a shape set. Given a set of shapes, we recon-
struct a set (part) correspondence out of all the pairwise correspon-
dences obtained by GeoTopo. This is achieved by encoding the
fine-grained part correspondence between all pairs of shapes into
a large correspondence matrix and then extracting from the matrix
a sparse correspondence via graph clustering [van Dongen 2000].
Each cluster represents a set of parts which are strongly connected
by the correspondence and possess a consistent correspondence.
This scheme is admittedly preliminary, but it bears some similar-
ity to the correspondence space analysis of Lipman et al. [2010].
Note that we do not utilize any priors over the set nor impose any
additional constraints to improve the consistency of the correspon-
dence extracted [Huang and Guibas 2013].

The co-analysis methods we compare to include fuzzy part corre-
spondence [Xu et al. 2012], recurring part arrangements [Zheng

Category [Xu2012] [Zheng 14] [Kim 13] Ours
chair 0.72 0.67 0.74 0.83
table 0.62 0.35 0.32 0.69
bed 0.49 0.46 0.57 0.61
airplane 0.61 0.38 0.73 0.84
velocipede  0.66 0.37 0.56 0.79

Table 2: Comparison on per-category precision rates among co-
analysis methods. The best rates are shown in bold.

et al. 2014], and perhaps the most closely-related method by Kim
et al. [2013] via template fitting. Like GeoTopo, the performance
of Zheng et al. [2014] depends on the initial shape graph with sym-
metry and contact information encoded. We follow descriptions
in the paper for filtering out small components based on thresh-
olding and grouping parts based on symmetry relations. We find
the best set of parameters to produce finer (consistent) correspon-
dences. However, by design, their output remains coarse compared
to others. For the template fitting method, we manually create one
template for each tested object category and train the templates over
our GT datasets. All three methods were otherwise executed using
the optimal parameters as suggested by the respective papers.

Table 2 reports comparison results on precision with respect to the
coarse GT. In terms of execution times, Kim et al. [2013] and our
method are comparable, while the other two are much faster, with
Xu et al. [2012] being by far the fastest. The results demonstrate
superior performance by our method on all object categories tested.
For Kim et al. [2013], the performance on the table set is less than
satisfactory since some of the tables have crossed legs and some
have straight legs. Hence, two templates would have been more
suitable. For the velocipede set, many parts intersect each other,
which is considered a difficult scenario for the method.

The adaptation of our method for co-analysis is by no means opti-
mal or even sophisticated. Co-analysis is not the focus of this pa-
per; the scheme is designed to allow for a meaningful comparison.
However, the superior performance shown suggests the potential of
our fine-grained pairwise correspondence scheme to support more
accurate co-analysis, in particular, for highly diverse shape collec-
tions with topology variations.

Comparison for matching shape pairs. We take the method of
Xu et al. [2012] as a baseline for comparing pairwise shape corre-
spondences. This method is based on global shape alignment and
proximity-based part matching, and it is applicable to shape pairs.
Based on our experiments, the other co-analysis methods do not
perform nearly as well when the input consists not of a set, but
rather only two shapes. Table 3 shows a comparison between this
baseline and our correspondence method on precision and recall
measured against the GT correspondences for all five categories.
Our method again appears to outperform Xu et al. [2012] on this
test. Note however that the precision within some categories, in
particular the velocipedes, which consist of both bicycles and tri-
cycles, are not high. Indeed, fine-grained correspondence on these
highly dissimilar shapes remains a challenging problem.

Reliance on symmetry relations. In Table 3, we also report the
performance of our algorithm when the input shapes do not come
with detected symmetries. We simulate this case by applying our
correspondence method over the ground truth set while ignoring all
symmetry grouping. This test is meant to assess the dependence of
our method on accurate symmetry detection. As can be seen, the
precision and recall rates do degrade when symmetry is turned off.
However, the drop is not as significant as one might have expected.



Category [lg(u 20112{] O}L)lrs (no sl)ém) Ours
chair 0.68 036 067 042 0.76 0.53
table 0.58 036 070 041 0.75 0.44
bed 0.53 033 063 0.29 0.69 0.34

airplane 0.65 041 071 047 0.72 047
velocipede 0.45 0.25 049 0.35 0.51 0.37

Table 3: Comparison on per-category precision (P) and recall (R)
rates between our method and a baseline method [Xu et al. 2012]
for matching shape pairs. Also shown (in the middle two columns
under “no sym”) are P+R rates for our correspondence results
which are obtained without having symmetry relations identified on
the input shapes. Best results are shown in bold.

Comparison to Tevs et al. More comparable to our work in
terms of input and objective is the symmetry-driven graph match-
ing scheme of Tevs et al. [2014], which operates on a pair of shapes
and returns correspondences between part ensembles with possibly
different topologies. However, their search is not over topology-
changing deformations, but through graph matchings over symme-
try groups. We obtained two sets of models (bed and bicycle) from
the authors of this work to make a comparison. They tested their
algorithm on these models with disjoint parts and detected symme-
tries that our algorithm is able to take as input.

Figure 16 shows one set of matching results for each dataset ob-
tained using our algorithm. With the deformation energy account-
ing for geometric distortion, our method is able to find the proper
alignments between the beds and the bench. Matching between
fine-level parts also appears to be more accurate. With a fine-
grained matching, topology blending is possible; see Figure 12.

7 Discussion, limitations, and future work

We present a deformation-driven method to produce a fine-grained
correspondence between two 3D shapes that may differ in their ge-
ometry and topology substantially. The key challenge lies in how
to obtain a fine-grained, topology-varying matching. We believe
that a continuous, or rather, a piecewise continuous formulation
is suitable for such a task. We solve the problem by following
a deformation-driven paradigm, which was previously adopted to
match curves and surfaces without allowing for topological varia-
tions. The main novelty of our work is the development of a de-
formation model, the GeoTopo transform, and an associated defor-
mation energy that simultaneously accounts for geometric, struc-
tural, and topological shape variations. With the shape parts to be
matched undergoing topological changes, such as part splits or du-
plications, the final matching is piecewise continuous.

Initial segmentation. The foremost limitation to our current
work that one may readily point out is that we assume the two input
shapes are “segmented into meaningful parts in a symmetry-aware
manner.” Such segmentations may not always be easy to obtain,
especially for detailed 3D shapes found in online repositories. In
Figure 17, we show automatic segmentation results computed by
different state-of-the-art segmentation methods [Shapira et al. 2008;
Au et al. 2012; Kaick et al. 2014] using their default parameters. It
should be expected that using the same parameters for unsupervised
segmentation methods would result in over- or under-estimation of
part boundaries, producing imperfect segments.

When imperfect initial segmentations are provided, our method
may fail to recover proper correspondences since a key criterion in
our method is structure preservation while imperfect segmentations
may not reflect the correct structures in the input shapes. The top
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Figure 17: Initial segmentations by state-of-the-art automatic
methods and the resulting correspondence. (a) Segmentations from
three such methods using their default parameters. (b) Correspon-
dence results using our method applied to original components with
manual segmentation (top) vs. results initialized by automatic seg-
mentations using the method of [Kaick et al. 2014] (bottom). In
both cases we use the same original segmentation for the chair on
the left. Clearly invalid correspondences are highlighted.

o

row of Figure 18 shows an example of corresponding shape pairs
that are segmented in a symmetry-aware manner but have different
segmentation granularity. As can be seen, the feet of the coarsely-
segmented robot are not correctly matched with the more finely seg-
mented one. A similar issue can be seen in the chair model when
the armrest is attached to the leg in the chair model on the left but
not so in the one on the right.

Having said the above, even if perfect initial segmentations were
available, matching two shapes characterized by these segmenta-
tions under significant geometric and topological variations and
producing a fine-grained and piecewise-continuous matching re-
mains a highly challenging task. With extensive evaluation, we
have demonstrated the significant advance made by our work
over the state-of-the-art methods, including those designed for co-
analysis, when the compared methods were provided with exactly
the same inputs and initial segmentations.

Furthermore, we believe that the utility of our deformation-driven
analysis framework goes beyond correspondence search; it may
also be applicable to actually finding the proper segmentations, or
co-segmentations, of two shapes. The basic premise is that for two
shapes to be matched in the most meaningful way, the matching
ought to be on two meaningful segmentations. We leave the ensuing
investigation for future work, providing here a preliminary verifica-
tion. In Figure 19, we show the best correspondence our method
finds based on four different segmentations. As can be observed,
meaningful segmentations, even when they differ in part counts, re-
sult in similar deformation energy. In contrast, poor segmentations
cannot be compensated for by a meaningful correspondence.

Dense correspondence. In this work, we have not evaluated our
correspondence scheme using the benchmark of Kim et al. [2011].
The reasons are two-fold. First, the benchmark evaluation is based
on measuring geodesic distortions, which would be inappropriate
to judge topology-varying shape correspondences; such correspon-
dence results are at best piecewise continuous. Second, our corre-
spondence search is focused on curve-sheet structures and not their
corresponding surfaces. Our method is not designed to compete
with those aimed at near-isometric matching since we do not opti-
mize for any criterion based on surface metrics.

Partial matching. Although one-to-many correspondences can
be identified, our method is not designed to perform general par-
tial matching, such as matching a hand model to a whole human
shape. Such cases would entail a preponderance of outlier parts on
the target side, largely increasing the difficulty of the combinato-
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Figure 16: Comparison to Tevs et al. [2014]. Top row shows their results on the “bed” and “bicycle” sets. As shown in their paper, blue
parts are the parts to be matched. Bottom row shows the correspondence for the same highlighted part using our method. Note that while the
input is not assumed to be prealigned (as in the bench model), our method correctly identifies correspondences that are spatially accurate.
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Figure 18: Several failure cases due to imperfect segmentation (top
row) and large geometric deviation between parts that ought to be
matched up (bottom row). On the top row, the initial segmenta-
tions for each pair of shapes are shown on the left. The bottom
row shows the pairs having the worst ground-truth correspondence
score in their respective sets. Our method does not consider partial
matching, which would be the ideal solution for such pairs.
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Figure 19: Segmentation and correspondence. Low quality cor-
respondence result on the original input shapes (left). We apply
different segmentations on the part abstractions and report the to-
tal correspondence cost. Note that while each segmentation has a
different number of parts, the compatibility of these segments con-
sistently results in low energy.

rial search. Also, defining a proper deformation energy for partial
matching remains open; we leave this for future work.

Other limitations. First, like Alhashim et al. [2014], we focus on
processing man-made shapes that can be well abstracted by curve-
sheet structures. If this assumption holds, our method produces rea-
sonable results. However, there are limits to the degree with which
these structures can represent broader categories of models. For
example, buildings, cars, and other models where fine-scale details
are important may not be adequately modeled by such abstractions.
Furthermore, some models may include “tubes” (parts with a closed
sheet skeleton) or parts made out of open surfaces for which there
is no good skeleton. Such models would need to first be adequately
abstracted before our method can be applied. Second, our method
is purely geometric. There are cases where, even when the energy is
very low for some correspondence, there is no semantic relationship
between the matched parts. The bottom row of Figure 18 shows a
few failure cases related to these issues.

Future work. Aside from addressing the limitations mentioned
above, we would like to improve the quality of the in-between
shape deformations generated during correspondence search. Such
an improvement may allow us to more-efficiently explore topol-
ogy variations in a large shape collection, as in the work of Ovs-
janikov which operates on box proxies [Ovsjanikov et al. 2011].
Lastly, we would like to investigate two intriguing applications of
our approach: deformation-driven shape segmentation and transi-
tive shape correspondence, as discussed above.
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