
Approximate Pyramidal Shape Decomposition

Ruizhen Hu1,2∗ Honghua Li1 Hao Zhang1 Daniel Cohen-Or3
1Simon Fraser University 2Zhejiang University 3Tel Aviv University

Abstract

A shape is pyramidal if it has a flat base with the remaining bound-
ary forming a height function over the base. Pyramidal shapes are
optimal for molding, casting, and layered 3D printing. However,
many common objects are not pyramidal. We introduce an algo-
rithm for approximate pyramidal shape decomposition. The gen-
eral exact pyramidal decomposition problem is NP-hard. We turn
this problem into an NP-complete problem which admits a practi-
cal solution. Specifically, we link pyramidal decomposition to the
Exact Cover Problem (ECP). Given an input shape S, we develop
clustering schemes to derive a set of building blocks for approxi-
mate pyramidal parts of S. The building blocks are then combined
to yield a set of candidate pyramidal parts. Finally, we employ
Knuth’s Algorithm X over the candidate parts to obtain solutions to
ECP as pyramidal shape decompositions. Our solution is equally
applicable to 2D or 3D shapes, and to shapes with polygonal or
smooth boundaries, with or without holes. We demonstrate our al-
gorithm on numerous shapes and evaluate its performance.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: pyramidality, shape decomposition, 3D printing

Links: DL PDF

1 Introduction

Decomposing a complex shape into simpler primitives is one of
the most fundamental geometry problems. The main motivation
is that most computation and manipulation tasks can be more ef-
ficiently executed when the shapes are simple. Perhaps the best
known problem instance is convex decomposition [Chazelle 1984]
or covering [Cohen-Or et al. 2003]. Other simplicity criteria for sur-
face or solid primitives that have been considered include planarity,
compactness, monotonicity, and cylindricality. In practice, approxi-
mate versions of the corresponding decomposition problems are of-
ten solved, where the resulting components are only approximately
convex, planar, etc.; this tends to produce fewer primitives.

We are interested in a shape decomposition problem where the sim-
ple primitives sought are pyramidal. A shape S is pyramidal if it has
a flat base B(S) (as part of the boundary of S) and for any point p
inside S, the line segment between p and the perpendicular projec-
tion p′ of p onto B(S) lies entirely inside S; see Figure 2(a). Each

∗ruizhen.hu@gmail.com

Figure 1: A 3D object resembling the CCTV tower in Beijing is de-
composed into three pyramidal parts, resulting in significant saving
in time and material when 3D printed via layered fabrication.

pyramidal shape S has a designated orientation O(S), which is the
up-vector with respect to the base. Obviously, each point on S must
be visible from some point on the base, along O(S). The bound-
ary region of S opposite to B(S), along O(S), defines a height
function over the flat 2D domain B(S). Compared to other simplic-
ity criteria such as convexity, pyramidality seemingly admits more
complex geometry. A desirable consequence is that pyramidal de-
composition tends to produce a smaller set of primitives, e.g., as
opposed to convex decomposition; see Figure 2(b) vs. (c).

The simplicity of pyramidality mainly owes to its functional nature,
since processing of pyramidal shapes is confined to 2.5D. For exam-
ple, if height values are pre-computed and stored, testing whether
a point is inside a pyramidal shape takes constant time. The appli-
cation which originally motivated our study of pyramidality is 3D
printing via Fusion Decomposition Modeling (FDM). FDM is one
of the dominant technologies for 3D fabrication. Its layer-based ad-
ditive printing scheme requires support material to be injected (and
later removed) to produce overhangs in a fabricated shape. If the
shape is pyramidal, then no support material is needed, leading to
savings in both material and print time. Last but not the least, any
pyramidal shape is moldable [Rappaport and Rosenbloom 1994;
Priyadarshi and Gupta 2004] — one can inject cement or chocolate
into a mold and then lift the mold along a direction while leaving
the hardened shape completely intact without any breakage.

The goal of exact pyramidal decomposition is to find a decomposi-
tion of a 2D or 3D shape with the minimum number of pyramidal
parts. This is known to be a hard problem. Fekete and Mitchell
[2001] proved that both the 3D version of the problem and the 2D
version on polygons with holes are NP-hard. It was suspected that
on simple polygons, the problem might be polynomial. However,

(a) (b) (c)

p′

p

O(S)

B(S)

Figure 2: A pyramidal shape (a), as part of a pyramidal decompo-
sition (b). A convex decomposition (c) induces more primitives.

http://doi.acm.org/10.1145/2661229.2661244
http://portal.acm.org/ft_gateway.cfm?id=2661244&type=pdf

(a) Point samples (b) Cells (c) Blocks (d) Candidate pyramidal parts (e) Decomposition

Figure 3: Overview of our approximate pyramidal decomposition algorithm. Starting with a uniform point sampling of the interior of
the input shape (a), a series of clustering steps progressively build cells (b), blocks (c), and finally a set of candidate pyramidal parts (d).
Clustering is based on the likelihoods that two primitives, e.g., points, cells, or blocks, belong to the same pyramidal part. An Exact Cover
Problem (ECP) is solved over the candidate pyramidal parts to obtain the final pyramidal decomposition (e).

we are not aware of any construction algorithm, exact or approxi-
mate, for the pyramidal decomposition problem.

In this paper, we address the approximate pyramidal decomposi-
tion problem. That is, we are content with the obtained parts being
only approximately pyramidal, while still aiming to produce as few
parts as possible. This implies that for FDM-based 3D printing,
some small amount of material waste may be inevitable. In the
case of mold design, the geometry of the produced shape may have
to be slightly altered. In practice, exact pyramidal decomposition
of many natural objects or man-made shapes with fine geometric
details would result in too many parts. Approximate pyramidal
decomposition brings the part count to a more manageable level,
offering more practical solutions to real-world problems.

Our approach to pyramidal decomposition turns an NP-hard prob-
lem into an NP-complete one which admits a practical solution.
Specifically, we link pyramidal decomposition to the Exact Cover
Problem (ECP) [Vazirani 2001]. ECP takes as input a collection
of subsets which together cover a given set U and seeks a sub-
collection of the subsets which provides an exact (non-overlapping)
cover for U . Given an input shape, any decomposition or partition-
ing forms an exact cover. As pyramidal decomposition seeks a de-
composition with a small number of pyramidal parts, it becomes an
ECP problem if we already have a set of pyramidal parts that cover
the input shape. As there are infinitely many pyramidal parts in any
given shape, e.g., all cuboids contained in the shape are pyramidal,
the challenge is to build an appropriate set of candidate pyramidal
parts which subsumes optimal decompositions.

We build the set of candidate pyramidal parts bottom-up via clus-
tering. The clustering is based on the likelihood that two primitives
interior to the input shape belong to the same, large pyramidal part.
Preference is given to larger pyramidal parts since they are more
likely to contribute to minimum-sized decompositions. Through
clustering, we progressively build larger and larger solid primitives
(see Figure 3), which we call cells and then blocks, with each can-
didate pyramidal part formed by merging blocks. The cells and
blocks themselves are not necessarily pyramidal; they resemble su-
perpixels from an over-segmentation [Achanta et al. 2012]. Cells
roughly correspond to intersections between large pyramidal parts
in the input shape while blocks are formed by merging cells to bring
down the count for candidate pyramidal parts.

To the best of our knowledge, we present the first construction al-
gorithm for pyramidal decomposition, exact or approximate. Our
focus is on the latter. We demonstrate our algorithm on numerous
shapes and evaluate its performance by comparisons to a greedy ap-
proach, user judgement, and the ground truth, if attainable. When
the input admits a moderately-sized exact pyramidal decomposi-
tion, our algorithm tends to find it, or at least a solution close to

it. However, since the decomposition depends on clustering, we
cannot provide theoretical guarantees or provable bounds.

That said, our clustering-based solution through the connection to
set cover is merited by both generality and versatility. In particular,
our approach is equally applicable to 2D or 3D shapes, to shapes
with polygonal or smooth boundaries, and to shapes with or with-
out holes. Moreover, allowing the pyramidal parts to overlap, i.e.,
not insisting on a partition, is straightforward as one only needs to
change the last step of the algorithm from solving an exact set cover
problem to solving an inexact one.

2 Related work and concepts

The majority of methods for shape decomposition or segmenta-
tion have been designed for surface decomposition [Shamir 2008],
rather than solid decomposition like the problem we tackle in this
paper. Segmentation methods can be broadly classified as either
top-down or bottom-up. Recursive partitioning is a representative
top-down approach. A top-down greedy search would extract the
largest pyramidal part and then recurse on the remaining shape.
This is clearly suboptimal as it lacks the foresight to prevent frag-
mentation of the remaining shape. Also, for an approximate de-
composition, it is difficult to determine the tolerance allowed when
extracting each pyramidal part. Region growing is a typical bottom-
up approach. Our work relies on a bottom-up clustering scheme to
construct the candidate pyramidal parts.

Convexity. While there are clear differences between convexity
and pyramidality, e.g., as one may observe from Figure 2, there
are also apparent connections. In particular, one may view pyra-
midality as a form of “vertical convexity” with the verticality in
reference to a flat base. Specifically, while convexity requires the
line segment between any two points interior to the shape to lie en-
tirely inside the shape, pyramidality confines the line segment to be
perpendicular to the base. Exact convex decomposition is a well-
studied problem [Chazelle 1984; Tor and Middleditch 1984], whose
complexity status appears to mirror that of pyramidal decomposi-
tion. An interesting variation to convex partitioning is to allow the
convex parts to overlap [Cohen-Or et al. 2003].

Approximate convex decomposition. Approximate convex de-
composition has also received much attention over the years. The
approach of Lien and Amato [2007] is perhaps the best known; it
operates top-down and recursively divides an input shape by a best
cut at concave surface features. While boundary analysis is more
efficient than processing shape interiors as in our work, there is no
clear boundary characterizations for pyramidality. Recent work of
Asafi et al. [2013] takes a bottom-up approach, obtaining clusters

(a) (b) (c)

Figure 4: Surface vs. solid decomposition. (a) An optimal decom-
position into two monotone chains (left) also provides a solution
to 2-moldability. But connecting the ends of the monotone chains
does not lead to a partitioning of the polygon. On the other hand,
the optimal pyramidal decomposition (right) does not correspond
to a monotone decomposition or a 2-moldability solution. (b) Con-
necting (boundary) monotone decompositions, for a polygon with
a hole, to form a proper solid decomposition is not straightforward
(left). A pyramidal decomposition (right) involves non-trivial cuts
over the interior. (c) A non-moldable shape (left) possesses a pyra-
midal decomposition into two parts (right).

of points interior to the input shape which possess a high degree of
mutual visibility. Pyramidal decomposition is however not purely
a problem of finding a grouping of interior points, since any search
for pyramidal parts necessarily involves searching for their bases,
whose directions are unknown and vary across parts. Convexity, on
the other hand, is oblivious to orientations.

Monotone polygons and chains. A polygon P is said to be
monotone with respect to a line L if any line orthogonal to L in-
tersects P at most twice. Similarly, a polygonal chain is monotone
with respect to L if any line orthogonal to L intersects the chain
at most once. A monotone decomposition of a polygon is a par-
tition of its boundary into a minimum number of monotone chains
[Chandru et al. 1992]. Liu and Ntafos [1988] studied the problem of
partitioning a polygon into a minimum number of uniformly mono-
tone polygons, where uniformity requires the resulting polygons to
be monotone with respect to a common line.

Clearly, a pyramidal polygon is always monotone with respect to
lines parallel to its base and the non-base boundary of a pyramidal
polygon is always a monotone chain. However, a monotone poly-
gon is not always pyramidal. Moreover, a monotone (chain) decom-
position only partitions the boundary of a shape, not its interior. It
is unclear how one may turn such a solution into a solid decompo-
sition consisting of a general set (without the uniformity criterion)
of monotone polygons, let alone pyramidal polygons. Figure 4(a)
shows that connecting the two ends of a monotone chain may not
even produce a simple polygon. When the shape boundary con-
tains multiple surfaces, e.g., for polygons with holes or hollowed
3D models, connecting the surface decompositions to form a proper
solid decomposition is far from straightforward; see Figure 4(b). At
last, 3D extensions for monotone decomposition appear non-trivial.
In our work, we study pyramidal decomposition, which is necessar-
ily a solid decomposition problem, for both 2D and 3D shapes.

Moldability. A polygon model is k-moldable if there is some par-
tition of its boundary into k pieces such that each piece is remov-
able in some direction after a material injection process [Priyadarshi
and Gupta 2004]. Most relevant research on mold design focuses
on 2-moldability [Rappaport and Rosenbloom 1994; McMains and
Chen 2005; Li et al. 2009]. As a surface decomposition and con-
strained by the need to disassemble the molds, k-moldability may
yield no solution while k-pyramidality does, e.g., see Figure 4(c).
Figure 4(a) shows that there is no direct connection between solu-
tions to k-modability and solutions to k-pyramidality. Instead of
designing molds to build a given model as a whole, a pyramidal
decomposition yields solid parts each of which is 1-moldable; the
parts can then be glued to form the input shape.

Elevation maps. Many methods for segmentation perform sur-
face decomposition [Shamir 2008], where a desirable property of
the resulting patches is that each can be parameterized as an el-
evation map or a terrain over a planar domain. The patch repre-
sentation would facilitate tasks such as Fourier analysis [Pauly and
Gross 2001] and geometry compression [Ochotta and Saupe 2008],
among others. Decomposition into elevation maps may be regarded
as a 2-manifold version of monotone chain decomposition, where
patch boundaries are more complex; they are at least non-planar
in general. There is again no straightforward means to convert a
surface decomposition into a solid, e.g., pyramidal, decomposition.

Terrain decomposition. During our investigation into pyramidal
decomposition, we discovered that a pyramidal shape corresponds
exactly to a terrain polygon or polyhedron, which was studied by
Fekete and Michell [2001]. Additionally, they also identified lay-
ered manufacturing as a motivating application for terrain decom-
position. However, their work only provides NP-hardness proofs
for several instances of the exact terrain decomposition problem
and does not offer a construction algorithm. We have found no
published follow-up works on terrain decomposition nor any study
of the approximate version of the problem.

3D printing. Recent advances in 3D printing technology are pow-
ering a revolution in rapid prototyping and manufacturing. New
geometry problems aimed at improving the process, results, and re-
ducing the cost of shape fabrication have been emerging. Calı̀ et
al. [2012] proposed a method for converting 3D models into print-
able, functional, non-assembly models with internal friction. Works
by Stava et al. [2012] and Prévost et al. [2013] focus on physi-
cal properties of printed objects including structural strength and
standability. Luo et al. [2012] posed a decomposition problem mo-
tivated by 3D printing where the goal is to cut a 3D model into parts
each of which can fit, size-wise, into the printing volume. Most re-
cently, Wang et al. [2013] proposed to reduce the material cost for
3D printing by hollowing the inside of a 3D object. For the purpose
of 3D printing, pyramidal decomposition also aims to reduce the
cost of material and print time, but takes a completely different ap-
proach compared to [Wang et al. 2013] and relies on a completely
different decomposition criterion compared to [Luo et al. 2012].

3 Overview

The input to our algorithm is a closed 2D polygon or 3D polygo-
nal mesh. The output is an enumeration of pyramidal decomposi-
tions ordered by any user-chosen quality criterion. Our algorithm
progressively builds larger and larger interior elements of the input
shape, from sample points to cells, blocks, and candidate pyramidal
parts, and ends with a selection which solves the ECP to obtain the
final decompositions; see Figure 3. For simplicity and ease of illus-
tration, the algorithm is mainly described for 2D shapes; extension
to 3D is straightforward and discussed towards the end.

Rationale for progressive clustering. Since clustering leads to
partitions and the candidate pyramidal parts we seek should overlap
each other, they cannot be obtained by directly clustering the point
primitives. Our strategy is to find intersections of large pyramidal
parts which cover the input shape. The intersections form a partition
and they can be merged appropriately to form an overlapping set of
candidate pyramidal parts. Obviously, without knowing what these
parts are, we must estimate the intersections. We accomplish that
with the initial merging step, leading to cells. Blocks are formed by
clustering cells to reduce the number of primitives that need to be
considered for building candidate pyramidal parts.

Cells. We start by a uniform point sampling of the interior of the
input shape. Cells are the next-level shape primitives as fundamen-
tal building blocks of pyramidal parts. Our goal is for each cell to
contain point samples which are likely to belong to the same large
pyramidal parts. In other words, a cell is unlikely to straddle the
boundary of a pyramidal decomposition. In this way, the cells can
be seen roughly as intersections of these parts. Our approach to cell
generation is to let each sample point p vote for bases of large pyra-
midal parts which contain p. Each cell is formed by sample points
which voted for the same set of bases.

Blocks. We cluster cells into blocks via an affinity measure which
integrates cell capacity over all sampled base directions. Interior
block boundaries are refined to be more straight (or flat in the 3D
case) to better serve as potential bases. This consolidation step con-
siderably reduces the number of atomic units for constructing pyra-
midal parts and improves their quality.

Candidate pyramidal parts. We merge blocks which share, ap-
proximately, at least one common base into a candidate part. By
design, each block is a candidate itself, hence it is guaranteed that
the union of the set of candidates cover the input shape. We de-
fine a pyramidality score and only consider merged candidate parts
whose scores pass a prescribed threshold. Each resulting candidate
pyramidal part has a designated base and an associated score.

Final decomposition. We apply the Algorithm X [Knuth 2000]
to the set of candidate pyramidal parts, which enumerates all the
exact covers of the input shape extracted from the candidate set.
We can filter as well as sort the solutions produced using any user-
specified criterion, such as average pyramidality score.

4 Decomposition algorithm

Given an input shape S, we start by a uniform point sampling of its
interior, then progressively build increasingly larger atomic solid
primitives towards candidate pyramidal parts. Accordingly, our
analysis starts locally and becomes more global as the clustering
progresses. We describe each step in this section with Sections 4.1-
4.4 covering the 2D case and Section 4.5 on the 3D extensions.

4.1 Cell generation

Denote the sample points in S by p1, . . . , pn. We let each pi vote
for a set of bases of pyramidal parts. However, there are too many
bases to consider. To reduce the search cost, we sample a set of m
base directions which correspond to 2m up-vector directions. With
respect to each up-vector direction uk, k = 1, . . . , 2m, each point
pi votes for one base Bik with the highest capacity. The capacity of
a base depends mainly on the area of the maximal pyramidal parts
induced by the base. Higher-capacity bases receive more votes and
support larger pyramidal parts.

We unify all the voting results, from n sample points and over 2m
up-vector directions, into a base vote matrix M = (bik)n×2m,
where bik is the index of the base that pi voted along up-vector
uk. With the premise that points are likely to be in the same pyra-
midal part if they voted for the same set of bases, we collect points
with identical rows to form a cell.

Sampling base directions. We sample a set of base directions
D = {d1, d2, ..., dm}, with two up-vectors u2j−1 and u2j associ-
ated to dj , and confine our pyramidality analysis to these directions.
In particular, the base of each final pyramidal part is along one of
the dj’s, j = 1, . . . ,m. The base directions can be uniformly sam-
pled, which may be suitable for smooth shapes, or adapt to salient

low

high

(a) (b) (c) (d)

u

v

u′

v′

Figure 5: Base capacity measured with respect to two base direc-
tions, shown in (a) and (d). Only bases that completely cut the
shape are considered. Maximal pyramidal parts induced by the
bases are colored in light and dark gray. (b) and (c) show color
plots of capacity of bases (blue: low; red: high).

shape features, which is appropriate when certain bases, such as
dominant faces of a CAD object, are preferred. In the latter case,
preferred directions are selected first with the remaining ones sam-
pled uniformly to cover the 360-degree angle space.

Boundary bias in base sampling. For many man-made shapes,
large flat faces are often good bases of pyramidal parts. We thus
introduce a boundary bias when sampling base directions. Specif-
ically, given the input 2D polygon S, we collect all of its edge di-
rections and assign weights to them based on edge lengths. Then
we recursively select the direction with the highest weight that is
at least 5 degrees away from any already selected direction until
only directions with weight smaller than a threshold remain. After
sampling m0 such directions, the remaining m−m0 directions are
sampled uniformly over the uncovered angle space.

Base capacity. Let g be a line segment inside or along the bound-
ary of S. We denote by u, v the pair of opposite up-vectors associ-
ated with g. We define the (base) capacity of g as

capacity(g) = pam(g, S)/part#(g, S), (1)

where pam(g, S) is the sum of areas of all maximal pyramidal parts
based on g inside S, either with up-vector u or with up-vector v.
The denominator part#(g, S) is the number of connected regions
which would result from decomposing S using the base and its as-
sociated one or more maximal pyramidal parts.

Our definition of base capacity is admittedly heuristic. Consider-
ing only the maximal pyramidal parts expresses our preference for
larger pyramidal parts. Having part#(g, S) in the denominator
correlates with the desire to induce fewer parts. Lastly, our voting
scheme is applied only to bases g which straddle the shape bound-
ary, i.e., the end points of g lie on the boundary of S; we do not
consider bases which lie entirely inside S.

Figure 5 shows two examples of base capacity measurement with
respect to two base directions. Parts shown in light and dark gray
are maximal pyramidal parts induced by the base. The value of
part# induced by the base shown in (a) is 3 and 4 for (d). The color
plots show the capacity of bases which straddle the shape boundary.

Base voting. For each base direction, each point votes twice
along its two corresponding up-vectors. Given an up-vector direc-
tion uk, we project each point pi along direction −uk and consider
all perpendicular bases in the closure of S whose induced maximal
pyramidal parts contain pi. Among these bases, pi votes for the
single base which has the highest capacity. In Figure 6(a), along
the up-vector u, points p2 and p3 both have the bottom line as the
unique top-capacity base to vote for. For point p1 however, a slab
of bases (green strip) all have the same capacity. Let A denote the
set of all such bases. If pi is above the median base in A , position-
wise along uk, then we let pi vote for that median base. Otherwise,

(a) (b) (c) (d)

p1

p2 p3

p1

p2 p3u

v

u′

v′

Figure 6: Base voting and filtering. (a) Points vote for their
highest-capacity bases along two up-vector directions. The bottom
base is voted by both p2 and p3. The median position base among a
set of bases (green strip) having the same capacity is voted by both
p1 and p2. The inset shows a histogram of vote counts. (b) A base
direction along which the vote distribution over all bases has low
variance. (c) Four bases receiving a low number of votes. All bases
covered in (b) and (c) are filtered out. (d) Cells obtained before
base filtering are more fragmented than those obtained after; cells
generated in the latter case are shown in Figure 8(a).

we let pi vote for the lowest base in A . We index all voted bases
and place their indexes into the matrix M .

Vote sharpening. In the last step, prior to cell generation, we
sharpen the base vote matrix M by setting some of its entries to
zero. The rationale is that some bases being voted on do not have
sufficient support from the sample points and as such, they may add
noise to M and lead to fragmented cells. Sharpening is effectively
a merging step, leading to a more coherent set of cells.

We rely on two criteria to filter out low-support bases. First, for
each base direction d, we measure the variance of the number of
votes cast to each base. If the variance is lower than a threshold,
then all bases associated with d are discounted with their corre-
sponding two columns in M zeroed. From the remaining bases, we
further filter out individual bases which receive less than the aver-
age vote count along this base direction. Figure 6(a) shows a base
direction exhibiting high variance, whereas in (b), we show a low-
variance base direction. In (c), we show several bases that received
too few votes. Finally in (d) and Figure 8(a), we can contrast cells
obtained without and with vote sharpening, respectively.

Cell formation. After vote sharpening, we simply collect all
points with exactly the same rows in M to form a cell. This first
clustering step involves only a one-pass scan of the matrix M and
is therefore highly efficient to carry out. While the cells form a par-
tition of S, there is no guarantee that each cell covers a continuous
region. In practice, such disconnections occur occasionally but do
not cause notable issues for block construction. Figure 7(a) shows
the set of bases, with respect to up-vectors u and v, after base fil-

(a) (b) (c) (d)

u v

B1

B2

B3

B4

B5

B6

B1

B5

B2

B3

B4B5

B6

Figure 7: Base selection and cell generation. (a) Bases perpen-
dicular to up-vectors u and v which received sufficient votes. (b)
and (c) show regions of points that voted for the same base (same
color with the voted base indicated) with respect to u and v. Gray
regions contain points who voted for bases that do not have suf-
ficient overall support. (d) Resulting cells when considering only
votes collected for the two up-vector directions u and v.

(a) (b) (c) (d)

Figure 8: Block generation. (a) Cells. (b) Result of cell clustering.
(c) Initial block boundaries by tracing edges of triangulation. (c)
Refined block boundaries via straight line fitting and final blocks.

tering. These bases induce regions of points which voted for the
same base; they are shown in uniform (non-gray) colors in Figures
(b) and (c), respectively for u and v. Each region defines a cell with
respect to an up-vector. The final set of cells can be seen as an in-
tersection of all the per-up-vector cells; see (d). Note that the gray
regions cover points which voted for low-support bases; they do not
contribute to cell formation for their corresponding up-vector.

4.2 Block construction

To reduce the number of primitives for candidate pyramidal part se-
lection (Section 4.3), the most time-consuming step of our pipeline,
we merge adjacent cells into larger and fewer blocks.

Cell clustering. The merging is carried out by a clustering pro-
cess based on an affinity matrix A defined over the set of cells. The
matrix A combines per-direction affinities over all the sampled up-
vectors: A =

∑2m
k=1 Ak, where the affinity between two cells Ci

and Cj along up vector uk is defined as

Ak(i, j) =

{
capacity(Bjk), if Bik = Bjk

0, otherwise, (2)

where Bjk is the base which cell Cj voted along the up-vector uk.
After merging cells into a block, the block is also associated with a
set of candidate up-vector directions, which is the union of the set
of up-vectors from the constituting cells.

We employ Normalized Cuts (NCut) [Shi and Malik 2000] to the
affinity matrix A to cluster the set of cells. However, determining
the right number of clusters is non-trivial, and it has an influence
on the quality of results. We currently resort to the typical heuristic
of enumerating over a varying number of clusters and relying on
a quality criterion to determine the right cluster count. Ultimately,
the result of our algorithm should be judged by the quality of the
final pyramidal decompositions obtained. We define such a quality
measure (6) and discuss its pros and cons in Section 4.4. Instead of
enumerating over all cluster counts, we first estimate k using self-
tuning spectral clustering [Zelnik-Manor and Perona 2004], then
test the range from max(2, k − 5) to k + 5 and sort all the decom-
position results by the quality score (6).

More clusters do not necessarily lead to better decompositions, as
one might have expected. A result with k1 clusters typically does
not refine results with k2 clusters, where k2 < k1, especially when
k1 and k2 are relatively close to each other; see Figure 9 for a sim-
ple example. On the other hand, more clusters increase the cost of
computing candidate pyramidal parts significantly.

Note that after vote sharpening, one may directly cluster the point
samples into blocks using a sample-to-sample affinity measure sim-
ilar to (2). The significance of having the intermediate step of cell
formation is two-fold. Conceptually, cells correspond to intersec-
tions between large pyramidal parts that potentially appear in the fi-

(a) 2 clusters (b) 6 clusters

Figure 9: A simple example which demonstrates that more clusters
do not necessarily lead to better decompositions.

nal decomposition; they are atomic building blocks of these pyrami-
dal parts; hence clustering cells retains the integrity of these parts.
In practice, the number of cells is typically significantly less than
the number of point samples, resulting in performance gains when
spectral clustering is executed on cells rather than point samples.
Such time savings are typically in the order of hundredsfold when
spectral clustering is performed on a few hundred cells rather than
on thousands of point samples. Moreover, the cost of cell forma-
tion is quite minimal and the number of cells does not grow with
the number of point samples.

Whether or not the cell formation step is included, the blocks ob-
tained at the end are typically the same, as long as the same affin-
ity measure based on the sharpened base vote matrix is applied for
clustering. However, our cell formation ensures that point samples
receiving votes from the same set of bases are clustered, which is
desirable for the blocks. Clustering point samples directly, e.g., via
spectral clustering, does not provide such a guarantee and may re-
sult in unreasonable blocks, as shown in Figure 10.

Block boundary. Initial boundaries for a block are obtained by
a dual Delaunay triangulation of the sample points inside the in-
put shape and then taking the triangle edges along the boundaries
of the cells which belong to that block. Figure 8(c) shows an ex-
ample of initial block boundaries obtained. Due to imprecisions of
clustering results, noisy boundaries are typical. For practical pur-
pose, we prefer straight cuts. Therefore we refine the boundaries
by polygonal line fitting via a simplified version of the Douglas-
Peucker algorithm [Douglas and Peucker 1973]. We start with a
line segment connecting the two ends of a piece of boundary, run
Douglas-Peucker and stop as soon as the result lies inside the shape.
Figure 8(d) shows a result with straight block boundaries, yielding
the final set of blocks for candidate pyramidal part selection.

4.3 Candidate pyramidal part selection

Candidate pyramidal parts are formed by merging blocks (Sec-
tion 4.2). We set up a block graph whose nodes are the blocks
and whose edges are given by block adjacency. Each block is asso-
ciated with a set of candidate up-vectors. Any connected subgraph
whose blocks share at least one common up-vector is a candidate
part. The part needs to be sufficiently pyramidal to be considered
for constructing the final decomposition (Section 4.4).

1 2 3 4 5

(a) (b) (c)

Figure 10: Block construction with and without cell formation.
(a) A simple shape with four designated bases (the four boundary
edges); dashed lines show the induced cuts after vote sharpening.
(b) Five cells are obained by examining the vote matrix. (c) Results
of clustering point samples directly. Samples in the same intersec-
tion (region 1) are assigned to different clusters, which would result
in unreasonable blocks.

(a) (b) (c)

u1 u2 u3

p1

p2

p3

Figure 11: Pyramidality estimate. A part combined by three blocks
with pyramidality estimated for three up-vectors. pi is the one of
the lowest points of the part along ui. Pyramidal deficit regions are
shown as gray areas. Pyramidality score is maximized along u2.

Pyramidality score. For a connected part P , we define its pyra-
midality score as follows:

pym∗(P) = max
u

pym(P, u), (3)

where u is one of the up-vector directions considered for computing
the score. Pyramidality of P with respect to u is estimated by

pym(P, u) = 1− pym deficit(P, u)

proj area(P, u)
, (4)

where proj area(P, u) is the projected area of P along u and
pym deficit(P, u) is the area of the pyramidal deficit region. To
define the projected area, we locate the lowest point p of P with
respect to direction u and form a base line passing through p and
perpendicular to u. The set of points which lie between the base
and any point of P along u form the projected region and the area
of that region is the projected area. The pyramidal deficit region is
formed by the set of points in the projected region which lie outside
the shape P . We estimate areas over uniform 2D grids.

Figure 11 shows several examples of pyramidality estimates. A per-
fect pyramidal part would obtain a maximum score of 1. However,
due to discrete sampling of up-vector directions in our work, such
a part may not attain the maximum score.

Candidate part traversal. In the block graph, we examine all
possible candidate parts incrementally, sorted by their block counts.
Initially, each block (a graph node) is a candidate part with size 1.
After generating all parts with size j ≥ 1, parts with size j + 1 are
formed by adding one adjacent block K to each size-j part P if K
shares at least one candidate up-vector with P . The set of candidate
up-vectors for a part, formed by several blocks, is the intersection
of the sets of candidate up-vectors for the blocks.

Candidate pyramidal part. For each candidate part P , we com-
pute its pyramidality score (4) along all the candidate up-vectors
for P . The pyramidality score for P is the maximum obtained. We
designate a base for P as the base which attains that maximum. If
P ’s score passes a user-specified threshold y∗, then it is a candidate
pyramidal part and considered for pyramidal decomposition.

4.4 Final pyramidal decomposition

The NP-complete Exact Cover Problem (ECP) takes as input a set
U of elements, called the universe, and a collection C of subsets
of U . It seeks a sub-collection C∗ ⊆ C, where each element in U
appears in exactly one subset in C∗. We formulate the pyramidal
decomposition problem as an ECP as follows.

ECP formulation and solution. The set B of blocks we obtain
(Section 4.2) form a partition of the input shape S. We take B
as the universe for ECP. Each candidate pyramidal part is formed
by a subset of blocks. Thus the collection of candidate pyramidal

{1} {2} {3} {4} {5} {6} {7} {1,2} {1,3} {3,4} {4,6} {5,6} {6,7}
{1,2,3} {3,4,6} {4,5,6} {4,6,7} {5,6,7} {3,4,6,7} {4,5,6,7}

1 2

3

4 5

6
7

(a) (b) (c) (d)

Figure 12: Candidate pyramidal parts and pyramidal decomposi-
tions via ECP. (a) Input shape and indexed blocks. Bottom shows
collection of subsets for ECP, i.e., the set of candidate pyramidal
parts, each consisting of a set of blocks. (b) shows the optimal de-
composition we found by solving ECP. (c) and (d) show two other
decomposition results with more parts. The exact set covers are
shown by matching colors in the bottom table.

parts provide the collection of subsets of B as part of the input to
ECP. Now it is clear that a solution to ECP gives an approximate
pyramidal decomposition of S. We employ Knuth’s Algorithm X
[Knuth 2000] to find all solutions to the ECP.

Note that given a particular threshold y∗, the set of candidate pyra-
midal parts may not collectively cover the input shape. Figure 12
(bottom) shows a collection of subsets, i.e., the candidate parts,
which cover the input shape. Note that we encode the input shape
by block indexes; see Figure 12(a). Figure 12(b) shows the optimal
decomposition with 2 parts while (c) and (d) show two decompo-
sition solutions having 3 parts. The exact set covers are shown, by
matching colors, in Figure 12 (bottom).

Decomposition quality. Given a set of solutions to ECP, we need
a means to evaluate their quality. Part count would have been the
ultimate quality measure for exact pyramidal decompositions, but
not for approximate ones. In our current work, we employ an es-
timate of material saving, aimed at 3D printing applications, to
define decomposition quality. Specifically, we define the material
saving for printing a decomposition of shape S, i.e., printing the
resulting parts P1, . . . , Pl rather than S as a whole, as

saving(P1, . . . , Pl) = 1−
∑l

i=1 waste(Pi)

waste(S)
, (5)

where waste(·) denotes the least amount of material wasted when
3D-printing a shape using FDM. When estimating waste, we do
consider orientation of the shape/part when layer-printed — we
use the best one. That is, we define waste(Pi) as the smallest
area/volume of the pyramidal deficit region for part Pi, over all
sampled up-vector directions; see Section 4.3. Compared to (3),
material waste is an actual area/volume measure while the pyrami-
dality score is normalized with respect to area/volume.

One may view (5) as the gain, in terms of material saving when
3D printing, that is afforded by the decomposition. The maximum
value for the measure is 1. A value close to 1 implies that the ma-
terial waste for printing the decomposed parts is negligible relative
to that for printing the shape as a whole.

The material saving (5) is defined for a fixed part count l. However,
a small number of parts is often desired. Part count can be factored
in a measure of average material saving:

pd score(P1, . . . , Pl) = saving(P1, . . . , Pl)/l, (6)

which we currently adopt, and maximize, as the quality score for
searching and enumerating pyramidal decompositions.

Four parts down to three Four parts down to two

Figure 13: Turning pyramidal decompositions (left) into overlap-
ping pyramidal covers (right), leading to fewer parts.

Ranking decompositions. For a given part count, we select the
best decomposition which gives the largest amount of material sav-
ing (5). However, we do not present a single solution among these
best results which has the highest pd score, but all of them sorted
by the score. This is because the quality score is still somewhat
subjective and the desirable properties for a decomposition may be
object- and application-dependent. In practice, the user can choose
among the sorted decomposition results.

Overlapping cover. Aside from 3D printing, molding, and cast-
ing, other applications, e.g., collision detection, may find an over-
lapping pyramidal cover useful, where the obtained parts are al-
lowed to overlap. This is easy to accomplish within our solution
pipeline. Only the last step needs a change from solving an ECP
to solving an overlapping cover problem. Since the latter encom-
passes the former, from the same set of candidate pyramidal parts,
the best overlapping cover, in either part count or pd score (6), is
always at least as good as the best pyramidal decomposition. We
adopt the greedy algorithm of Chvatal [1979] to compute overlap-
ping covers. Figure 13 shows two results on star-like shapes, for
which allowing for overlaps effectively reduces the part count.

4.5 Extension to 3D

Changing our decomposition algorithm from 2D to 3D is fairly
straightforward. The following is a list of changes worth noting:

• Base sampling: In 3D, there are no longer base directions as
each base is part of a plane. Thus we sample base orienta-
tions, i.e., up-vectors, instead.

• Boundary bias: Instead of biasing on edge directions, we
collect face orientations and accumulate face areas as weight.

• Interior processing: In 2D, we rely on a uniform 2D grid
inside the shape S to estimate projected areas, to obtain max-
imal pyramidal parts, and to infer connected regions. In 3D,
we naturally work with a uniform voxel grid. Extending the
above tasks from 2D grids to 3D grids is straightforward.

• Base capacity: Same as the 2D case, we only consider a base
which intersects the input shape S along its entire boundary.

• Block boundary refinement: To obtain cell boundaries, we
construct a dual Delaunay tetrahedralization of the point sam-
ples. Any triangle face that separates two tets containing
points from adjacent blocks is on a block boundary. Block
boundary refinement is a mesh simplification problem. There
are different mesh variants of the Douglas-Peucker algorithm,
e.g., see [Heckbert and Garland 1997]. However, it is beyond
the scope of our current pursuit to seek a general solution.
In our current implementation, we simply find a best-fitting
plane to the set of points on a boundary patch. A desirable
consequence of this simple solution is that all the interior part
boundaries obtained are piecewise planar, allowing the parts
to be easily glued together to assemble the full model.

Figure 14: A gallery of 2D approximate pyramidal decomposition
results, all attaining the best average material saving score (6).

Model #c #b #p time est. (real) saving
Inuksuk 57 6 243 10m 97% (99%)
Duck 338 11 860 15m 95% (92%)
Lamp 326 9 524 10m 98% (96%)
Helix 1072 13 552 16m 81% (86%)
Hands 298 9 412 11m 70% (56%)
Genus-3 56 5 60 10m 72% (95%)
Desk 64 7 141 8m 88% (97%)

Table 1: Statistics and timing, measured on an Intel(R) Core(TM)
3.40Hz CPU with 16GB RAM, for pyramidal decomposition. Num-
ber of cells, blocks, and candidate pyramidal parts obtained are
denoted by #c, #b, and #p, respectively. We report the total pro-
cessing time for computing the decompositions, as well as estimated
(5) and real (in parentheses) material savings incurred.

5 Results and evaluation

In this section, we first show results for approximate pyramidal
decomposition and then evaluate our algorithm. Experiments are
conducted on both synthetic shapes and models obtained from vari-
ous repositories. Our dataset contains 149 two-dimensional shapes
and 80 three-dimensional shapes. Many 2D shapes come from
the Brown database [Sharvit et al. 1998] consisting of 99 binary
images from 9 different categories. Most 3D models come from
AIM@SHAPE, Archive 3D, and other on-line resources. Some
models were selected or synthesized to test specific aspects of our
algorithm, e.g., the ability to handle holes.

Parameters. Our algorithm has four main parameters: number of
sample points n, number of sampled base directions m, number of
clusters k for block generation, and the pyramidality threshold y∗

for candidate part selection. All the results shown in the paper were
obtained with n = 5, 000 and m = 36, and by sampling the base
directions with boundary bias. Increasing the number of sampled
base directions tends to improve results, in particular with lower
values of m. However, beyond m = 36, we find the change to
be quite minimal. Note that there is no guarantee that the increase
always improves decomposition. This is due in part to the difficulty
and hence sub-optimal results of clustering analysis.

Instead of fixing k, we enumerate over a short sequence (typically 2
to 10) of values for k; see Section 4.2. For the pyramidality thresh-
old, we start with y∗ = 0.95, but if no decompositions are found,
we automatically decrease y∗ by 0.05 at a time until a decompo-
sition is found or it reaches the pyramidality of the input shape.
There are a few other thresholds all of which hold fixed values. The
threshold for voting sharpening is set to be the variance of a hypoth-

4 parts

3 parts

4 parts

5 parts

3 parts

3 parts

5 parts

6 parts

2 parts 4 parts

3 parts

3 parts

3 parts

5 parts

6 parts

2 parts

2 parts 2 parts

3 parts

7 parts

Figure 15: A gallery of 3D decomposition results, all attaining the
best quality score (6). Part counts are marked in figure.

4 parts

3 parts 7 parts

8 parts

4 parts

3 parts 3 parts

Figure 16: Pyramidal decompositions computed by our algorithm
which achieve the best material savings (5), in contrast to last two
rows of results in Figure 15. Part counts are marked in figure.

esized vote distribution, where we assume n point samples evenly
vote for nb bases along that direction. In our experiments, we set
nb = bn/100c.

Decomposition results. Figures 14 and 15 show a gallery of ap-
proximate pyramidal decompositions found by our algorithm for
a variety of shapes, 2D or 3D, CAD-like or organic with smooth
boundaries, and with or without holes, demonstrating the general-
ity and versatility of our approach. These results all achieve the
best average material saving score (6), which appears to provide a
strong bias towards low part count.

5 parts, 58.3% 7 parts, 66.8% 10 parts, 86.4%

Figure 17: Decomposition results with increasing number of parts,
leading to increasing material savings, estimated by (5).

Figure 18: Decomposition results on more complex models, result-
ing in higher part counts.

In Figure 16, we show several different decompositions, for a few
shapes in Figure 15, which have the best material savings (5), re-
gardless of part count. Since the part counts are still quite low, one
may regard these results as better than their counterparts in Fig-
ure 15. As shown in Figure 17, increasing part counts typically
results in more material saving, as one would expect.

Figure 18 shows additional results on more complex models leading
to higher part counts. Of particular interest is the decomposition of
models with interior cavities, e.g., the hollow SIGA model with the
SIGGRAPH logo and the cube composed of a Hilbert curve struc-
ture. Printing of such a model as a whole would result in support
material interior to the shape (see Figure 19) which would be hard
to remove. This situation provides an added motivation for shape
decomposition prior to 3D printing.

Statistics. Table 1 provides timing and other statistics for decom-
posing models in the top two rows of Figure 15. Primitive counts
reported are associated with the result achieving the best quality
score (6) over the choices for k, the cluster count. It is clearly ev-
ident that the progressive construction of cells, blocks, and can-
didate parts leads to significant reduction of the (ECP) problem
size. Reported timing accounts for searching over all cluster counts,
which explains the relatively long execution time. The most time-
consuming components of the algorithm are cell generation (about
20% time spent) and candidate pyramidal part selection (70%).

Estimated vs. real material saving. The material saving mea-
sure (5) employed by our algorithm is only a computational esti-
mate since the waste(·) measure, which appears in both the de-
moninator and numerator of (5), is an over-estimate. State-of-the-
art 3D printers, such as the MakerBot Replicator II used for our ex-
periments, produces less waste than the estimate given by waste(·).
In particular, the layered printing is able to build the layers along
a slope that makes a slightly acute angle with the ground; see the
CCTV model in Figure 19 in particular. Additionally, regions cov-
ered by the support material are printed at a lower density.

Figure 19: Photographs of some physically printed and fabricated
3D models. In each photo, from left to right, we show printed whole
model, printed parts with bases lay on the ground, and the 3D
model produced by gluing the parts which have been hand-painted
in color. Note the printer’s ability to print slightly sloped geometry,
e.g., on the CCTV model, so as to avoid some support material es-
timated in (5). Support material is noticeable as it is printed at a
lower density. Also note support material interior to some shapes,
e.g., the SIGA model, which would be hard to remove.

In Table 1, we report both estimated and real material savings,
where the latter is obtained by replacing waste(·) in (5) by the
actual material consumption as reported by the software that comes
with the 3D printer. Note again that a reported saving close to 1
signals significant gains by the corresponding decomposition.

Assembly of printed parts. We physically assemble the printed
parts simply by gluing them along their flat, shared boundaries. Fig-
ure 19 shows a few assembled results. Perhaps a more elegant way
of connecting the parts is via specially designed connectors [Luo
et al. 2012]. In this paper, we focus on the pyramidal decomposi-
tion problem. Issues related to structural strength or stability of the
glued model, as well as those concerned with connector design, are
beyond the scope of our current investigation.

Figure 20: Results from 2-pyramidal decomposition. Greedy ap-
proach (top row) is clearly sub-optimal, in contrast to our method
(middle row). Last row shows results on a few simple 3D shapes.

2-pyramidality. We test our algorithm on 2-pyramidality, i.e.,
pyramidal decomposition to two parts (2PD) only. We selected
and created 25 two-dimensional shapes and 30 three-dimensional
shapes that are non-pyramidal with each admitting an exact 2PD.
The 2PDs must be optimal in part count and can serve as the ground
truth. The shapes were selected from on-line search of common 2D
shapes, logos, and simple 3D objects. We also hand-crafted a num-
ber of 2D shapes which we believe to represent difficult cases, e.g.,
the house shape in Figure 21. We ran our decomposition algorithm
and in all 55 cases, a 2PD was found. A solution we obtain may be
different from the ground truth since multiple 2PDs may be possi-
ble. The last two rows of Figure 20 show a few interesting cases.
All other results can be found in the supplementary material.

Comparison to greedy approach. We compare our algorithm
to a greedy scheme on the 25 two-dimensional shapes from the
last test. Using the same set of sampled base directions as our al-
gorithm, the greedy scheme searches, along any direction, for the
pyramidal part with the largest area. The found part is removed and
the process repeats until all the connected parts of the remaining
shape pass a pyramidality threshold or become too small. Note that
neither our method nor the greedy approach tested is designed for
2-pyramidality only. In only 2 of the 25 cases, a two-way decom-
position was found by the greedy scheme; in 16 cases, the greedy
scheme ended up with a decomposition with more than 4 parts, evi-
dently showing fragmentation. The top row of Figure 20 shows the
suboptimal results obtained by the greedy approach, in contrast to
the two-way solutions found by our algorithm (second row).

Comparison to human judgement. To further evaluate our al-
gorithm on more complex inputs, for which ground truth is hard to
establish, we conduct a user study. We asked 30 users to manually
define the optimal, i.e., minimum-sized, pyramidal decomposition
in their view, on 20 shapes with varying complexity. Approximate
pyramidal parts are allowed and the users can decide how they want
to balance between part count and pyramidality of each part. For
ease of user interaction, we only consider 2D shapes for this experi-
ment. Each user worked on 10 shapes, yielding 300 decompositions
in total, 15 results per shape. The user study material, including all
20 shapes, can be found in the supplementary material.

We run our decomposition algorithm on the 20 shapes and compare
our results to user data. However, to obtain a proper quantitative
comparison is not straightforward. For one, user judgements on
what is the best pyramidal decomposition can vary greatly. More
importantly, it is not clear how to combine material saving and part
count to arrive at the most appropriate comparative measure. That
being said, as the first measure, we stick with the average saving

Figure 21: Visual comparison between decomposition results ob-
tained by human users (four columns in right panel) and by our
algorithm (left column). For the tree (row 1), most of the users (14
out of 15) returned results with more than four parts and only one
user provided the optimal solution with 3 parts. Our 3-way de-
composition is imperfect, but quite close to the optimal (shown by
dashed lines). For the house (row 2), our algorithm beat all users
in both part count and material saving. The fish (row 3) shows an
example where human users outperformed our algorithm.

0%

50%

100% ours user
tre
e

�s
h
ho
us
e

�s
h
ho
us
e

tre
e

Figure 22: Comparison between our decomposition algorithm and
user performance. Left: Percentage of winning as judged by aver-
age material saving score (6). Right: Percentage of absolute wins
in terms of both part count and material saving (5). The tree, fish,
and house shapes are shown in Figure 21.

score (6) as the combination. Figure 22 (left) plots color bars to
show the percentages of our wins vs. the users’ wins. Averaged
over all the 300 user-returned results on the 20 shapes in the study,
our algorithm wins over the human users 67.7% of the time.

As a second and more stringent measure, given two decomposi-
tions, we say that one is absolutely better than the other if it has a
smaller part count as well as a higher level of material saving (5).
For each shape, we measure the percentage of times our algorithm
does absolutely better than all users and percentage of times some
user did absolutely better than our algorithm. These percentages
are plotted in Figure 22 (right), showing that on 15 out of the 20
shapes, our algorithm has a higher winning percentage.

The user study results appear to suggest that overall, our algorithm
even outperforms human users, at least based on the comparative
measures employed. It is interesting to see that for some shapes,
almost no user was able to obtain the optimal part count, which our
algorithm achieves, perhaps with an imperfect decomposition; see
Figure 21 for the tree and the house examples. For the tree, only one
out of 15 users decomposed the shape into three parts which is close
to optimal. For the house example, none of the users decomposed
the shape into two parts as we did, which is optimal. On average,
users took 138 seconds to decompose a shape. For the house, the
average time is 91 seconds, and 123 seconds for the tree. As we

can see, the users did spare their effort, but were still unable to
discover the optimal solution in difficult cases. This gives evidence
that pyramidal decomposition is a more challenging task to humans
compared to convex or semantic segmentation.

On the other hand, there are cases for which our algorithm is out-
performed; see the third row of Figure 21. This fish example reveals
that our algorithm may not find long straight cuts over a shape. A
possible reason is that as our final cut is formed by boundaries of
connected blocks, as a result of clustering, these boundaries are
hardly collinear. This also explains the imperfect boundaries we
obtained for the tree example in the first row. Overall, it can be
observed by comparing the two sets of results, that while our algo-
rithm tends to provide results with fewer number of parts but per-
haps with less material savings, human users tend to cut the shape
into more pieces with higher pyramidality.

6 Conclusion, limitation, and future work

Pyramidality is a relatively new and unexplored shape property.
Pyramidal shapes are 2.5D and they are highly relevant in applica-
tions such as 3D printing, molding, and casting. At the same time,
pyramidal decomposition is a provably hard problem in general and
to date, there are no known construction algorithms, approximate or
exact. Hence, we believe that a study of pyramidal decomposition
is both of practical and theoretical interests.

In this paper, we make a preliminary attempt and introduce the first
construction algorithm for approximate pyramidal decomposition.
The key insight is that the decomposition problem can be solved
efficiently by turning it into a exact set cover problem. The bottom-
up clustering-based approach is both general and versatile, allowing
the same construction algorithm to process 2D and 3D shapes with
most geometric and topological varieties. The performance of our
algorithm is demonstrated and evaluated on numerous shapes and
through several comparative studies. Naturally, as a first attempt,
our algorithm still leaves much room for improvement.

Shape semantics. Our current work focuses on material sav-
ing and obtaining as few approximate pyramidal parts as possi-
ble. Hence, the decomposition results obtained do not quite fol-
low shape semantics, e.g., finding cuts over concave areas or those
respecting shape symmetry. This is by design. However, our solu-
tion pipeline allows the incorporation of shape semantics quite eas-
ily. We can introduce biases towards symmetric cuts or cuts over
concave areas when sampling base orientations. We can also add
a semantics term in the capacity definition (1) which gives higher
weight to the semantic cuts above. Note however that consideration
of semantics may set conflicting goals as opposed to obtaining a
minimal decomposition. Figure 21 contains examples showing that
symmetric decompositions may lead to suboptimal part counts.

Base selection. Sampling a pre-determined set of base orienta-
tions, rather than deriving the bases or their orientations as part of
an optimization, is obviously undesirable. The final decomposition
is limited by the choice of the set of base orientations, possibly
leading to sub-optimal results. Furthermore, our heuristic defini-
tion of base capacity gives preferences to boundary bases and in-
terior bases which straddle shape boundaries; this may also lead to
sub-optimal bases in the final decomposition. These issues could be
remedied during post processing, i.e., via more advanced boundary
refinement, which must then resort to other heuristics.

Parallelizability. Currently, our algorithm is not implemented in
the most efficient manner; it runs on single-threaded CPUs, requir-
ing minutes to process a shape. However, the most time-consuming
parts of the algorithm, cell generation and candidate pyramidal part

Figure 23: The best pyramidal decompositions (in color) our algo-
rithm is able to achieve may be rather far from optimal (uncolored).

computation, which together take up about 90% of the execution
time, are both highly parallelizable. Cell generation mainly in-
volves base voting, which can be executed independently for each
base direction. Searching for candidate pyramidal parts involves lo-
cal graph traversal and can be parallelized at each node. We expect
a GPU implementation to incur a significant speed-up.

Optimization objectives. For approximate pyramidal decompo-
sition, we still lack a clear optimality criterion, and as such, our
construction algorithm is primarily a forward search+rank scheme
and not an optimization. The average material saving score (6) is
sensible, but seems difficult to optimize directly. It would be ideal
to have a clear pyramidality and part count trade-off in an optimiza-
tion objective as well as in the decomposition results. This may be
possible if the pyramidality score could be factored in earlier in our
progressive clustering, e.g., for cell or block construction. We leave
that for future work. Currently, we have opted to enumerate a set
of solutions, which seems appropriate in the absence of a consen-
sus objective function; it also allows a user to choose application-
specific solutions from a small set of good alternatives.

Further limitations. Our current algorithm does not offer any
theoretical guarantees, such as approximate bounds in terms of
number of parts in a decomposition. If a shape has a finite exact
pyramidal decomposition, our algorithm is not guaranteed to find
it. Figure 23 shows two cases where the best results our algorithm
is able to obtain are quite far from the optimal. Some of the issues
can be attributed to boundary artifacts, lack of proper base direc-
tions, or the limits of clustering. Although the clustering approach
offers versatile options in the affinity measure employed, solutions
to clustering can be sub-optimal. The selection of candidate pyra-
midal parts depends on the generated blocks and block boundary
artifacts can cause the pyramidality score of potentially good can-
didates to fall below the threshold. Refining block boundaries to
maximize the pyramidality of the candidates can be an effective
remedy; we leave that for future work.

Future work. Aside from addressing the limitations mentioned
above, we would like to further analyze the behavior of our algo-
rithm as we increase the number of uniformly sampled base di-
rections towards infinity. It would be desirable to prove a certain
form of convergence. On the technical front, boundary refinement
for decomposition in 3D still leaves room for improvement. As in
practice, parts that are not exactly pyramidal can be printed with-
out waste material, it would be useful to incorporate slope angles
allowed by a 3D printer with no support material into our waste
measure. While our work offers a practical solution to pyramidal
decomposition, it is still of interest to seek algorithms with theoret-
ical guarantees. For example, it is desirable to settle the complexity
of optimal exact pyramidal decomposition for simple polygons. Fi-
nally, we would like to look into the interesting problem of “pyra-
midalization”, which seeks a minimal way to modify a given shape
to maximally reduce the size of its pyramidal decomposition, so
that the shape becomes more printable, moldable, and castable.

Acknowledgements

We first thank the anonymous reviewers for their valuable com-
ments and suggestions. We are grateful to Joseph Mitchell for
his comments on our work and Ibraheem Alhashim for sharing his
code and providing suggestions. Thanks also go to Hadar Elor for
careful proofreading of early drafts of the paper and Ligang Liu
for some initial discussions. This work is supported in part by
grants from Natural Sciences and Engineering Research Council of
Canada (No. 611370), China Scholarship Council, the Israeli Min-
istry of Science, and the Israel Science Foundation.

References

ACHANTA, R., SHAJI, A., SMITH, K., LUCCHI, A., FUA, P.,
AND SÜSSTRUNK, S. 2012. SLIC superpixels compared to
state-of-the-art superpixel methods. IEEE Trans. Pat. Ana. &
Mach. Int. 34, 11, 2274–2282.

ASAFI, S., GOREN, A., AND COHEN-OR, D. 2013. Weak con-
vex decomposition by lines-of-sight. Computer Graphics Forum
(SGP) 32, 5, 23–31.

CALÌ, J., CALIAN, D., AMATI, C., KLEINBERGER, R., STEED,
A., KAUTZ, J., AND WEYRICH, T. 2012. 3D-printing of
non-assembly, articulated models. ACM Trans. on Graph (SIG-
GRAPH Asia) 31, 6, 130:1–130:8.

CHANDRU, V., RAJAN, V. T., AND SWAMINATHAN, R. 1992.
Monotone pieces of chains. ORSA Journal on Computing 4, 4,
439–446.

CHAZELLE, B. 1984. Convex partitions of polyhedra: a lower
bound and worst-case optimal algorithm. SIAM J. Comput. 13,
488–507.

CHVATAL, V. 1979. A greedy heuristic for the set-covering prob-
lem. Mathematics of Operations Research 4, 3, pp. 233–235.

COHEN-OR, D., LEV-YEHUDI, S., KAROL, A., AND TAL, A.
2003. Inner-cover of non-convex shapes. International Journal
of Shape Modeling 9, 2, 223–238.

DOUGLAS, D., AND PEUCKER, T. 1973. Algorithms for the re-
duction of the number of points required to represent a digitized
line or its caricature. The Canadian Cartographer 10, 2, 112–
122.

FEKETE, S. P., AND MITCHELL, J. S. B. 2001. Terrain decom-
position and layered manufacturing. International Journal of
Computational Geometry & Applications 11, 06, 647–668.

HECKBERT, P. S., AND GARLAND, M. 1997. Survey of polyg-
onal surface simplication algorithms. In SIGGRAPH Course on
Multiresolution Surface Modeling.

KNUTH, D. 2000. Dancing links. Millenial Perspectives in Com-
puter Science, 159–187.

LI, W., MARTIN, R. R., AND LANGBEIN, F. C. 2009. Molds for
meshes: Computing smooth parting lines and undercut removal.
IEEE T. Automation Science and Engineering 6, 3, 423–432.

LIEN, J.-M., AND AMATO, N. M. 2007. Approximate convex
decomposition of polyhedra. In SPM ’07: Proceedings of the
2007 ACM symposium on Solid and physical modeling, ACM
Request Permissions.

LIU, R., AND NTAFOS, S. 1988. On decomposing polygons into
uniformly monotone parts. Information Processing Letters 27,
2, 85–89.

LUO, L., BARAN, I., RUSINKIEWICZ, S., AND MATUSIK, W.
2012. Chopper: Partitioning models into 3D-printable parts.
ACM Trans. on Graph (SIGGRAPH Asia) 31, 6, 129:1–129:9.

MCMAINS, S., AND CHEN, X. 2005. Finding undercut-free part-
ing directions for polygons with curved edges. Journal of Com-
puting and Information Science in Engineering 6.

OCHOTTA, T., AND SAUPE, D. 2008. Image-based surface com-
pression. Computer Graphics Forum 27, 6, 1647–1663.

PAULY, M., AND GROSS, M. 2001. Spectral processing of point-
sampled geometry. In Proc. of SIGGRAPH, 379–386.

PRÉVOST, R., WHITING, E., LEFEBVRE, S., AND SORKINE-
HORNUNG, O. 2013. Make It Stand: Balancing shapes for 3D
fabrication. ACM Trans. on Graph (SIGGRAPH) 32, 4, 81:1–
81:10.

PRIYADARSHI, A., AND GUPTA, S. K. 2004. Geometric algo-
rithms for automated design of multi-piece permanent molds.
Computer-Aided Design 36, 3, 241–260.

RAPPAPORT, D., AND ROSENBLOOM, A. 1994. Moldable and
castable polygons. Computational Geometry 4, 219–233.

SHAMIR, A. 2008. A survey on mesh segmentation techniques.
Computer Graphics Forum 27, 6, 1539–1556.

SHARVIT, D., CHAN, J., TEK, H., AND KIMIA, B. B. 1998.
Symmetry-based indexing of image databases. J. Visual Com-
munication and image representation 9, 366–380.

SHI, J., AND MALIK, J. 2000. Normalized cuts and image segmen-
tation. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 22, 8, 888–905.

STAVA, O., VANEK, J., BENES, B., CARR, N., AND MĚCH, R.
2012. Stress relief: improving structural strength of 3D printable
objects. ACM Trans. on Graph (SIGGRAPH) 31, 4, 48:1–48:11.

TOR, S. B., AND MIDDLEDITCH, A. E. 1984. Convex decom-
position of simple polygons. ACM Trans. on Graph 3, 4 (Oct.),
244–265.

VAZIRANI, V. V. 2001. Approximation Algorithms. Springer.

WANG, W., WANG, T. Y., YANG, Z., LIU, L., TONG, X., TONG,
W., DENG, J., CHEN, F., AND LIU, X. 2013. Cost-effective
printing of 3D objects with skin-frame structures. ACM Trans.
on Graph (SIGGRAPH Asia) 32, 6, 177:1–177:10.

ZELNIK-MANOR, L., AND PERONA, P. 2004. Self-tuning spectral
clustering. In Proc. Advances in Neural Information Processing
Systems (NIPS), vol. 17, 1601–1608.

