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Abstract

We present algorithms to produce Delaunay meshes from arbitrary triangle meshes by edge flipping and geometry-

preserving refinement and prove their correctness. In particular we show that edge flipping serves to reduce mesh

surface area, and that a poorly sampled input mesh may yield unflippable edges necessitating refinement to ensure

a Delaunay mesh output. Multiresolution Delaunay meshes can be obtained via constrained mesh decimation. We

further examine the usefulness of trading off the geometry-preserving feature of our algorithm with the ability to

create fewer triangles. We demonstrate the performance of our algorithms through several experiments.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid and
object representations

1. Introduction

Delaunay triangulations have been studied extensively in
computational geometry and have found applications in
many fields, including numerical analysis, computer graph-
ics, image processing, and geographical information sys-
tems. The classical theory of Delaunay triangulations has
been developed in 2D; coverage on this can be found in any
computational geometry text, e.g. [dBvKOS98, Ede01]. A
variety of algorithms for producing planar Delaunay triangu-
lations of bounded domains or point sets are known [Ede01].

2D Delaunay triangulations can be generalized to higher
dimensions; e.g., in R

3 we are concerned with Delaunay
tetrahedralizations [She97]. Subject to some constraints,
they can also be extended to non-Euclidean geometries.
Most notably, the intrinsic Delaunay triangulation or iDT

of a sufficiently dense set of points on a Riemannian man-
ifold is well defined in terms of geodesic curves [LL00].
Bobenko and Springborn [BS05] defined iDTs of the ver-
tex set of piecewise flat surfaces. In the mesh setting, the set
of vertices of an iDT are the original vertices of the mesh
while the edges may be formed by geodesic lines over the
polyhedral mesh surface.

It has been noted and empirically verified that geomet-
ric processing over triangle mesh surfaces which involve nu-
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merical evaluation of elliptic PDEs, e.g., for mesh parame-
terization and reaction diffusion textures, can benefit greatly
from having an iDT [FSBS06]. Several desirable properties
of the linear finite element discretization of the Laplace-
Beltrami operator have also been identified for iDTs [BS05],
e.g., guaranteed validity of discrete harmonic maps [Flo98].

Recently, Dyer et al. [DZM07] defined a Delaunay mesh

to be a manifold triangle mesh whose edges form an iDT of
its vertices. The importance of Delaunay meshes has been
recognized [FSBS06]; having a Delaunay mesh for geom-
etry processing would remove the need to store the con-
nectivity and geometry of the iDT in addition to that of
the mesh. However, to date there have been no algorithms
that can guarantee such meshes. Dyer et al. [DZM07] al-
lude to the use of edge flipping in the spirit of the tradi-
tional scheme [Law77, FSBS06], where any mesh edge that
is not locally Delaunay or NLD, is flipped. But flipping mesh
edges changes the geometry of the domain and the termina-
tion proofs for the traditional algorithms no longer apply. Al-
though the geodesic edge flipping algorithm [FSBS06] does
carry a termination guarantee, a mesh obtained by straight-
ening the edges (geodesic lines over the mesh surface) of an
iDT is not Delaunay in general [DZM07].

In this paper, we develop construction algorithms for De-
launay meshes and make the following contributions.

• We propose a geometry-preserving algorithm (i.e., one in
which the polyhedral surface of the output mesh is iden-
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tical to that of the input mesh) for producing a Delaunay

remeshing of a given manifold triangle mesh and prove
that the algorithm is guaranteed to terminate (Section 3).

• With geometric distortion tolerated, mesh edge flipping
which can alter mesh geometry may be applied. We prove
a new result that mesh edge flipping based on the NLD
criterion is area reducing (Section 4).

• The only obstacle to constructing Delaunay meshes via
edge flipping as described above is the existence of unflip-

pable edges: an edge is unflippable if its opposing edge
also exists in the mesh. We argue that the unflippable
edges result from poor sampling. By combining edge flip-
ping with refinement, we arrive at an algorithm that is
guaranteed to produce Delaunay meshes (Section 4).

• Relying on constrained optimization [GW03] and a
quadric-based error metric [GH97], we develop a mesh
decimation algorithm to produce a series of Delaunay
meshes, at multiple levels of detail, which approximate
a given dense Delaunay mesh (Section 5).

While strict geometry preservation may sometimes be de-
sirable, a tolerance of geometric distortion can offer more
control over triangle count. Often the polyhedral geometry
of the mesh is an approximation to a smooth surface, so
there is little motivation to be strictly faithful to the mesh
geometry. Nonetheless the geometry-preserving refinement
steps serve to guarantee the correctness of the edge flipping
algorithm. We can also apply appropriate thresholding to en-
sure a low distortion by preventing feature edges from being
flipped.

2. Related work

Works on edge flipping to improve triangulation quality can
be traced back to Lawson [Law77]. In the planar case, it is
known that Delaunay edge flipping, i.e., swapping any NLD
edge e with the other diagonal of the quad formed by the
two triangles incident at e, monotonically reduces several
functionals defined for planar triangulations [Mus97] and
that the respective local minima are unique. Thus such edge
flips do produce planar Delaunay triangulations, and the time
complexity is known to be quadratic [Ede01]. Bobenko and
Springborn [BS05] have shown that the same edge flipping
scheme works on a piecewise flat surface, resulting in an
iDT, where their termination proof is essentially the same as
in the planar case via the harmonic index [Mus97]. However,
the situation for Delaunay meshes is different. In particular,
edge flipping only leads to one, of possibly many Delaunay
meshes (Section 4.2), and it does not always result in a De-
launay mesh due to topological constraints (Section 4.3).

Edge flippings designed to minimize curvature measures
have also been proposed, e.g., [DHKL01]. These algorithms
produce visually pleasing meshes, but in general they are
far from being Delaunay. A recent paper focuses more on
triangle element quality by edge flipping so as to minimize

the discrete Willmore energy [ABR06]. All of these mesh
edge flipping algorithms tend to converge to local rather than
global minima. This includes the surface area minimization
algorithm of O’Rourke [O’R81], which, in light of our new
insight, turns out to be performing Delaunay edge flips.

The topological constraints which prevent guaranteed
generation of Delaunay meshes via edge flipping are due
to poor sampling. Thus appropriate refinement is necessary.
Many Delaunay refinement techniques are known in the pla-
nar setting [Che89, Rup95, RI97] and for 3D tetrahedraliza-
tions [She97], where the primary concern is element quality,
e.g., angles. Our goal is to guarantee algorithm termination
and the scheme we adopt exploits a heuristic, the method of
concentric shells, introduced by Ruppert [Rup95]. Ruppert
used this heuristic to improve the performance of his De-
launay refinement algorithm in the presence of small input
angles, but his algorithm held no termination guarantees in
that context. The termination proof we give is original.

Many previous works on mesh generation and remeshing
utilize the Delaunay concept and can produce meshes that
are close to being Delaunay. Chen and Bishop [CB97] use
Delaunay refinement in a 2D parametric space from which a
triangulation is mapped back in 3D. Peyré and Cohen [PC03]
describe a farthest point sampling method based on geodesic
distances computed via fast marching. By taking the dual of
the implied intrinsic Voronoi diagram [DZM07] of the sam-
pled points, a triangulation is obtained which closely approx-
imates the iDT of the sample points.

Another class of surface reconstruction and remeshing al-
gorithms rely on the notion of a restricted Delaunay trian-
gulation [ES94], which can be simply characterized as the
dual of the restricted Voronoi diagram. There are a num-
ber of surface reconstruction algorithms which exploit this
concept [AB98, ACDL00, DLR05]. Cheng et al. [CDRR04]
use the topological properties of the restricted Voronoi dia-
gram to drive a sampling scheme for triangulating smooth
surfaces. For remeshing, Chew [Che93] adapts his Delau-
nay refinement technique [Che89] to curved surfaces, pro-
ducing a restricted Delaunay triangulation of the new sam-
ple points with respect to the input mesh. Boissonnat and
Oudot [BO03] improve on this algorithm and provide guar-
antees on the sampling distribution and angle bounds. Later,
the algorithm was adapted to probe an unknown surface
[BGO05]. Nonetheless, the restricted Delaunay triangula-
tion does not define a Delaunay mesh in general [DZM07].
Finally, Li and Zhang [LZ06] have proposed a remeshing
algorithm to produce guaranteed nonobtuse meshes, which
are necessarily Delaunay. However, their approach is only
approximating and cannot offer any form of interpolation of
the original input mesh.

3. Geometry-preserving Delaunay remeshing

A mesh is Delaunay when it has no NLD edges [BS05],
where an edge is NLD if the sum of the two face angles op-
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while mesh M contains an NLD edge e = [p,q] do

if e is not a physical edge then

Edge flip at e.
else

if p is an original mesh vertex then

Split e at SV (p,e).
else

Split e at SV (q,e).
end if

end if

end while

Algorithm 1: Geometry-preserving Delaunay remeshing.

posite to it is greater than π. For a mesh which tessellates a
densely sampled smooth curved surface, edge flipping (Sec-
tion 4) may be a fast and simple means of obtaining a Delau-
nay mesh. However, if a mesh is coarsely sampled, e.g., to
exploit the principle curvatures over the surface, edge flip-
ping may be inappropriate; the change in geometry may be
too large. At the expense of adding new vertices, we can pro-
duce a geometry-preserving Delaunay mesh via refinement.

3.1. Remeshing algorithm

s
p q

u

v

Figure 1: The original

edge [p,q] is split at s,

creating two planar (blue)

and two physical (red)

edges incident to s.

The refinement pro-
ceeds by subjecting NLD
edges to an edge split,
which inserts a new vertex
along an original edge of
the input mesh and con-
nects the newly inserted
vertex with two vertices
opposite to the current
mesh edge being split, as
shown in Figure 1. New
vertices added during

refinement are called split vertices to distinguish them
from the original vertices of the mesh. An edge that has a
non-zero dihedral angle (non-coplanar adjacent faces) and
is an original mesh edge, or part of an original mesh edge
is called a physical edge. If e′ is a portion of a pre-existing
edge e, we say that e′ is embedded in e. Edges between
coplanar faces are called planar edges. Only physical edges
are split in our algorithm; planar edges may be flipped
without affecting the geometry.

A naive edge splitting algorithm, using edge bisection for
example, will not terminate in general. The kind of refine-
ment problem we are facing has been studied in the planar
setting, where one seeks a conforming Delaunay triangu-

lation [ET93]. Our scheme, outlined in Algorithm 1, em-
ploys the method of concentric shells introduced by Rup-
pert [Rup95].

The split vertex SV (p,e), with p a vertex of edge e, is
defined to be the point s along e that is the closest to the

midpoint m of edge e such that the length |[p,s]| = 2k
δ, for

some (possibly negative) integer k. Formally,

SV (p,e) = argmins∈e, |[p,s]|=2kδ, k∈Z
||s−m||. (1)

The factor δ may be any positive number. In our implemen-
tation, we set it to unity.

split
split split

split flip

Figure 2: Geometry-preserving Delaunay remeshing on a

simple example. Physical edges are shown in red and planar

edges in blue.

Our Delaunay remeshing scheme combines edge flipping
with edge splitting. Since only edges interior to the planar
faces of the mesh can be flipped, the algorithm is geometry-
preserving. Figure 2 shows our remeshing algorithm at work
on a simple example.

3.2. Termination proof

It suffices to prove termination of the refinement steps, as all
our edge flips are planar and they terminate as in the planar
case [Law77]. Our proof is by contradiction while assuming
that there are no degenerate triangles in the mesh. Since a
mesh surface is compact, the Bolzano-Weierstrass theorem
implies that any non-terminating refinement must produce
an accumulation point a. That is, any arbitrarily small neigh-
borhood of a contains infinitely many inserted split vertices.
The algorithm never inserts vertices interior to the original
mesh faces. Thus there are only two possible cases:

1. a lies on the interior of an original mesh edge e:

Then there is an ε > 0 such that the geodesic disk O of
radius ε centred at a contains none of the original vertices
nor any portion of an original edge other than e. As edge
splits happen along e, let us keep track of the sequence
h0,h1, . . . of mesh edges which contain a, where h0 = e.
Since a is an accumulation point, this edge sequence must

be infinite. Now let us show that |hi|
|hi−1|

≤ 2
3 for all i > 0.

Suppose otherwise, i.e., |hi| > 2|hi−1|/3. Let hi−1 =
[p,q] and let hi be obtained by splitting edge [p,q] at the
“power of 2 split” s, as shown in Figure 3(a). Let m be
the midpoint of [p,q] and r the midpoint of [p,s]. Then

|[r,m]| =
|hi−1|

2
−

|hi|

2
<

|hi−1|

6
.

But since

|[s,m]| = |hi|−
|hi−1|

2
>

2|hi−1|

3
−

|hi−1|

2
=

|hi−1|

6
,

we have |[r,m]|< |[s,m]|. Thus, according to equation (1),
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Figure 3: Figures for termination proof. (a) If
|hi|

|hi−1|
> 2

3 ,

then r, the midpoint of [p,s], should have been the split ver-

tex, instead of s. (b) A geodesic disk O centered at a con-

tains an edge covering a. Since the vertices opposite to the

edge lie outside O, the edge cannot be NLD. (c) Eventually,

all edge splits towards a must occur on concentric geodesic

circles, centered at a, with radii 2k
δ, where k ∈ Z. (d) If

|[a,d]| ≥ |[a,c]| and |[a,g]| ≥ |[a,c]|, [a,c] cannot be NLD.

vertex r, also a “power of 2 split” since |[p,r]|= |[p,s]|/2,
should have been chosen as the split vertex instead of s.
This is a contradiction.

Since |hi|
|hi−1|

≤ 2
3 for all i > 0, we conclude that there must

be some hi that falls entirely inside the geodesic disk O.
Clearly, such an edge hi cannot possibly be NLD since
barring degeneracy, its two opposite vertices must lie out-
side the disk O, as shown in Figure 3(b). Therefore, hi,
which contains a, will not be split further. This contra-
dicts the assumption that a is an accumulation point.

2. a is an original mesh vertex:

Since a is an accumulation point, there is an infinite accu-
mulation of edge splits towards a. By Algorithm 1, even-
tually, such splits must all occur on geodesic circles cen-
tered at a with radii 2k

δ, k ∈ Z, as shown in Figure 3(c).
Let us consider one such geodesic circle O1 that is suf-
ficiently small that all original mesh edges meeting at a

extend beyond the next two concentric geodesic circles,
O2 and O3. Suppose that b, along some edge e, is the
very first split vertex that is created on O1, as shown in
Figure 3(d). It follows that b must bisect some NLD edge
[a,c] embedded in e, where c lies on O2.

However, we can argue that edge [a,c] cannot possibly
be NLD, since the lengths of edges [a,d] and [a,g] in the
quad containing vertices a and c must be greater than
or equal to |[a,c]|; this is due to our assumption that
b is the first split vertex created inside O2. To see that
|[a,d]|, |[a,g]| ≥ |[a,c]| implies that [a,c] is not NLD, we
note that ∠adc+∠agc≤ π/2+π/2 = π. We have arrived
at a contradiction. Proof is complete.

3.3. Meshes with boundaries

In [BS05,FSBS06] meshes with boundaries are dealt with by
using a constrained Delaunay triangulation; there was not re-
ally another choice available in that context. However, with

refinement, we are by necessity allowed to add Steiner ver-
tices. Therefore, we can also ensure that all the boundary
edges are Delaunay, where we define a boundary edge e to be
Delaunay if and only if it subtends a nonobtuse angle. This
ensures that the edge would connect Voronoi neighbours and
that it is contained in an empty geodesic disk.

Edge splitting at mesh boundaries works in exactly the
same way as before. To show that an accumulation point
cannot occur on the interior of an edge, note that if an edge
embedded in the mesh boundary falls entirely inside the
geodesic disk O, then it cannot be NLD because its oppo-
site vertex lies outside O and thus must form a nonobtuse
angle (see Figure 3(b)). In case 2 of the proof, if edge [a,c]
happens to fall on the mesh boundary, then |[a,d]| ≥ |[a,c]|
implies that ∠adc ≤ ∠acd and thus ∠adc ≤ π/2. It follows
that edge [a,c] is locally Delaunay.

4. Delaunay remeshing via mesh edge flipping

The geometry-preserving refinement algorithm preserves
geometry at the expense of adding vertices to the original
mesh. A Delaunay mesh can be obtained by allowing physi-
cal edges to be flipped. Such operations do not introduce ver-
tices, although they do compromise the geometry. However,
due to the possibility of (topologically) unflippable edges,
a refinement step may be necessary to ensure that the final
mesh is Delaunay.

In our geometry-preserving Delaunay remeshing, there
are no physical (mesh) edge flips. We now consider flipping
the physical edges of a mesh. This changes the nature of
the problem considerably, for now the geometry of the un-
derlying domain is changing each time an edge is flipped.
Furthermore, the arguments for termination of edge flipping
in the planar case [Mus97] no longer apply and we also need
to deal with possible topological constraints.

4.1. Edge flipping and refinement algorithm

Our algorithm takes any manifold triangle mesh M as in-
put and it is superficially similar to the one described by
Bobenko and Springborn [BS05]. However, we require an
additional refinement step. The order in which the edges are
flipped is realized using a priority queue. The priority is re-
lated to the extent an edge is locally Delaunay and is set
to be the sum of the opposite angles at the edge minus π.
Some questions related to our algorithm include: does the
edge flipping step terminate and if it does, is the resulting
mesh unique? We also need to ensure that throughout the
algorithm, the current mesh, possibly refined, is a manifold.

4.2. The geometry of edge flipping and non-uniqueness

of Delaunay meshes

In the planar case, an edge e is seen to be a diagonal of a
quadrilateral formed by the two triangles adjacent to it. An
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while mesh M contains a flippable NLD edge e do

Edge flip at e.
end while

Run geometry-preserving Delaunay remeshing.

Algorithm 2: Geometry-altering Delaunay remeshing

p
qe

e’

u

v

(b)(a)

p

v

q

u

Figure 4: (a) A flip tet puqv. e′ is the opposing edge to e. (b)

A regular tet shows that both diagonals [p,q] and [u,v] can

be locally Delaunay.

edge flip entails replacing e with the other diagonal of the
quadrilateral. In a geodesic triangulation of a piecewise flat
surface, the edge e and its two adjacent faces can be iso-
metrically unfolded onto the plane, so an edge flip can be
interpreted the same way [BS05]. However, when flipping a
physical edge of a mesh, we cannot unfold the quadrilateral.

Let edge e be joining two vertices p and q in a mesh and
adjacent to triangles f1 = [p,q,u] and f2 = [q, p,v]. Consider
the Euclidean line segment e′ = [u,v]. The edges of f1 and
f2 together with e′ form a tetrahedron σ, as shown in Fig-
ure 4(a). We call σ the flip tet associated with e. Performing
an edge flip on e involves replacing e with the new edge e′

and faces f1 and f2 with faces f ′1 = [p,u,v] and f ′2[q,v,u].
We say that e′ is the opposing edge to e.

Lemma 1 If edge e in a (closed) mesh is not locally Delau-

nay, then its opposing edge e′ is.

This is easy to see since the sum of the angles subtending
e and e′ is at most 2π. Referring to Figure 4(a), we have

∠puq+∠uqv+∠qvp+∠vpu ≤ 2π, (2)

with equality holding only when p,q,u, and v are coplanar.

While Lemma 1 is true in this setting, its converse, which
holds for any planar quad in general position [dBvKOS98],
is not true in a mesh. The regular tet, as shown in Fig-
ure 4(b), gives an example where both edges e and e′ are
locally Delaunay. Consequently, there can be multiple De-
launay meshes on the same vertex set and defining the same
topological surface. Thus in this sense, without demanding
further qualifications, we do not have a general uniqueness
theorem for Delaunay meshes, contrary to the case of fixed
geometry, be it planar 2D or a fixed piecewise flat surface.

Although Lemma 1 ensures that any flippable edge in our
algorithm would improve matters locally, it does not lead
to a termination proof. An edge that has been flipped may

e

q

u

v

e’
p

Figure 5: A Delaunay flip may decrease minimum angle and

increase harmonic index: Let e be NLD, then flipping e into

e′ is a Delaunay flip. However, one can bend △[u,q,v] to-

wards △[u, p,v] so that ∠puq becomes arbitrarily small and

the Harmonic index of △[p,u,q] becomes arbitrarily large.

become NLD again as a result of other flips. Also, an NLD
edge may be unflippable if the resulting mesh would become
non-manifold. These issues are addressed in Sections 4.2.1
and 4.3, respectively.

4.2.1. Delaunay edge flipping and area minimization

Termination of edge flipping is traditionally shown by defin-
ing a functional on a triangulation and proving that it is in-
creased (or decreased) with each edge flip. However, most
of the traditional measures applicable to 2D or intrinsic De-
launay triangulations do not extend to the case of Delaunay
edge flips on a mesh. For example, the minimal angle in the
triangles adjacent to an edge can sometimes be decreased
after a Delaunay flip. Likewise, the harmonic index (sum of
the cotangents of the angles), exploited by [BS05], may in-
crease. See Figure 5 for an example. It turns out that a mea-
sure that is consistently non-increasing with each Delaunay
flip is the mesh surface area:

Theorem 1 If the sum of the two angles opposite to an edge

e is greater than the corresponding angle sum for the op-

posing edge e′, then the combined area of the two triangles

adjacent to e is greater than or equal to the combined area

of the two triangles that would be adjacent to e′. Equality

arises only when e and e′ lie in the same plane.

Proof We are concerned with the area of the quadrilaterals
defined by the two triangles adjacent to each edge. Note that
the quadrilaterals can be made planar without distorting the
area by unfolding them on the associated edge. The edges e

and e′ define two different quadrilaterals, but they share the
same set of sides. Let a, b, c and d be the lengths of each
of the sides. We exploit Bretschneider’s formula [Bre42] for
the area of a quadrilateral ABCD:

A =

√

(s−a)(s−b)(s− c)(s−d)−abcd cos2
(

A+C
2

)

where s = (a+b+c+d)/2 is the semi-perimeter and A and
C are angles opposite edge e. Let B′ and D′ be the angles
opposite edge e′ in the other quadrilateral.

Noting that cos2
θ is monotonically decreasing in the interval
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(a) (b)

Figure 6: An unflippable edge e. The flip tet is outlined in

red. (a) 2-exposed. (b) 3-exposed.

[0,π/2] and that A+C
2 > B′+D′

2 by hypothesis, we have

cos2(
A+C

2
) < cos2(

B′ +D′

2
), if

A+C

2
<

π

2
.

Thus, by the Bretschneider’s formula, the area of the quadri-
lateral associated with e′ is less than the area of that associ-
ated with e. On the other hand, if A+C

2 ≥ π

2 , then by equa-
tion (2), we have

π/2 ≥ π−
A+C

2
≥

B′ +D′

2

with equality in the planar case. Thus

cos2(
A+C

2
) = cos2(π−

A+C

2
) ≤ cos2(

B′ +D′

2
).

Again, the Bretschneider’s formula gives us a decrease in
area except when e and e′ lie in the same plane, in which
case the area is unchanged.

Thus, the surface area of the mesh is monotonically non-
increasing as we perform edge flips. Since the number of
possible triangulations is finite, these edge flips either termi-
nate, or become stuck in an endless sequence of planar edge
flips. This latter possibility is eliminated by traditional ter-
mination proofs of Delaunay edge flipping [Law77, BS05].
Thus the edge flipping step of Algorithm 2 terminates.

Next, we discuss the possibility of having NLD edges
which still remain after termination of edge flipping. These
edges could not be flipped due to topological constraints.

4.3. Unflippable edges

An edge e in mesh M is unflippable if its opposing edge also
exists in M. Recall that the opposing edge to e is the edge e′

that would replace e after a flip. If e′ is already in the mesh,
flipping e would result in a non-manifold edge.

Examining the flip tet σ associated with e, we identify
only three possible cases of unflippable edges. At least two
of the faces of σ, those adjacent to e, belong to M. We say
σ is 2-exposed, 3-exposed, or 4-exposed, corresponding to it
having zero, one, or both of the remaining two faces belong-
ing to M. The 4-exposed case is trivial as it can only occur

when M is a tet (assuming M is connected). Figure 6 depicts
the other two cases: 2-exposed and 3-exposed.

We argue that unflippable edges are a manifestation of
poor sampling, thus motivating the use of refinement. We ap-
peal to the well-formedness criteria of the intrinsic Voronoi

diagram of the vertices of a mesh M. For a vertex p in
M, the (intrinsic) Voronoi cell, V(p), associated with p is
the set of points on M closer to p than any other vertex:
V(p) = {x ∈ M |d(x, p) ≤ d(x,q),∀q ∈ V (M)}, where d

is the geodesic distance. Dyer et al. [DZM07] show that
the lack of a well-formed Voronoi diagram is an indication
of poor sampling (a good sampling yields a proper Delau-
nay triangulation [LL00]). We will show that the 2-exposed
case violates one of the criteria of well-formedness, namely,
neighbouring Voronoi cells meet at a single contiguous edge.

Let e be an NLD edge that is unflippable in a 2-exposed
flip tet, as shown in Figure 6(a). The opposing edge, [p,q],
must be flippable (although [p,q] is the opposing edge to e,
e is not the opposing edge to [p,q]). Indeed it can be shown
that the contrary assumption would imply that M is non-
manifold. Assuming all flippable edges of M are locally De-
launay, as is the case after the flipping step of Algorithm 2,
it follows that the Voronoi cells V(p) and V(q) of p and q

must meet somewhere on the faces adjacent to [p,q]. Like-
wise, since e is NLD, V(p) and V(q) must also meet on the
faces adjacent to e, resulting in at least two separate intersec-
tions between V(p) and V(q). This completes our argument.
Similar arguments show that the 3-exposed case arises when
a vertex has less than three Voronoi neighbours, again indi-
cating a violation of well-formedness.

The problems presented by unflippable edges, as well
as boundary edges, can be treated by the final geometry-
preserving remeshing step in Algorithm 2, which ensures
that all the edges in the final mesh are locally Delaunay.

5. Delaunay mesh decimation

A limitation of our current Delaunay mesh algorithms is that
we cannot place a bound on triangle count. Our geometry-
preserving refinement may produce an excess of small trian-
gles. In general, it is desirable to have a progression of De-
launay meshes, at multiple levels of details (LODs), which
approximate an initial dense Delaunay mesh. In practice, any
resource-constrained application can benefit from LOD rep-
resentations to avoid redundancy and allow for more effec-
tive use of the triangle budget.

In this section, we describe a mesh decimation algo-
rithm for LOD modeling with Delaunay meshes. It has been
adapted from a similar scheme for nonobtuse meshes [LZ06]
and is based on edge collapse prioritized by a quadric error
[GH97]. For each edge collapse, the resulting vertex needs
to lie in a feasible region to ensure that all the affected edges
remain locally Delaunay. The optimal position of the vertex
is chosen to minimize the standard quadric error [GH97],
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q

wv
u

p

edge collapse

Figure 7: An edge collapse and edges affected (blue and red)

need to remain locally Delaunay.

subject to constraints, and the resulting error sets the pri-
ority. By choosing the allowable region to be a linearized
and convexified subset of the feasible region, i.e., being con-
servative, the decimation algorithm is formulated as a con-
strained least-square problem and is solved using the OOQP
solver of Gertz and Wright [GW03]. Thus the error quadric
associated with each edge collapse is minimized subject to
linear constraints in the form of planes bounding half spaces.

Since quadric-based edge collapsing schemes using prior-
ity queues are well-known [GH97, LZ06], we will concen-
trate on describing the feasible region and its linearization.
In Figure 7, we show an edge collapse [u,v]→ w after which
we need to ensure that all the incident edges at w (shown in
red), e.g., [w, p] and [w,q], and all the subtending edges to w

(shown in blue), e.g., [p,q], remain locally Delaunay.

1. Allowable region associated with a subtending edge:

Let [p,q] subtend w. If [p,q] is on the boundary, then any
w with ∠pwq ≤ π/2 is feasible; it follows that w lies out-
side the sphere with [p,q] as diameter; see Figure 8(a).

If [p,q] is an interior edge, let w′ be the other subtended
vertex. Then any w with ∠pwq ≤ π −∠pw′q is feasi-
ble. If we draw the circumcircle of [p,w′,q] and rotate
the arc subtended by edge [p,q] about [p,q], as shown in
Figure 8(b), we obtain a surface of revolution which we
call a chordal spheroid. Any w outside of the spheroid is
feasible. To linearize the feasible region, we replace it by
a half space defined by a plane L tangent to the sphere
or the chordal spheroid defined above (Figure 8(c)). The
point of tangency, r, is chosen so that L is parallel to [p,q]
and perpendicular to the plane containing [p,q] and the
centroid of the collapsing edge.

2. Allowable region associated with an incident edge:

To ensure that an incident edge [w, p] remains locally De-
launay, we need ∠pow +∠pqw ≤ π, where o and q are
the one-ring vertices of w adjacent to p; see Figure 9(a). If
w were to lie in the plane of [o, p,q], then it is constrained
by an arc of the circumcircle of [o, p,q]. An example of
the actual surface bounding the feasible region in 3D is
shown in Figure 9(b).

To construct the linearized allowable region, we place r

midway between o and q on the arc of the circumcircle
that does not contain p. A plane L1 is constructed such
that it contains [q,r] and is perpendicular to the plane
of the circumcircle of [o, p,q]. This is the boundary of
a half-space H1 that contains the centre of the circum-
circle. Half-space H2 is constructed similarly, with [o,r]

r

p

q

(a)

L
q

w’ p

(b)

q

r

p

L

(c)

r

Figure 8: Feasible and allowable regions for subtending

edges. (a) If [p,q] is a boundary edge, the feasible region

is the complement of the sphere; it is linearized by a plane L

tangent to the sphere, as defined in the text. (b) If e = [p,q] is

an interior edge, the feasible region is the complement of the

chordal spheroid obtained by rotating the subtended arc of

the circumcircle of [p,w′,q], where w′ is the other subtend-

ing vertex of e. (c) Similarly to (a), an allowable region is

obtained by linearizing the feasible region described in (b).

o

p

q

w r

q

L1

L2

p
o

(a) (b) (c)

Figure 9: Feasible and allowable regions for incident edges.

(a) For [w, p] to be locally Delaunay, we need ∠pow +
∠pqw ≤ π. (b) Plot of actual surface defining the feasible

region with respect to o, p, and q. The two tips on the surface

correspond to o and q and the supporting plane of [o, p,q]
is parallel to the top face of the box. (c) Planes L1 and L2
enclose a conservative, linearized allowable region for our

optimization; definition of L1 and L2 is given in the text.

on its boundary. See Figure 9(c). It can be shown by ele-
mentary, but nontrivial calculation that H1 ∩H2 is indeed
contained in the feasible region.

Referring to Figure 7, for an edge collapse [u,v] → w, the
allowable region for w is the intersection of all the allowable
regions defined for the incident and subtending edges for w.
If this set is empty, then [u,v] will not be collapsed.

6. Experimental results

We have tested our mesh edge flipping and refinement algo-
rithm (Algorithm 2) on a few dozen mesh models and statis-
tics collected on some representative data are reported in Ta-
ble 1. The first group of models are well-known and serve as
examples of typical datasets. Note that the Stanford bunny
and Max Plank models have boundary edges. In the sec-
ond group, we choose two low-resolution meshes that have
thin structures; they were obtained via QSlim [GH97]. These
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Mesh #E Flips(# | %) Splits Min angle Max angle % Small % Large Error (ε)

Horse 59 547 2 957 (5.0%) 28 1.7 1.6 171.3 164.3 8.7 7.9 1.3 1.2 0.4741%
Hand 74 997 10 935 (14.6%) 0 2.1 3.2 175.3 156.9 15.5 8.5 3.3 0.6 0.1061%
Bunny 104 288 2 202 (2.1%) 82 0.5 7.8 177.6 146.1 2.3 2.1 0.2 0.0 0.2367%
Igea 165 000 19 349 (11.7%) 0 0.1 6.1 179.8 148.3 10.0 5.2 2.2 0.3 0.1037%
Isis 562 926 13 497 (2.4%) 2 0.4 3.1 176.8 163.6 2.5 2.4 0.1 0.0 0.1591%
Max Planck 597 211 12 157 (2.0%) 12 0.1 5.1 178.9 145.2 1.7 1.1 0.3 0.0 0.0992%
Coarse hand 294 99 (33.7%) 34 4.7 12.4 167.4 142.1 27.2 11.4 7.8 1.5 4.3245%
Coarse horse 1 050 231 (22.0%) 36 3.5 12.9 171.3 133.5 17.9 6.9 5.5 0.3 1.6475%
Peyre hand 894 22 (2.5%) 0 24.7 31.0 129.9 112.5 0.6 0.0 0.2 0.0 1.4095%
Peyre horse 1 944 16 (0.8%) 4 12.0 19.4 136.4 113.8 0.2 0.2 0.1 0.0 0.8684%

Table 1: Output statistics for our edge flipping and refinement algorithm (Algorithm 2) on several mesh models. Input mesh

sizes are measured by #E, the edge count. We report the number of edge flips performed until termination both in absolute

number and as a percentage of #E, as well as the number of edge splits due to unflippable and boundary edges. The next four

double columns have before (left sub-column) and after (right sub-column) figures for the minimum (Min angle) and maximum

(Max angle) face angles (in degrees) in the meshes, as well as the percentage of angles that are less than 30◦ (% Small) and

the percentage of angles that exceed 120◦ (% Large). The last column reports the approximation error given by Metro, as a

percentage of the Hausdorff distance between the meshes against the length of the bounding box diagonal. The longest running

time is recorded on the Max Plank, which took 12.2 seconds to process on a 2.4 GHz Opteron processor.

models have a greater percentage of 3- or 2-exposed tets
compared with those from the first group and provide a more
rigorous test for the refinement component of our algorithm.
The final group contains two meshes that were produced by
the remeshing algorithm of Peyré and Cohen [PC03]; these
meshes are generally quite close to being Delaunay.

As we can observe from Table 1, our algorithm consis-
tently terminates after flipping and splitting a small fraction
of the mesh edges. Denser models tend to incur smaller per-
centages of such operations. Note that although the Peyré
hand and horse models, both coarsely sampled, were ob-
tained from approximate Delaunay geodesic triangulations
of the original fine mesh surfaces, the meshes produced do
have a small fraction of edges that are NLD. In terms of an-
gle quality, although the smallest angle is not required by
theory to increase via Delaunay remeshing, Table 1 does
show that in practice it generally does with few exceptions.
In no case did the size of the maximum angle, or the percent-
age of either small (< 30◦) or large (> 120◦) angles increase
in the Delaunay meshes.

In the last column of Table 1, we report the approxima-
tion error ε of the Delaunay meshes produced, measured us-
ing the well-known Metro tool [CRS98]. As can be seen, the
geometric approximation error tends to be large for coarse
models. In contrast, errors associated with the Delaunay ver-
sions of the corresponding full-resolution models are much
smaller; see results for models from the first group.

When used on its own, the geometry-preserving refine-
ment scheme may produce excessive and poorly distributed
vertices. However, when strict geometry preservation is re-
laxed and we allow flipping of edges that have small dihedral
angles, we obtain an algorithm that produces more pleasing
results. Essentially this is edge flipping with feature preser-

vation, where physical mesh edges with dihedral angles ex-
ceeding a user-set threshold are flagged and they are split
according to the scheme of Section 3 as they appear in the
priority queue. A similar argument to that of Section 3.2 car-
ries the termination guarantee to this modified algorithm.

Figure 10(a) shows a close-up of a coarsely sampled dol-
phin model (6,002 vertices). The mesh edge flipping algo-
rithm does a poor job of preserving the detailed features in
the initial shape, as shown in (b), while geometry-preserving
refinement creates a large vertex count (15,560 vertices) and
uneven vertex distributions, as shown in (c). However, edge
flipping with feature preservation presents a nice compro-
mise, shown in (d), where the vertex count is reduced to
7,509 and the Metro error ε is reduced from 0.385% to
0.071%, when a dihedral angle threshold of 10◦ is used.

A tradeoff between feature preservation and vertex count
verses the threshold dihedral angle is illustrated in Figure 11.
This graph is produced from the Isis model of 187,644 ver-
tices. If the threshold is too high, many vertices are intro-
duced in order to preserve geometry that is probably more
associated with the initial discretization than with the in-
tended model. For coarser initial models, the graphs have a
similar appearance, but the scale on the vertical axis is much
larger. For example, the same graph generated from an initial
Isis model of 600 vertices (QSlimmed) has a scale an order
of magnitude larger on the vertical axis. Thus the cost, in
terms of vertex count, of geometric fidelity, is much greater
(relatively) for a coarsely sampled model.

Finally, a multiresolution family of meshes produced by
our Delaunay mesh decimation algorithm is given in Fig-
ure 12. The decimation generally performs well in preserv-
ing features in its attempts to minimize the quadric errors. If
needed, our framework easily allows for feature-driven con-
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(a) Original: #V = 6,002. (b) #V = 6,002; ε = 0.385%. (c) #V = 15,560; ε = 0.000%. (d) #V = 7,509; ε = 0.071%.

Figure 10: A close-up of results from Delaunay remeshing on the dolphin model. Mesh vertex count (#V ) and Metro error (ε),

measured against the original model, are given below the figures. (a) Original. (b) After unconstrained edge flipping. (c) After

geometry-preserving refinement. (d) After feature-preserving edge flipping with a threshold of 10◦ on dihedral angles.

Figure 11: Graph of relative increase in vertex count verses

the threshold dihedral angle for feature preserving edge flip-

ping of the Isis model (187,644 vertices initially).

(a) 25,000 vertices. (b) 5,000 vertices. (c) 500 vertices.

Figure 12: Hand model at three resolutions produced by our

decimation algorithm. The Metro errors are: 0.015% for (a),

0.197% for (b) and 1.189% for (c), all measured against a

Delaunay remeshing obtained from the original model.

straints to be incorporated. However, our current implemen-
tation does not employ lazy evaluation or other heuristics to
speed up the optimization and is thus slow: it took over three
minutes to generate the 500-vertex model in Figure 12.

7. Conclusions and future work

We have proposed the first Delaunay mesh construction al-
gorithms and proven their correctness. When employed to
preserve feature edges, the geometry-preserving refinement
scheme nicely supplements the edge flipping algorithm so as
to minimize its geometric distortion. It also provides a cor-
rectness guarantee for edge flipping in the presence of unflip-
pable edges, which arise as a result of inadequate sampling.
Finally, we developed LOD Delaunay mesh representations
via quadric-based constrained optimization.

As a current limitation, the refinement algorithm alone
may produce uneven triangle distributions with excessively
densely sampled clusters and we do not have a bound on the
final triangle count. If the input mesh is intended to repre-
sent a smooth, or piecewise smooth surface, then there is no
reason to be strictly faithful to the piecewise flat geometry
of the input mesh. Thus edge flipping with thresholding on
the dihedral angles is a sensible option. On the other hand, if
the polyhedral geometry of the input is exactly the geometry
under investigation, then numerical simulations on the sur-
face will presumably require a much denser set of nodes than
those required to represent the geometry alone. In this case
a Delaunay refinement algorithm which introduces nodes on
the faces of the input mesh would be more suitable than our
edge splitting algorithm. A search for such an algorithm to-
gether with a consideration of grading and element quality
is a possible avenue for future research.

Numerical investigation of convergence properties of dis-
crete operators defined on meshes need to ensure that the
multiresolution family of meshes used converge not only
point-wise, but also in their normals [HPW06]. We would
like to show that a sequence of Delaunay meshes possess
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such a property. This has been demonstrated for meshes de-
rived from intrinsic [DLYG06] as well as restricted [AB98]
Delaunay triangulations of a smooth surface. Many algo-
rithms have correctness guarantees which rely on the prop-
erties of these latter structures. Delaunay meshes may yield
a cheaper avenue for producing the same guarantees.

Acknowledgments: We are grateful to John Li for providing
the implementation of his nonobtuse decimation algorithm,
which we modified to produce Delaunay meshes. We also
thank the anonymous reviewers for their helpful suggestions.

References

[AB98] AMENTA N., BERN M. W.: Surface Reconstruction by
Voronoi Filtering. In Symp. Comp. Geom. (1998), pp. 39–48. 2,
10

[ABR06] ALBOUL L., BRINK W., RODRIGUES M.: Mesh opti-
misation based on Willmore energy. In Euro. Workshop on Comp.

Geom. (2006), pp. 133–136. 2

[ACDL00] AMENTA N., CHOI S., DEY T. K., LEEKHA N.: A
Simple Algorithm for Homeomorphic Surface Reconstruction. In
Symp. Comp. Geom. (2000), pp. 213–222. 2

[BGO05] BOISSONNAT J.-D., GUIBAS L. J., OUDOT S.: Learn-
ing smooth objects by probing. In Symp. Comp. Geom. (2005),
pp. 198–207. 2

[BO03] BOISSONNAT J.-D., OUDOT S.: Provably Good Surface
Sampling and Approximation. In SGP (2003), pp. 9–18. 2

[Bre42] BRETSCHNEIDER C. A.: Untersuchung der
trigonometrischen Relationen des geradlinigen Viereckes.
Archiv der Math. 2 (1842), 225–261. 5

[BS05] BOBENKO A. I., SPRINGBORN B. A.: A dis-
crete Laplace-Beltrami operator for simplicial surfaces.
arXiv:math.DG/0503219 v1, 2005. 1, 2, 4, 5, 6

[CB97] CHEN H., BISHOP J.: Delaunay triangulation for curved
surfaces. In Meshing Roundtable (1997), pp. 115–127. 2

[CDRR04] CHENG S.-W., DEY T. K., RAMOS E. A., RAY T.:
Sampling and meshing a surface with guaranteed topology and
geometry. In Symp. Comp. Geom. (2004), pp. 280–289. 2

[Che89] CHEW L. P.: Constrained Delaunay triangulations. Al-

gorithmica 4, 1 (1989), 97–108. 2

[Che93] CHEW L. P.: Guaranteed-quality mesh generation for
curved surfaces. In Symp. Comp. Geom. (1993), pp. 274–280. 2

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.: Metro:
Measuring error on simplified surfaces. Computer Graphics Fo-

rum 17, 2 (1998), 167–174. 8

[dBvKOS98] DE BERG M., VAN KREVELD M., OVERMARS M.,
SCHWARZKOPF O.: Computational Geometry. Algorithms and

Applications. Springer-Verlag, 1998. 1, 5

[DHKL01] DYN N., HORMANN K., KIM S.-J., LEVIN D.: Op-
timizing 3D triangulations using discrete curvature analysis. In
Mathematical Methods for Curves and Surfaces. Vanderbilt Uni-
versity, 2001, pp. 135–146. 2

[DLR05] DEY T. K., LI G., RAY T.: Polygonal surface remesh-
ing with Delaunay refinement. In Meshing Roundtable (2005),
pp. 343–361. 2

[DLYG06] DAI J., LUO W., YAU S.-T., GU X.: Geometric ac-
curacy analysis for discrete surface approximation. In Geometric

Modelling and Processing (2006), pp. 59–72. 10

[DZM07] DYER R., ZHANG H., MÖLLER T.: Voronoi-Delaunay
duality and Delaunay meshes. In Symp. Solid and Physical Mod-

elling (2007). to appear. 1, 2, 6

[Ede01] EDELSBRUNNER H.: Geometry and Topology for Mesh

Generation. Cambridge, 2001. 1, 2

[ES94] EDELSBRUNNER H., SHAH N. R.: Triangulating topo-
logical spaces. In Symp. Comp. Geom. (1994), pp. 285–292. 2

[ET93] EDELSBRUNNER H., TAN T. S.: An upper bound for con-
forming Delaunay triangulations. Discrete and Computational

Geometry 10, 2 (1993), 197–213. 3

[Flo98] FLOATER M. S.: Parametric tilings and scattered data
approximation. Int. J. of Shape Modeling 4 (1998), 165–182. 1

[FSBS06] FISHER M., SPRINGBORN B., BOBENKO A. I.,
SCHRÖDER P.: An algorithm for the construction of intrinsic De-
launay triangulations with applications to digital geometry pro-
cessing. In SIGGRAPH Courses (2006), pp. 69–74. 1, 4

[GH97] GARLAND M., HECKBERT P. S.: Surface simplifica-
tion using quadric error metrics. In ACM SIGGRAPH (1997),
pp. 209–216. 2, 6, 7

[GW03] GERTZ E. M., WRIGHT S. J.: Object-oriented software
for quadratic programming. ACM Trans. on Math. Software 29

(2003), 58–81. www.cs.wisc.edu/~swright/ooqp/. 2, 7

[HPW06] HILDEBRANDT K., POLTHIER K., WARDETZKY M.:
On the Convergence of Metric and Geometric Properties of Poly-
hedral Surfaces. Geometriae Dedicata 123, 1 (2006), 89–112. 9

[Law77] LAWSON C. L.: Software for C1 surface interpolation.
In Math. Software III, Rice J. R., (Ed.). Academic Press, New
York, 1977, pp. 161–194. 1, 2, 3, 6

[LL00] LEIBON G., LETSCHER D.: Delaunay Triangulations and
Voronoi Diagrams for Riemannian Manifolds. In Symp. Comp.

Geom. (2000), pp. 341–349. 1, 6

[LZ06] LI J., ZHANG H.: Nonobtuse remeshing and decimation.
In SGP (2006), pp. 235–238. 2, 6, 7

[Mus97] MUSIN O. R.: Properties of the Delaunay triangulation.
In Symp. Comp. Geom. (1997), pp. 424–426. 2, 4

[O’R81] O’ROURKE J.: Polyhedra of minimal area as 3d object
models. In Intl. Joint Conf. on AI (1981), pp. 664–666. 2

[PC03] PEYRÉ G., COHEN L.: Geodesic Remeshing Using Front
Propagation. In Proceedings VLSM (2003), pp. 33–40. 2, 8

[RI97] RIVARA M.-C., INOSTROZA P.: Using longest-side bi-
section techniques for the automatic refinement of Delaunay tri-
angulations. Int. J. Num. Meth. in Eng. 40 (1997), 581–597. 2

[Rup95] RUPPERT J.: A Delaunay refinement algorithm for qual-
ity 2-dimensional mesh generation. J. of Algorithms 18, 3 (1995),
548–585. 2, 3

[She97] SHEWCHUK J. R.: Delaunay Refinement Mesh Genera-

tion. PhD thesis, School of Computer Science, Carnegie Mellon
University, 1997. Technical Report CMU-CS-97-137. 1, 2

c© The Eurographics Association 2007.


