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Figure 1: Composing parts, possibly with sharp features and non-overlapping boundaries, presents challenges to both part alignment and
blending. Our field-guided approach (see middle for a visualization of the fields) leads to alignment of parts away from each other and
feature-conforming surface blending. The bridging surfaces generated (colored yellow on the right) are piecewise smooth.

Abstract

We present an automatic shape composition method to fuse two
shape parts which may not overlap and possibly contain sharp fea-
tures, a scenario often encountered when modeling man-made ob-
jects. At the core of our method is a novel field-guided approach to
automatically align two input parts in a feature-conforming manner.
The key to our field-guided shape registration is a natural contin-
uation of one part into the ambient field as a means to introduce
an overlap with the distant part, which then allows a surface-to-
field registration. The ambient vector field we compute is feature-
conforming; it characterizes a piecewise smooth field which re-
spects and naturally extrapolates the surface features. Once the two
parts are aligned, gap filling is carried out by spline interpolation
between matching feature curves followed by piecewise smooth
least-squares surface reconstruction. We apply our algorithm to ob-
tain feature-conforming shape composition on a variety of models
and demonstrate generality of the method with results on parts with
or without overlap and with or without salient features.
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ometry and Object Modeling—[Curve, surface, solid, and object
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1 Introduction

Model creation in 3D is one of the most central problems in com-
puter graphics. With the rapid growth of online shape repositories,
advanced approaches to shape creation have opted to exploit the
large number of available models. Perhaps the most widely applied
modeling paradigm is to create or modify shapes by means of com-
posing parts belonging to existing shapes [Funkhouser et al. 2004].
Often, the composing parts need to be fused together in a conform-
ing, seamless, and coherent manner so that the resulting shapes can
be readily used for subsequent processing. Despite much work on
shape composition with a focus on high-level tasks [Funkhouser
et al. 2004; Kreavoy et al. 2007; Chaudhuri et al. 2011; Kaloger-
akis et al. 2012; Xu et al. 2012], the low-level part composition
problem has received considerably less attention.

The process of composing two parts together consists of two sub-
problems: (i) alignment: the two parts should be properly aligned
spatially to allow a coherent composition; and (ii) blending: the
surface(s) connecting the two parts should conform gracefully to
the part geometry. These two problems are inter-related as clearly
a good alignment simplifies the blending, and a powerful blending
compensates for an imperfect alignment.

Most works on shape composition require a user to bring the parts
into the right positions and pose [Yu et al. 2004; Sorkine et al. 2004;
Kreavoy et al. 2007; Schmidt and Singh 2010]; this can be a delicate
task when the parts contain sharp features to be aligned. Methods
developed for automatic part alignment have appeared mostly in the
shape registration literature [van Kaick et al. 2011], not shape com-
position. The major difference between the two is that registration
almost always assumes and relies on the two parts to sufficiently
overlap [Rusinkiewicz and Levoy 2001; Gelfand et al. 2005; Aiger
et al. 2008], which is typically not the case for shape composition
since the parts originate from different models.

Existing approaches to both part alignment and blending have all
been designed to handle smooth geometry [Yu et al. 2004; Sorkine
et al. 2004; Kreavoy et al. 2007; Sharf et al. 2006; Lin et al. 2008;
Schmidt and Singh 2010]. In the presence of sharp features, which
are ubiquitous in man-made models, the composition problem be-
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comes more challenging. First, the shape features on both parts
necessitate feature alignment and a smooth conformation between
the features. Second, in the absence of an exact feature matching,
feature alignment is not straightforward. Last but not least, gap
filling and part blending must respect the sharp features, which ne-
cessitates a piecewise smooth formulation.

In this paper, we present an automatic method for composing two
shape parts which may not overlap, with each possibly containing
sharp features. The part alignment problem corresponds to a new
kind of registration, namely, registering parts which may be away
from each other. Our key idea is to construct a natural part con-
tinuation to introduce an overlap as necessary and doing so in the
ambient field instead of explicitly extending the part surfaces. Such
a field-based approach provides a more flexible and effective means
to deal with dissimilarity between the parts, which often come from
different origins. We call our algorithm field-guided registration.
Specifically, the parts are registered by first computing an ambi-
ent vector field continuation from one part. Then the surface of the
other part is brought to alignment with respect to the extension field
by sampling and searching for the proper part pose.

The ambient vector field computeed is a feature-conforming
field (FCF), which enables feature-conforming part alignment and
blending. The FCF characterizes a piecewise smooth volume that
respects and naturally extrapolates the sharp features on the source
surface. The surface-to-field registration is also feature-conforming
as it obeys the surface orientations. Once the two parts are well
aligned, gap-filling is carried out by spline interpolation between
matching feature curves followed by piecewise smooth surface re-
construction [Mallet 1989; Sorkine and Cohen-Or 2004].

Contributions. Our main contributions are:

• A field-guided registration algorithm that is applicable to non-
overlapping shape parts; this is enabled by an ambient field
continuation and a surface-to-field registration.

• A feature-conforming vector field construction, which re-
spects and extrapolates a piecewise smooth input surface.

• A feature-conforming shape composition, allowing a seam-
less assembly of parts even with sharp features.

Figure 1 shows a first glimpse of our shape composition results,
where the shape parts are automatically aligned without overlap and
the gap is filled in a piecewise smooth manner. The field-guided
registration framework is quite general and capable of composing
shapes with or without salient features and with or without overlaps,
as we demonstrate on a variety of 3D models.

2 Related Works

Shape composition has been investigated in various forms in com-
puter graphics. Several works extend the notion of drag-and-drop
or image cloning to surfaces [Biermann et al. 2002; Fu et al. 2004;
Sorkine et al. 2004; Takayama et al. 2011], where geometric details
with a disc topology are pasted onto a surface. Other works focus
on smooth blending between the boundaries of two composed parts
[Singh and Parent 2001; Museth et al. 2002; Yu et al. 2004; Huang
et al. 2007; Lin et al. 2008; Schmidt and Singh 2010]. In these
methods, part positioning and pose are defined by the user, while in
our work, we focus on automatic part alignment.

Composing shape parts for model creation is mostly carried out in
an interactive setting. However, to precisely position the parts in 3D
space for an optimal part fusion can be a tedious task for the user,
especially when the parts possess features to be matched up. Sharf

et al. [2007] rely on a soft ICP registration to automatically snap the
manipulated part to its proper position as soon as the part is brought
to overlap with the composition target. Our registration also intro-
duces a snap, but the composed parts are not required to overlap
and the manipulated part is snapped to an ambient field. Moreover,
unlike Sharf et al. [2007], our method is feature-conforming.

Methods which follow the “modeling by example” paradigm of
Funkhouser et al. [2004] create 3D models via part composition.
The focus of these methods have mostly been on high-level tasks
such as ensuring compatibility between replaceable parts [Kreavoy
et al. 2007] or identifying the most relevant parts for composition
[Chaudhuri et al. 2011; Kalogerakis et al. 2012; Xu et al. 2012].
These methods implicitly suggest that seamless and coherent fu-
sion between composed parts is fundamentally important for cre-
ating readily usable models, but do not explicitly address the chal-
lenging issues faced by the part fusion problem, e.g., automatic part
alignment or feature conformation.

Hassner et al. [2005] present a method to automatically determine
the best place to connect two shape parts, under user-specified con-
straints. However, the optimization of their connection assumes
that the two parts are pre-aligned and no transformation is applied
to either part. Most alignment and registration methods assume that
the parts to be aligned or registered have sufficient overlap [van
Kaick et al. 2011]. When that is the case, partial matching tech-
niques [Gelfand et al. 2005; Li and Guskov 2005; Gal and Cohen-
Or 2006; Aiger et al. 2008; Itskovich and Tal 2011] can be ap-
plied to solve the alignment problem. The surface motion can be
expressed in terms of a reduced deformable model [Chang and
Zwicker 2009] so that multiple range scans can be aligned and si-
multaneously reconstructed for a full articulated 3D model [Chang
and Zwicker 2011]. Again, our approach does not require any part
overlap. Moreover, it is based on a global surface-to-field registra-
tion whose result is insensitive to the initial part positions.

Our part alignment scheme is based on a novel surface continua-
tion, which generates an ambient vector field with respect to surface
sharp features. Other means to extrapolate 3D surface samples into
a volumetric implicit function include radial basis functions (RBF)
[Carr et al. 2001], Poisson interpolation [Kazhdan et al. 2006], or
the use of finite element (FEM) formulations [Sharf et al. 2007] and
dual domain [Lévy 2003]. There are also many works that are based
on 3D distance transforms [Jones et al. 2006]. Our FCF-based ex-
tension mechanism is most similar to Tensor Voting (TV) [Tang
and Medioni 2002; Medioni and Kang 2004], which has also been
applied to surface modeling [Beltowska et al. 2008]. All the afore-
mentioned methods deal with smooth surfaces and generate smooth
ambient fields. In contrast, the ambient field we compute is feature-
conforming and piecewise smooth.

Although in this paper we only consider the case of registering two
objects and piecewise smooth surface extrapolation, it is intriguing
to enhance our technique for a cultural heritage application, specifi-
cally, to reassemble archaeological artifacts from an incomplete set
of pieces [Toler Franklin et al. 2010; Funkhouser et al. 2011]; note
that these pieces cannot overlap. The system proposed by Huang et
al. [2006] reassembles broken pieces by analyzing their geometry.
However, it is based on a global registration of pairwise matching of
adjacent pieces, implicitly requiring that the assembly is connected.

3 Overview

Given two parts P and Q represented by triangular meshes, the goal
of our algorithm is to align and blend them into a complete piece-
wise smooth mesh model. We do not assume that the aligned pieces
overlap, which allows non-conforming parts to be placed apart so
that a smooth transitions between them may be constructed. In
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Figure 2: Field-guided registration with three different fields compared: (a) the ambient vector field FP for part P , where sampled vertices
on P are shown as green dots with blue normals; (b) the vector field FQ of part Q; (c) our registration result shown on top of the combined
field FPQ = FP +T (FQ), where T is the aligning rigid transformation and the grey lines are the fitting spline curves between P and T (Q);
(d) registering T (Q) via RBF fields of both P and Q; (e) registering T̂ (Q) via TV fields of both P and Q.

other words, we search for a rigid transformation that aligns the
two parts so that the surface in between behaves as a natural con-
tinuation and blend between them. Meanwhile, the sharp features
of the two parts are respected by the composition.

Our approach to natural continuation is to extend the influence of
each part’s surface into the ambient space. With the parts P and Q
extrapolated into ambient fields FP and FQ, we transform the dif-
ficult non-overlapping registration problem into a problem of reg-
istering Q to FP and P to FQ using a consistent transformation T .
Once the two parts are properly aligned, they are connected together
via piecewise smooth bridging surface patches.

The key to our field-guided approach is to define an appropriate am-
bient vector field for each part, which may contain multiple surface
patches with sharp edges between them. Unlike existing field gen-
eration approaches, such as RBF and TV, which blend together the
influence of surface patches facing different directions and thus blur
the sharp edges, our field respects sharp features. In fact, both the
direction and the magnitude of our vector field are computed using
positional and normal information of vertices on surface patches.
As shown in Figures 2(a) and 2(b), this allows our field to naturally
extend both the surface position and orientation into the ambient
space in a piecewise smooth manner. Blending between patches
with different directions is avoided and thus sharp features among
them are respected. This leads to better registration results than
using RBF and TV fields; see Figures 2(c-e).

4 Field-Guided Registration

Our registration technique consists of two major steps. First, we
define a vector field FP for each part P based on a set of vertices
ΩP in the vicinity of P ’s open boundaries. Such a field contains
information about the possible piecewise smooth extension of P
and measures the likelihood and conformance that a surface lay on
it. Then, to register two parts P and Q in a feature-conforming
manner, we search for a global optimal rigid transformation T such
that T (Q) matches with FP and T−1(P ) matches with FQ.

Field generation. This step computes a vector field FP for a
given part P that extends the surface outwards starting from P ’s
open boundary. Unlike existing fields, such as TV and RBF,
which assume that the underlining surface is smooth, our feature-
conforming field (FCF) respects sharp features of the surface.

Our goal is to use FP to compute the likelihood of a given vertex v
lying on the extension of P . As shown in Figure 3, the likelihood
of v being on the extension of a surface depends not only on the
location of v but also on its normal. After all, reorienting a ver-
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Figure 3: A 2D illustration showing the likelihood of different
points lying on surface extensions. Dashed lines show possible ex-
tensions of the surface. The desired likelihood values as a function
of point’s orientation are plotted using polar coordinates at three
locations. The optimal direction which yields the maximum like-
lihood is shown in red. The secondary optimal direction, which
may also exist, is shown in blue. Our vector field F (s) is used for
approximating the likelihood variation in the neighborhood of the
maximum likelihood direction only, i.e., the green curves.

tex can have a large impact on the shape of an interpolating surface.
However for 3D models, fully representing the likelihood variations
under different locations and normal orientations requires a 5D rep-
resentation, which leads to expensive computation and storage. To
simplify the problem, we use FP (s) to store the direction that yields
the maximum likelihood at location s and a scalar used for comput-
ing the corresponding likelihood value. This information allows us
to approximate the likelihood variation in the neighborhood of the
maximum likelihood direction; see Figure 3.

Since vertices on the surface extension are usually expected to have
normals similar to those on the original surface, we can assume
that, at a given location s, the maximum likelihood occurs along the
direction dP (s) that coincides with the normals of nearby vertices.
Therefore, to compute dP (s), we optimize the following function:

dP (s) = max
d

∑
u∈ΩP

φ1(s, u)φ2(d, u)∑
u∈ΩP

φ1(s, u)
, (1)

φ1(s, u) = exp(−
(1− n#

u
(s−u)
|s−u| )

2

(1− cosσ1)2
),

φ2(d, u) = exp(− (1− n#
u d)

2

(1− cosσ2)2
),



P
T*(Q)

T(Q)

Q

(a) Field-guided registration (b) FP (c) FQ (d) Section views of FPQ

Figure 4: Registration for a synthetic model, whose ground truth transformation T ∗ is known. A pyramid was cut in the middle, with the top
part Q displaced as shown by the light red part in (a). The rigid transform T obtained using our field-guided registration, shown as T (Q) in
solid red in (a), has a likelihood score of E(T ) = 0.87, while the ground truth (shown in green) has the highest score of E(T ∗) = 0.91. The
FCF for the parts and the combine field after registration are shown in (b), (c), and (d), respectively.
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Figure 5: More field-guided registration results in 2D: the top row
demonstrates the curves composed within our FCF; the middle and
bottom rows present the curves stitched via RBF and TV, respec-
tively. Since the openings of the matching curves are not conform-
ing to each other, RBF and TV fail to properly align the parts. FCF
on the other hand places parts apart from each other, leading to
smooth and natural connections.

where parameters σ1 and σ2 control the supports of two Gaussian
functions, with default values 65◦ and 45◦, respectively. Among
the two terms, the direction evaluation term φ2(d, u) is the dom-
inating one, which favors the direction d that matches the nor-
mal direction of a given vertex u. The normalized weight term
φ1(s, u) gives vertices with normal pointing toward location s
higher weights. Together, they naturally extend the normal direc-
tions of vertices in ΩP into the ambient space in a piecewise smooth

manner; see Figures 2 and 4.

Next, we compute a signed distance between location s and surface
extensions of part P along the direction dP (s). This is achieved
using the following function

lP (s) =

∑
u∈ΩP

φ2(dP (s), u)φ3(s, u)∑
u∈ΩP

φ2(dP (s), u)
, (2)

φ3(s, u) =
n#
u (s− u)

|s− u|+ c
.

Here c is a positive constant, which is set to 1 by default. The
function φ2(·, ·) follows the definition in (1), serving as a normal
weight term by assigning higher weights to vertices with normals
pointing along the maximum likelihood direction dP (s). φ3(s, u)
is an adjusted distance term, whose numerator computes the signed
distance from position s to the tangential plane of vertex u and
denominator adjusts the signed distance value using the distance
between s and u, introducing bias toward positions that are further
away from u as they allow the bridging surfaces to have smaller
curvatures. Hence, the closer φ3(s, u) is to zero, the more likely
position s is on the surface extension defined by u.

The direction dP (s) and the signed distance lP (s) together form
the FCF FP (s). As shown in Figures 2 and 5 for a 2D case and
Figure 1 and 4 for a 3D case, FCF naturally extends the shapes of
the input parts into the ambient space. Compared to RBF and TV,
FCF better preserves sharp features.

With FCF defined, the likelihood of vertex v with normal nv lying
on the surface extension of part P is approximated by:

KP (v) = (max(n#
v dP (v), 0))

we−|lP (v)|, (3)

where w is a constant parameter (2 by default), whose effect is sim-
ilar to the roughness parameter used for modeling the specular re-
flection in Phong illumination model. Evidently, the first term in
the above expression is maximized when the vertex normal nv co-
incides with maximum likelihood direction d(v) and the second
term is maximized when vertex v is close to the contour surfaces of
φ3 computed using existing vertices. Together, the two terms out-
put a high likelihood value when the vertex v aligns well with the
surface extension of part P .



Field-guided rigid alignment. With fields FP and FQ defined
for parts P and Q, respectively, we perform a field-guided surface-
to-field alignment. That is, we solve for a rigid transformation T
between both P and Q given by

T = argmax
T

E(T ), (4)

E(T ) =
1

NQ

∑

v∈ΩQ

KP (T · v) + 1
NP

∑

u∈ΩP

KQ(T
−1 · u),

where Np = |ΩP | and NQ = |ΩQ| are normalization factors.
Defining the objective function in such a manner maximizes the
total likelihood of the two parts in each other’s fields, resulting in a
more robust solution. It also ensures that the field-guided alignment
is order-independent, i.e., aligning P with Q gives the same result
as aligning Q with P .

To compute the rigid transformation T by (4), we utilize the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [Nocedal
and Wright 2006]. Unlike the standard Newton optimization, the
BFGS scheme approximates the Hessian matrix using rank-two
updates specified by gradient evaluations. Our implementation is
based on a Matlab function written by Mark Schmidt, called min-
Func1. This function uses an interface similar to the fminunc func-
tion in the Matlab Optimization Toolbox, but converges faster in
general and is able to optimize problems with a larger number of
variables. Further it allows for numerical gradients and hence only
an initial guess is required.

In our experiments, the termination tolerance on the function value
is 0.01 and the maximum number of iterations allowed is 500. The
gradients are computed numerically using central-differencing. A
bracketing line search for a point satisfying the strong Wolfe con-
ditions is used to compute the step size with an initial step length
of 1 , and cubic interpolation is employed as a safeguard in the line
search. All other parameters used to generate all the results in the
paper taking the default setting from minFunc.

Like Newton techniques, BFGS requires a good initial guess to
guarantee convergence to a local maximum, especially in our ap-
plication where a large number of local maxima may exist. Thus,
we employ the random search (RS) strategy [Rastrigin 1963], i.e.,
we randomly sample the 5D rigid transformation space and pick
the sample T that yields the maximum E(T ) value as the the ini-
tial solution. In practice, we found that when the initial solution
is chosen from 10K random samples, the above RS+BFGS search
consistently outputs the expected rigid transformation.

The field-guided registration algorithm is summarized below:

Input: P , Q, ΩP and ΩQ

for Part P do
Step 1: build a large grid GP in space that contains ΩP .
Step 2: for each cell s of GP , compute dP (s) by (1).
Step 3: for each cell s of GP , compute lP (s) by (2).

end for
for Part Q do

Build GQ and compute dQ and lQ as above.
end for
Obtain a rigid transformation T by solving (4) using minFunc,
where the likelihood KP and KQ can be evaluated using (3).

1Available from http://www.di.ens.fr/˜mschmidt/
Software/minFunc.html
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Figure 6: Illustration of the blending process. (a) We first identify
seed vertices (shown in red) and then search for more vertices on
salient curves (shown in orange). (b) For each seed vertex in one
part, we look for the best matching seed vertex in the other part that
maximizes the average likelihood on the straight line in between.
(c) Vertices on the matching salient curves of both parts are used for
a cubic curve fit. (d) The upper patch is constructed by connecting
sections of the two open boundaries and two sharp curves (bold
lines). The geometry is defined using least-squares meshes.

5 Piecewise Smooth Gap-Filling

Once the two parts are registered, we connect them by filling the
gap in between. First, we identify the boundaries and the sharp fea-
tures which define a number of smooth patches that connect the two
parts. Then the patches are parametrized, triangulated and finally
instantiated with 3-coordinates [Mallet 1989; Sorkine and Cohen-
Or 2004] to form a piecewise smooth transitional surface.

Salient curve interpolation. Given two aligned parts P and Q
with salient curves near their boundaries, we first identify sharp
edges that have smaller dihedral angles than a threshold Θ (default
65◦). For each part we take vertices of those sharp edges adjacent
to the open boundary as a set of seed vertices, denoted as {uPi} and
{uQj} for parts P and Q, respectively. We then trace salient curves
CPi and CQj from uPi and uQj along consecutive sharp edges; see
Figure 6(a). The tracing ends when either a bifurcation is reached
or further tracing is not possible. In practice, we found that the
above simple procedure is sufficient for handling the models used
in our experiments. Nevertheless, more robust techniques, such as
[Ohtake et al. 2004; Hildebrandt et al. 2005], can be applied to
handle more complex geometries.

After the curve sets {CPi} and {CQj} are built, they are paired up
automatically based on the combined likelihood field FPQ = FP +
T (FQ). That is, a curve CPi is matched to CQj if the connection
between the two has the highest average likelihood; see Figure 6(b).
To be precise, the matching curve CQj is determined using:

CQj = argmax
j

∫
Sij

e−|FPQ(s)|ds

|Sij |
, (5)

where Sij is the straight line connecting seeds uPi and uQj with
the length |Sij |.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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Figure 7: Piecewise smooth gap filling given two registration results shown in (a) and (e). In the horn example on the left, salient curve
pairs are interpolated first (b) and then the gaps are filled in a piecewise manner using constrained Delaunay triangulation and least-squares
meshes (c). In the bottle example where the top part does not contain any sharp feature, the bridging surface (f) is generated using smooth
least-squares meshes directly without the salient curve interpolation step. Both sharp features and smoothness are well preserved in the final
compositions (d) and (g).

Two salient curves CPi and CQj are paired up if and only if they
mutually match to each other. For each curve pair {CPi , CQj},
we fit a cubic spline Cij , which is defined as the smoothest curve
that fits a set of data points sampled along CPi and CQj ; see Fig-
ures 6(c) and 7(b). This automatic pairing method works well on
all examples we presented, although additional user interventions
might be needed in some tricky situations. It is also worth noting
that, when the number of sharp features in the two parts do not
match, the above method can still find the most naturally matched
pairs, allowing the unmatched salient curves fade out gradually
along the transitional surface; see Figures 1A and 8A.

Gap filling. As shown in Figures 6(d) and 7(b), the open bound-
aries of parts P and Q, together with the two fitted curves, form
a four-sided gap that needs to be filled. First, we embed the gap
into a 2D rectangle that lies on on the boundary. Next, apply con-
strained Delaunay triangulation [Shewchuk 1996] to create new
vertices (3D location undefined) and build the connectivity. The
geometry of newly introduced vertices is then reconstructed using
uniform Laplacian interpolation. Note that we do not have special
mesh sampling requirements on input parts P and Q. The positions
of vertices in the vicinity of the input parts’ open boundaries ΩP

and ΩQ may be slightly changed for a smoother transition, while
the original sampling, regular or irregular, has minimal influence.

After triangulation, we have three sets of vertices: surface vertices
{Is} which refer to the original vertices in ΩP and ΩQ (yellow in
Figure 6(d)), curve vertices {Ic} which are the vertices lying on
the sharp curves (red in Figure 6(d)), and internal vertices {If}
referring to vertices from the triangulation (blue in Figure 6(d)).
We use I = Is ∪ Ic ∪ If to denote all vertices on the given
patch and G to denote vertex connectivity. We set a column vector
x = [x1, x2, . . . , xi, . . .]

#
i∈I to hold the coordinates of the vertices

in I . The surface vertices and curve vertices (see yellow and red
samplings shown in Figure 6(d)) are the control points for the patch,
and are denoted by {yi}i∈Is∪Ic . We compute x as the minimizer
of the linear least squares problem

‖Lx‖2 +
∑

i∈Is∪Ic

w2
i |xi − yi|2, (6)

where the matrix L is the uniform Laplace operator for the patch
that only considers the connectivity G as in [Sorkine and Cohen-
Or 2004]. The adaptive weights for surface vertices {yi}i∈Is are
defined based on their distance to the area to be filled. That is,
wi = e

−( r̄
ri

)2 , where ri is the Euclidean distance between yi and
the centroid of the gap, and r̄ is the centroid of {ri}i∈Is . Evi-
dently, the closer a surface vertex is to the gap, the larger its de-
formation may be, allowing for a smooth blending. For curve ver-
tices {yi}i∈Ic , we set a high weight and do not update them with
{xi}i∈Ic to preserve the connection between patches as well as
sharp features; see Figures 7(a-d).

It is worth noting that if either part P or Q has no sharp features de-
tected, we skip the salient curve interpolation step and generate the
smooth bridging meshes directly using points on Ω(P ) and Ω(Q)
as control points; see Figure 7(e-g). That is, we simply ignore any
sharp features on part P or Q and perform natural mesh interpola-
tion within one patch.

6 Results

Experiments were run on an Intel Core i7 CPU 860@2.80GHz with
2GB RAM. The registration time is roughly proportional to the
number of input points within the neighborhood of open bound-
aries and to the resolution of the discretized FCF. For instance,
with 100 original vertices, the average FCF (with a resolution of
100∗100∗100) computation time was around 2 mins and the field-
guided alignment time was about 1 min. The average gap filling
time for all presented models was less than 10 seconds.

Figures 1 and 8 generally demonstrate the robustness of our com-
position technique against discrepancies in size, shape, feature and
boundary characteristics of the two parts. In Figure 8, the same
bottom part of perfume bottle is paired with top parts from differ-
ent models. While the open boundary of bottom part has a barrel-
distorted square shape, the open boundaries of top parts have oc-
tagon (8A), pincushion-distorted square (8B), and round shapes (8C
& 8D) with complex and asymmetric cuts. Note that the smaller the
top part is (like 8D), the further it is displaced away from the bot-
tom part by our registration scheme to allow a natural composition.
These kinds of compositions are useful for tasks such as those cov-



Figure 8: Transplanting of shape parts: broken perfume bottles lying on the floor are aligned and blended with the same bottom part shown
in green. All parts used in these examples have non-flat boundaries. The top and bottom parts to be composed may differ in size, shape,
and boundary and feature characteristics, necessitating field-guided registration and blending with non-conforming feature profiles. Note in
particular 8A with unmatched feature counts and 8C with composition between a piecewise smooth part and a smooth part.

Figure 9: Composition of parts with more than one open boundaries. The parts come from the models on the left; in the middle we present
automatic field-guided registration results, where the alignment step searches for a rigid transformation based on multiple pairs of open
boundaries; the right side shows two final models obtained after gap filling.

ered in “modeling by example” [Funkhouser et al. 2004].

Results with more complex geometries are shown in Figures 9-12
to demonstrate our algorithm’s ability in the following aspects:

• Multiple open boundaries (Figure 9). The optimal registra-
tion result needs to take into account the alignments of more
than one pair of open boundaries.

• Partial overlap (Figure 10). The composed parts partially
overlap after optimal field-guided alignment. In order to con-
struct the bridging surface properly, we apply a backward
mesh receding step, which automatically trims the two reg-
istered parts so that the approximated Hausdorff distance be-
tween two is beyond a user-specified threshold. Specifically,
we check the closest distances from boundary vertices on one
part to the other in an alternating fashion. If the distance from
a particular vertex is below a threshold (set as doubling the av-

erage edge length of input two meshes by default), we remove
it and its adjacent faces. This receding operation iterates until
no vertex with distance lower than the threshold exists.

• Noisy parts (Figure 11). In general, a thorough piece-
wise smoothing prior to defining the vector field will cer-
tainly work. Here, to further test the noise resistance of our
field-guided registration, we only applied a bilateral filtering
[Öztireli et al. 2009] on input normals before computing the
FCF, and the following registration behaves rather robustly,
leading to feature-conforming compositions.

• Mismatched features (Figure 12). In the case where the
numbers of salient feature curves on the two parts do not
match, we use equation (5) to select the best matched curve
pairs and let the unmatched ones blend into smooth regions.
Note that our field-guided registration still provide proper
alignments between the parts.



Figure 10: Handling of partial overlap. The optimal alignment found by our registration overlaps the two parts; see zoom-ins. In these
cases, the bridging surfaces are constructed by applying an automatic backward mesh receding step before gap filling. Note that one foot
(marked by black boxes) is facing the wrong direction since the registration is based on geometric match around the open boundaries.

Figure 11: Robustness to noise in the composed parts. Pre-smoothing via bilateral filtering is sufficiently robust for our registration to behave
well. Note that the model 11B also serves as an example with multiple boundaries.

Enforcing alignment constraints. Although our field-guided
registration is designed to work fully automatically, the method it-
self has the flexibility of incorporating additional alignment con-
straints given by the user. This is desirable since our method is
purely geometry-based without considering model semantics. With
user assistance, more semantically meaningful compositions can be
obtained. For example, without any constraint, the composition
shown in Figure 11A (also in Figure 13B) has the human body fac-
ing the side of the horse, instead of the front of it, since it yields a
more geometrically coherent blending between the two models. To
obtain a proper Centaur model, the user can manually specify the
front directions for both models. Our registration then searches for
the best alignment under the constraint that the two front directions
align with each other. This gives us a transformation matrix that

is optimal in the reduced search space and provides a more desired
composition; see Figure 13A. Note that even though we only show
the use of a direction alignment constraint here, other position- and
direction-based constraints can also be enforced.

7 Discussion and Future Work

We have presented a technique to compose a new shape by connect-
ing existing parts together. The technique automatically registers
two parts by aligning and blending them. The key is that we do not
require the parts to conform to each other, nor to have an overlap.
This considerably loosens the requirements on the two connected
parts; they can then be cut from their original shapes only roughly,
simplifying the shape modeling and composition process. Further-



Figure 12: Composition with unmatched feature counts. The chair has four-sided open boundaries, whereas the legs of the green, blue, and
purple robots have three-, six-, and eight-sided ones, respectively. The zoom-ins reveal how the bridging surfaces connect different boundaries
and blend feature curves (highlighted with yellow) into smooth regions. Note however that our field-guided registration still works effectively.

Figure 13: Centaur model obtained with and without user specified constraints. Through enforcing the front directions of the input models
(shown in red arrows) to align with each other, our method produces a proper centaur model 13A. In contrast, the model obtained without any
constraint, e.g., 11A that has been repeated here as 13B for a better side-to-side comparison, is geometrically more coherent but semantically
less desirable.

more, our method is geared toward man-made models, focusing on
shapes with sharp features. As we show through examples in this
paper, the parts are composed together while respecting their sharp
features, forming a composition using piecewise smooth surfaces.

The key problem that the technique faces is therefore how to auto-
matically align non-conforming parts, while possibly leaving gaps
in between to allow the construction of piecewise-smooth bridging
surfaces. Toward this end, we introduce a field-guided registration
mechanism that aligns the two connecting parts through ambient
field continuation and surface-to-field registration. To enable sharp
feature preservation, our feature-conforming field extrapolates both
normals and positions of input surfaces into the ambient space. The
experimental results show that our technique can automatically and
naturally compose together parts, regardless whether or not sharp
features are present.

Limitations and future work. Our current method is limited to
registering only two parts at a time, and both need to have their
open boundaries well-defined. How to automatically align three or
more pieces simultaneously is an interesting question that requires
further investigation. In addition, we now consider the geometric
match only in the vicinity of the open boundaries of two parts, with-
out taking into account the whole shapes and their correspondence.
Hence, while our registration results provide natural interpolations
between input parts, they may not be semantically desirable com-
positions; see Figure 10A and Figure 11A(13B) for example. The
enforcement of additional alignment constraints may be needed and
could be given by the user in these cases. Finally, while our registra-
tion method is capable of handling complicate boundary cuts, the
combination of drastic change of normals and highly unbalanced
feature distributions along boundaries may lead to unnatural align-
ment results; see Figure 14.

In the future, besides addressing the above limitations, resolving



Figure 14: Our method may yield unnatural alignments when the surface normals change drastically near open boundaries and the feature
distribution is unbalanced due to asymmetric cuts.

topological differences and generally the handling of complicated
topologies of the parts or boundaries will be our focus. The field-
guided approach for dealing with complex topologies seems to be
a good starting point. We also like to investigate the possibility of
adopting our method for the restoration of ancient artifacts.
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