
Minimum Ratio Contours on Surface Meshes

Andrew Clements Hao Zhang
GrUVi Lab, School of Computing Sciences

Simon Fraser University, Burnaby, BC, Canada
aclement,haoz@cs.sfu.ca

Abstract

We present a novel approach for discretely optimizing
contours on the surface of a triangle mesh. This is achieved
through the use of a minimum ratio cycle (MRC) algorithm,
where we compute a contour having the minimal ratio be-
tween a novel contour energy term and the length of the
contour. Given an initial contour, we seek to find the optimal
contour within a prescribed search domain. The domain of
admissible contours is modeled by a weighted acyclic edge
graph, where nodes in the graph correspond to directed
edges in the mesh. The acyclicity of this graph allows for
an efficient computation of the MRC. To further improve the
result, the algorithm may be run on a refined mesh to allow
for smoother contours that can cut across mesh faces. We
demonstrate the effectiveness of our algorithm in postpro-
cessing for mesh segmentation.

1. Introduction

Mesh feature extraction and segmentation are impor-
tant prerequisites to several problems in geometry process-
ing, e.g., mesh parameterization, morphing, and 3D shape
matching and recognition. Active contours [14], also known
as snakes, have been successfully applied to feature extrac-
tion and segmentation for image analysis. Recently, they
have been extended to work on surface meshes [3, 16, 13]
and applied to mesh feature analysis and segmentation, e.g.,
in postprocessing for mesh scissoring [10, 17].

The snake method uses gradient descent to reach a local
minimum of a boundary cost function, which is typically
given by a combination of the external and internal energy
defined for a contour. The cost function represents a total
energy, which, if optimized globally, yields a trivial solu-
tion. Thus the fact that snakes can often adapt to image
or geometric features well is more of an artifact of the local
nature of the optimization procedure and not necessarily the
result of a snake having reached a state that is close to the
global minimum [22].

In this paper, we advocate the use of an energy ratio
as the cost function, in a global optimization setting. Al-
though the energies making up the ratio can vary, we fo-
cus on the mesh segmentation problem and define the nu-
merator weight to combine the internal (for smoothness)
and external (for feature adaptation) energies of a con-
tour and the denominator weight as contour length. In
addition to having a different energy to minimize, our al-
gorithm differs from previous implementations of mesh
snakes [3, 4, 5, 16, 18, 13] in that a discrete, graph-based
search is used to find a globally optimal contour. Our ap-
proach operates directly on the surface mesh and not in a
parameter domain [16]. It is efficient and is flexible and
general enough to allow the generation of both closed and
open curves, curves cutting across mesh faces, and the in-
corporation of both hard and soft constraints. Topological
changes can also be detected and handled quite easily.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly survey previous works on optimizing con-
tours on images and surface meshes. Section 3 gives an
overview of our approach. In Section 4, we define the min-
imum ratio cycle and path problems and cover the relevant
theory. In Section 5, we describe our minimum ratio con-
tour algorithm in details, focusing on the construction of an
acyclic graph as our search space and the definition of our
new energy measure appropriate for our target application.
In Section 6, we describe a refinement scheme which would
allow the contour to cut across mesh faces; this improves
the smoothness quality of the final contour. Experimental
results are provided in Section 7 and in Section 8, we con-
clude and discuss possible future investigations.

2. Previous work

One of the most well-known boundary-based image fea-
ture extraction and segmentation methods uses the active
contour model, first introduced by Kass et al. [14]. The
movement of a snake over time is controlled by minimizing
its associated energy, which is a combination of an internal
energy and an external energy term. Minimizing the internal

energy tends to shorten the snake while keeping it smooth.
External energy serves to attract the snake toward features,
whose definition is application-dependent.

A snake can be represented either explicitly or implic-
itly. Explicit models store exact locations, called snaxels,
the snake passes through, e.g., in [1, 2, 3, 13]. Amini et
al. [1] use dynamic programming to optimize image snakes
in the presence of hard constraints. In this case, every snaxel
can move to at most m different positions and the optimal
snake is found in O(nm3) time at each step, where n is the
number of snaxels. Williams and Shah [23] in turn propose
a greedy algorithm, which may not find the optimum, but
runs in O(nm) time. Implicit methods, e.g., [4, 5], consider
the snake positions to lie in the zero level set of a function
defined over an ambient space. They need not track topo-
logical changes explicitly, but do not allow intuitive user
control of the snake, in contrast to explicit models.

An early work on mesh snaking is due to Milroy et
al. [18], which uses a greedy algorithm to segment a wrap-
around model. Jung et al. [13] adapts the fast greedy ap-
proach of Williams and Shah [23] in a straightforward man-
ner to triangle meshes. Lee and Lee [16] take a different
approach, by first locally parameterizing the snake from
the surface of a 3D mesh onto a 2D domain, then evolv-
ing the snake in the plane using techniques developed for
images, and finally mapping the 2D snake back onto the 3D
mesh. The parameterization and image snake movements
are carried out patch by patch, which overlap each other to
ensure smoothness of the overall mesh snake across patch
boundaries. To avoid difficulties due to parameterization
artifacts, Bischoff and Kobbelt [2] implement an explicit,
parameterization-free mesh snaking algorithm, where snax-
els may lie on the lines of a uniform grid, so that topology
control and self-intersections of the snake are handled in an
efficient and controlled manner. This technique has later
been extended to triangle meshes [3]. However, as with all
active contour models, the final snake is only locally opti-
mal, so many initial snakes, close to the desired contour,
need to be inserted manually on the mesh.

Cox et al. [9] first model the image segmentation prob-
lem as a global minimum ratio problem, where a directed
cycle over the image grid that minimizes a ratio of the cost
of the perimeter of the segmented region to the benefit as-
signed to its enclosed interior is sought. This is similar in
spirit to the well-know normalized-cut approach to image
segmentation [20]. Of more interest is a similar approach
due to Jermyn and Ishikawa [12], which finds an optimal
region by minimizing the ratio of an energy flow across the
boundary of the region over the internal boundary energy,
e.g., boundary length. Green’s Theorem can be used to
show that information about the interior region, e.g., its ho-
mogeneity, can also be incorporated into the minimization.
Wang et al. [22, 21] solve a minimum mean cycle (MMC)

problem on an undirected graph derived from an image and
find a globally optimal contour which passes through a pre-
computed set of edge fragments. Note that the MMC prob-
lem differs from the minimum ratio cycle problem solved
by Jermyn [12] in that the denominator is the number of
edges in the cycle and not its total length.

A scissoring technique that resembles our optimization
based approach is given by Funkenhouser [10]. As with our
approach, they apply a graph based optimization in which
an optimal contour is found within a given search region.
The search region is usually a small neighbourhood sur-
rounding an initial segment of a contour given by a user,
and the optimal contour is found using Dijkstra’s algorithm.
Fundamentally, their method is similar to an active contour
approach, since the cost function that they are minimizing
is a total energy. This differs from our approach, since we
advocate the use of a ratio energy, which removes the bias
towards shorter contours.

3. Overview of our approach

One of main challenges in applying the minimum ra-
tio idea to contour optimization on an irregular-grid surface
mesh is to come up with an appropriate search space, which
will be a weighted graph. We wish to ensure that the glob-
ally optimal cycle is simple (no self-intersections), efficient
to compute, represents a smooth and perceptually meaning-
ful segmentation, and that it wraps around a 3D model if
desired. We accomplish all these with a novel construction
of an acyclic graph based on a novel energy definition. Our
approach has the advantage that it decouples contour opti-
mization from feature extraction and selection, e.g., com-
pared to [17, 21]. However, if so desired, both hard and soft
constraints may be enforced within the same framework.

In Figure 1, we illustrate the major steps of our algo-
rithm for optimizing a contour that only passes through
mesh edges. We describe these steps below.

1. Search space — Figure 1(a) and (b): Given an ini-
tial contour on a mesh, a search space consisting of
a band, with a user-specified width, surrounding the
initial contour is first constructed, as shown in Figure
1(a). The search band is computed via face dilation,
starting from the initial contour, as shown in Figure
1(b). Also obtained are the “strip boundaries”, shown
in light gray, which are separated by single strips of
triangles and used to refine the search space when con-
structing the search graph.

2. Edge cut — Figure 1(c): Next, a minimal edge cut of
the search band is found, as shown in Figure 1(c). Each
mesh edge along the cut is duplicated, resulting in pairs
of corresponding source and destination edges for our
subsequent search. This is to ensure that the resulting

(a) (b) (c) (d) (e) (f)

Figure 1. Major steps of our algorithm. (a) Given an initial contour (dark gray), a search band around it
with a user-defined width d (here d = 2) is found. (b) The 2-ring search region is found by dilation from
the initial contour, resulting in a set of strip boundaries, drawn in light gray. (c) An edge cut through
the search space is obtained. (d) Gate segments are inserted between adjacent strip boundaries;
they aid in the determination of which directed mesh edges to include in the acyclic graph. (e) The
acyclic edge graph is constructed. Each edge in the edge cut is duplicated and serves as source
and target nodes in the acyclic graph. (f) Optimal ratio contour found by running the MRP algorithm
once for each directed edge in the edge cut.

contour wraps around the band as the initial contour
does; in general, an minimum ratio contour (MRC)
over the search space may not possess that property.

3. Acyclic search graph — Figure 1(d) and (e): Within
the search space, we build a weighted acyclic graph
(source to destination) whose nodes (vertices) are di-
rected mesh edges, as shown in Figure 1(e). Each
“edge” in the acyclic graph, which we refer to as an arc
to distinguish it from mesh edges, has a denominator
and a numerator weight. The former models contour
length while the latter ensures contour smoothness and
feature adaptation; these are described in Section 5.5.

An intermediate step in the construction of the acyclic
graph is the computation of gate segments which con-
nect adjacent strip boundaries, as shown in 1(d). In-
tuitively, the gates are located at constrictions between
adjacent strip boundaries and they help define a lin-
ear ordering of mesh edges along the strip of triangles
sandwiched between adjacent strip boundaries.

4. Optimization — Figure 1(f): To compute a minimum
ratio path (MRP), shown in Figure 1(f), between a pair
of corresponding source and destination nodes s and t
in the search graph, the Bellman-Ford algorithm [8] is
run a number of times to linearly search for an appro-
priate edge weight offset which results in a zero-length
shortest path between s and t.

The acyclicity of the search graph allows us to carry
out the Bellman-Ford algorithm in linear time. The over-

all complexity of our algorithm is O(mnd), where n is the
number of mesh edges within the search space, d is the
width of the search band, and m is an upper bound on the
number of linear search steps performed for each (s, t) pair.
As confirmed by both our experiments and related work on
image contour extraction [12], m is typically a small con-
stant (no more than six in all of our experiments).

Both the graph connectivity and arc weights rely on
an analysis of mesh geometry; this step is application-
dependent. For our target application, mesh segmentation,
we follow the minima rule from cognitive studies [11],
which necessitates the computation of principal curvatures
and directions over a mesh. We adopt the tensor estima-
tion of Cohen-Steiner and Morvan [7]. As suggested, to ac-
count for noise present in the input mesh, several iterations
of Gaussian smoothing are applied to the curvature tensors.

Restricting a contour to be along mesh edges has its pros
and cons. On one hand, the smoothness of the contour is
limited by the mesh resolution and may be compromised
by possible connectivity artifacts. On the other hand, cut-
ting through mesh faces may add sliver triangles to the seg-
mented mesh and also increase computation time. If de-
sired, once the contour has settled into position, we can re-
fine the mesh, as explained in Section 6, and run our search
again to produce an optimal contour with increased resolu-
tion and smoothness. Additionally, our approach allows

• Open curves: As our algorithm essentially reduces an
MRC problem to a number of MRP problems, open
curves are straightforward to handle.

• Incorporation of hard constraints: It is easy to force
an optimal solution to pass through a set of constraint
edges, e.g., salient feature edges over the mesh. As
an acyclic graph induces a partial order on its nodes,
an MRP problem from source s to target t can be de-
composed into a sequence of MRP problems for which
each constraint edge becomes both the source and tar-
get nodes of two adjacent MRP problems.

• Incorporation of soft constraints: Proximity to soft
constraint edges can be included in the definition of
numerator energy at the arcs in our acyclic graph.

4. The minimum ratio path problem

Given a directed search graph G = (V,E), associate two
functions f, g : E → R to the arcs (edges) of G. Consider
a sequence π of consecutive arcs in G, which may or may
not form a cycle, define the numerator weight of π to be

χ(π) =
∑

e∈C

f(e)

and the denominator weight to be

l(π) =
∑

e∈C

g(e).

Let C be the set of all directed cycles in G. The minimum
ratio cycle (MRC) problem is one that seeks a cycle π∗ ∈ C
which minimizes the ratio τ(π) = χ(π)/l(π). That is,

π∗ = argmin
π∈Cτ(π) = argmin

π∈C
χ(π)

l(π)
.

The related minimum mean cycle problem [22] replaces the
denominator l(π) by the arc count #(π). Both problems
can also be defined for the set of paths from a source vertex
s to a destination vertex t; we refer to these problems as the
MRP and MMP problems, respectively.

To find the MRP in G, let us observe: the ratio of any
path π from s to t in G is reduced by λ ∈ R when a new set
of numerator weights f ′(e), given by

f ′(e) = f(e) − λ · g(e),∀e ∈ E(G)

are used to replace f . This is easy to see, as

∑

e∈π f ′(e)
∑

e∈π g(e)
=

∑

e∈π

[

f(e) − λ · g(e)
]

∑

e∈π g(e)

=

∑

e∈π f(e)
∑

e∈π g(e)
− λ

Since the ratio of each path in G is lowered by λ, the MRP
using weights f ′ remains unchanged from the MRP in G
using the original weights f .

To solve the MRP problem in G, we can then search
for the smallest λ∗ such that the MRP in G, with the same
source s and destination t, weighted by f ∗ = f − λ∗ · g,
has a ratio value of zero. This is in turn equivalent to deter-
mining whether G weighted by f∗ has a zero-weight path
from s to t and no negative-weight paths from s to t. De-
termining whether a negative weight path from s to t ex-
ists can be accomplished by running the Bellman-Ford al-
gorithm on G. Thus to find λ∗, either a binary or linear
search over λ can be performed. Although the time com-
plexity of binary search is lower than that of linear search
(a pseudo-polynomial time bound can be obtained for lin-
ear search [12] if the denominator and numerator weights
are integral), in practice linear search is found to more effi-
cient [12] and this is what we use for our MRP problem.

The Bellman-Ford algorithm is needed above to test
whether G has a negative-weight path from s to t for a given
λ. In general, this would take O(|V | · |E|) time [8]. How-
ever, for our purpose, the search graph G will be acyclic and
the complexity of the procedure is then reduced to linear-
time, more specifically, O(|V | + |E|).

Wang and Siskind [22] consider the undirected version
of the MMC and MMP problems and solve them by first
transforming G into an augmented graph G′ and then re-
ducing the problem of finding a negative cycle in G to that
of finding a minimum weight perfect matching (MWPM) in
G′. We have not considered this approach since in general
the cost of performing MWPM is O(|V |·|E| log |V |), which
is much higher than the linear-time algorithm we have been
able to obtain for our specialized graph model.

5. Minimum ratio contour algorithm

In this section, details of each stage of our minimum ra-
tio contour algorithm are given. Refer to Figure 1 for an
illustration of some of these steps.

5.1 Search space

Given an initial contour C0, we construct a search space,
which is a band to approximate a d-ring neighborhood about
C0. We successively perform face dilation starting from C0.
If the active boundary of the dilation would intersect itself,
we disallow addition of that face, in order to ensure that the
search space is homotopic to a solid torus.

5.2 Finding an edge cut

A contour which traverses around the search band must
pass through an edge in an edge cut of the band. Instead of
implementing a full-fledged graph min-cut algorithm, we
perform a breadth-first-search (BFS) on mesh faces within
the search space due to the special banded shape of the

(a) (b)

Figure 2. Finding an edge cut via BFS. (a) A
minimal sequence of faces is found. (b) Cor-
responding edge cut.

search space. Specifically, we label each face having an
edge on the inner boundary of the search band 0 and then
use BFS with face adjacency to label the remaining faces in
the search band, stopping when a face on the outer bound-
ary is encountered. Now a minimal sequence of connected
faces from the inner to the outer boundary is obtained by
backtracking. The corresponding edge cut consists of edges
which are adjacent to two faces in the minimal face se-
quence, plus one boundary edge, as shown in Figure 2.

5.3 Constructing the acyclic graph

To construct an acyclic search graph G in the search re-
gion, we wish to establish a flow direction, which mimics
the general direction of the initial contour. We then orient
each undirected mesh edge within the search space; the ori-
entation chosen is the one which is aligned with the flow
direction. Care must be taken to ensure that vortexes (circu-
lar flow patterns) do not occur within the search space.

Strip boundaries: To facilitate construction of the vortex-
free flow, we refine the search space into a series of strip
boundaries. Each strip boundary is a progression of mesh
edges, starting at an edge in the edge cut and ending at an
edge in the edge cut. Specifically, the initial contour C0,
broken up at the edge cut, induces one of the strip bound-
aries. The set of all strip boundaries provide a complete
cover of the mesh vertices within the search space. No two
strip boundaries cross each other although they may over-
lap. We shall describe their construction later.

Distance function along strip boundaries: We define a
monotonic distance function F , in the range [0,1], along
each strip boundary. It measures some form of a distance
between a given point along a strip boundary to the starting
point of the strip boundary. The flow direction is dictated
by the distance functions.

Edge orientation and graph construction: By our defini-
tion of strip boundaries, every mesh edge within the search
space has its two vertices either on the same strip bound-
ary or on two adjacent strip boundaries. To orient each

Initial contourIntermediate
strip boundaries

Strip boundary at level 0

Level 1

Level 2

Figure 3. An initial contour and the strip
boundaries, on one side, obtained.

undirected mesh edge (a, b), we consider the distance or
F values at its endpoints. If F(a) < F(b), the edge is ori-
ented from a to b and added to the graph G as a node. If
F(b) < F(a), the edge is oriented from b to a and added
to G. Otherwise, the edge lies along an “iso-level”, and it
is not added to G. An arc, connecting two adjacent nodes
(a, b) and (b, c) in G, is added to G if and only if the angle
between the directed mesh edges (a, b) and (b, c) does not
exceed a threshold of π/2. By construction, the resulting di-
rected graph G must be acyclic. Also, each strip boundary
induces a directed path in the search graph G.

Construction of strip boundaries: We construct strip
boundaries by levels. At level 0, we have the strip bound-
ary corresponding to the initial contour. The i-th level strip
boundaries (there are two of them, one to each side of the
initial contour) are composed of the i-ring neighborhood
vertices of the initial contour. If any such strip boundary
self-intersects, we remove the smaller intersection piece to
ensure a non-intersecting strip boundary. As a result, not
all vertices in the search space may lie on a strip boundary
and it may be necessary to add additional, refined bound-
aries. This is achieved by successively inserting intermedi-
ate strip boundaries until all vertices are covered by the strip
boundaries. In Figure 3, we show the set of strip boundaries
obtained in an artificial yet non-trivial configuration.

Distance function based on arc lengths: The distance
function used could be based on arc lengths, where the F
value at a point p along a strip boundary C would be the
distance from the starting point of C to p, divided by the
total length of C. This simple distance function may en-
counter problems if the length of adjacent strip boundaries
differ greatly, which can result in flow directions which do
not mimic the general flow of the initial contour.

Distance function based on gates: A better approach is
to enforce a set of constraints between the distance func-
tions of adjacent strip boundaries. A gate is a line segment
which connects two adjacent strip boundaries. The distance
function at the endpoints of a gate segment (p, q), where p
is on strip boundary C1 and q is on strip boundary C2, are

required to be equal; that is FC1
(p) = FC2

(q). As a gate
between adjacent strip boundaries C1 and C2, we have cho-
sen pairs of points (p, q), p ∈ C1 and q ∈ C2, such that the
closest point on C2 to p is q, and the closest point on C1 to q
is p; see Figure 1(d). The motivation for choosing such gate
segments is that such pairs of points (p, q) correspond to
narrows between the strip boundaries. The narrows are nat-
ural places to insert gates. In practice it has been observed
that the number and locations of the gates are sufficient in
establishing adequate flow directions.

5.4 Optimization

Finally, nodes corresponding to edges in the edge cut are
duplicated. Let us refer to one set of duplicated nodes as
source, and the other as dest, for destination nodes. We only
allow outgoing arcs from nodes in source and incoming arcs
to nodes in dest. Now a progression of nodes in G starting
at a node in source and ending at its duplicate node in dest
corresponds to a contour (or cycle) on the mesh.

After constructing the acyclic graph, whose weights will
be defined in the next section, we run the MRP algorithm
as mentioned in Section 4 once for each pair of duplicated
nodes, one from source and the other from dest. We take
the MRC as the one obtained as the minimum of the set of
MRPs, with the source and destination nodes merged.

5.5 Energy definition

Given an arc r = (e1, e2) in the constructed acyclic
graph, corresponding to an ordered pair of directed mesh
edges e1 = (u, v) and e2 = (v, w), the denominator weight
of r models length and is simply defined as

g(r) =
1

2
(|e1| + |e2|),

where | · | is the Euclidean norm. The numerator weight
should serve to penalize bending between e1 and e2 and to
attract them to the desired features, which we discuss below.

• Bending: In contrast to smoothness energies previ-
ously defined for mesh snakes [16, 13], which model
second-order derivatives in the 3D ambient space, we
wish to consider only bending “inside” the surface.
This notion corresponds to the idea of “straightness”
of Polthier and Schmies [19]. Instead of using left and
right curve angles to model straightness, we project e1

and e2 onto the tangent plane at v and measure smooth-
ness in the tangent plane; this allows us to combine
bending and contour steering into a single term.

• Feature adaptation: For segmentation using the min-
ima rule [11], which states that segmentation bound-

aries should consist of surface points at negative min-
ima of principal curvatures, the feature energy at a ver-
tex is related to its minimum principal curvature κmin.
More specifically, the negative curvature minima are
used to attract the contour1 and no preference is given
to points with κmin ≥ 0.

• Contour steering: There is no provision in the min-
imum ratio objective to produce short contours. This
is seen as an advantage of the approach as the optimal
contour can adapt better to features [22]. However,
with the traditional snake energy, e.g., [16], in the nu-
merator, the MRC has a tendency to wind through the
search region to attract itself to features. As long as
the straight portion of the contour still dominates the
turning portion, the ratio will be kept small.

We have found a remedy for this by steering each edge
of the contour, bringing it to alignment with a consis-
tent flow direction. In the context of mesh segmenta-
tion, we have chosen that direction to be the direction
of maximal principal curvatures.

Combining the above considerations, we define the nu-
merator weight of the arc r = (e1, e2) to be

f(r) =

1
2κmin(v) ·

[

|e1| · cos θ1 + |e2| · cos θ2

]

,

if κmin(v) < 0;
1
2κ0 ·

[

|e1| · (1 − cos θ1) + |e2| · (1 − cos θ2)
]

,

otherwise,
(1)

where θ1 (resp. θ2) is the angle between the projection of
the vector e1 (resp. e2) in the tangent plane and the max-
imum principal curvature direction ~pmax(v), as shown in
Figure 4. Note that the tangent plane at v is spanned by
~pmax(v) and ~pmin(v). As we do not consider an elliptical
region, where κmin > 0, to be a feature region for seg-
mentation, we replace κmin by κ0 > 0, which is a large
constant, in that case.

As we can see, bending is automatically incorporated
since minimizing (|e1| · cos θ1 + |e2| · cos θ2) has the ef-
fect of reducing the angle between e1 and e2, in the tangent
plane. Also, it is possible to introduce free parameters as
exponents in (1) for a trade-off between the two factors.

Finally, for a contour or path π, formed by a progression
of arcs, its energy ratio is τ(π) = χ(π)

l(π) , where

l(π) =
∑

r∈π

g(r) and χ(π) =
∑

r∈π

f(r).

1Obviously, when ridge lines are to be detected, positive curvature max-
ima would become relevant.

max
(v)p

1θ

v

e2

e 1θ2

tangent plane

Figure 4. Numerator weight is computed by
projecting edges onto the tangent plane.

6. Optimization of refined contours

In order to overcome the limitation that our contour may
only traverse along the edges of a mesh, we use a refinement
scheme similar to that of Lanthier et al. [15]. Our refine-
ment permits segments of the contour to cut across faces so
as to avoid connectivity artifacts, improving the resolution
and smoothness quality of the resulting contours.

6.1 Refinement scheme

Unlike mesh snakes, e.g., [16, 3], which model contin-
uous movements of a contour, we discretize the process.
Specifically, we insert k equally spaced Steiner points along
each edge of the original mesh. For each triangle T , we de-
fine a directed chord, a term chosen to distinguish it from
the original directed edges of the mesh, to be an ordered
pair (p, q) for which one of following is true:

• p and q are adjacent points, either a vertex of T or a
Steiner point, along the same edge;

• p is a vertex of T and q is a Steiner point on the triangle
edge opposite to p;

• p is a Steiner point and q is another Steiner point that
lies on a different edge of T .

Each refined contour is composed of a directed sequence
of chords. The larger the value of k, the smoother a re-
fined contour can be. But we have found that a small k,
e.g., k = 2, is quite sufficient to produce high-quality con-
tours. Figure 5(a) shows the set of chords (undirected) in a
triangle, with k = 2. In contrast, refinement using subdivi-
sion, as shown in Figure 5(b), may not result in sufficiently
smooth contours. Note that our setting is a bit different from
that of Lanthier et al. [15], since we work on a chord graph.

(a) Refinement: k = 2. (b) Subdivision.

Figure 5. (a) Each line segment shown is an
undirected chord. (b) Subdivision with the
same number of Steiner points does not re-
sult in sufficient smoothness.

It is not hard to verify that there are 6k2 + 12k + 6 di-
rected chords per triangle. If we join two chords as long as
they are connected, then the size of the search graph may
be quite large, even for small k. Although the acyclic graph
construction can reduce that complexity dramatically, we
adopt two simple strategies first to prune the refined search
graph. Specifically, we remove any arc that

1. connects two chords interior to the same triangle, or

2. connects two chords that sustain an angle exceeding a
certain threshold, i.e., when the bending is too great.

6.2 The acyclic graph and optimization

Our optimization procedure for the refined case follows
the same general structure as the regular case, described in
Section 5, with only slight modifications. After identifying
the search band, we consider the refined chord graph (after
pruning) to find an edge cut.

Let γ be a path, in the original mesh graph, originating at
a vertex situated on the inner boundary, and terminating at
a vertex on the outer boundary of the search band. We take
as an edge cut in the refined chord graph all chords which
originate on one side of γ and terminate at some point, a
mesh vertex or a Steiner point, along γ. In practice, we take
γ to be a shortest (in graph distance) path from the inner to
outer boundary of the search band. Note that although the
number of edges in the resulting cut may not be minimal, it
is nevertheless a close approximation.

The construction of the acyclic graph in the refined case
proceeds in the same manner as in the regular case, except
that directed chords in the search space need to be oriented
instead of mesh edges. To find the principal curvatures and
directions, as well as distance values for Steiner points, we
linearly interpolate along a mesh edge those values that have
already been estimated at the mesh vertices.

7. Experimental results

Results obtained from our MRC algorithm are shown in
Figures 6, 7, 8, 9, and 10. All experiments were per-
formed on a commodity desktop computer. Statistics about
the search space and the constructed acyclic graphs can be
found in Table 1. The timing statistics for our algorithm
can be found in Table 2. Of special interest in Table 2 is the
recorded maximum number of linear search steps required
for each MRP problem (one per pair of source and desti-
nation nodes). In all of our experiments, this number is at
most 6, attesting to the efficiency of the linear search. For
each experiment, the user is required to select a search space
width. The significance and effects of differing widths are
explained throughout this section.

As seen in Figures 6(b) and 7(b), connectivity artifacts
are common in the regular, unrefined case. We find that
refining the mesh, with k = 1 or 2, can render the result-
ing contours sufficiently smooth, but at an increased com-
putation cost. The proper choice of k to ensure smoothness
depends on the resolution of the given mesh and screen res-
olution. Typically, the lower the mesh resolution, the larger
k needs to be. We run our algorithm on the same initial con-
tour under three different optimization conditions: regular,
refined with k = 1, and refined with k = 2, on the horse
model and show results in Figure 6. As we can see, the al-
gorithm converges to essentially the same final contour, but
with different degrees of smoothness; this is only restricted
by the given search graph. Thus our MRC algorithm is seen
to be stable against the optimization conditions.

For the results shown in this paper, we typically first run
the regular, unrefined optimization with an initial contour
and possibly with a large search band width. Once the con-
tour has settled, a refined optimization is applied, with a
smaller neighborhood width, to obtain a smooth final con-
tour. This is more efficient than conducting the entire search
using the refined optimization.

Figures 7,8, and 9 give good examples to show possible
differences between our MRC algorithm and mesh snakes.
Consider first the case of the ring finger, shown in Figure
7. Note that the initial contour is far away from the desired
feature, the final contour shown in Figure 7(b). Geomet-
rically, the finger is smooth with its diameter continuously
narrowing down to the finger tip. Thus a mesh snake would
converge to a trivial solution, unless it is specifically in-
structed to inflate [6]. This is not the case however when
the energy to minimize is a ratio. The ability of our MRC
algorithm to adapt to mesh features allows it to locate the
desired feature, provided that part of the desired feature lies
in the initial search space. After two steps of MRC search,
the optimal contour converges to the correct cut.

Figure 8 highlights the effect of the search space size on
the resulting contour. With a search band of width 6, the

resulting contour converges to that shown in Figure 8(b).
This contour is the minimum ratio contour within the given
search region. However, if the search band width is in-
creased to 12, a lower ratio contour occurs in the search
region, and the resulting contour jumps to the one shown in
Figure 8(c). This is unlike a mesh snake, which would not
be able to cross the large concave region present at the base
of the thumb.

Again, Figure 9 again demonstrates how our MRC al-
gorithm can avoid or bypass local minimums that a mesh
snake would not. The initial contour lies around the torso
of the headless model, part of which lies amidst a series of
grooves present in the abdomen. By using a large neigh-
borhood width of 12, the MRC algorithm is able is able
to avoid the locally optimal contours passing through the
grooves in the abdomen, and locate the much more signifi-
cant final contour, shown in Figure 9(b).

It should be noted that if part of the desired contour does
not lie within the search space, the resulting optimized con-
tour will not be the desired one. Iterating the MRC algo-
rithm will not help, unless an intermediate contour is found
which has a lower energy than the inital contour, but a
greater energy than the desired contour. To illustrate where
repeated iterations are useful, consider the venus model in
Figure 10(a), where there are a pair of contours whose ini-
tial positions are far from their desired final positions (seg-
menting the eyes). Note that part of the initial contours lie
near low energy, concave regions of the eyes. These regions
are included in the search space if using a small width of 2,
and serve as an anchor when iterating the MRC algorithm.
The result after one iteration is shown in Figure 10(b), and
it takes five iterations to converge to the desired contour,
shown in Figure 10(c).

8. Discussion and future work

In this paper, we present an algorithm for minimizing
an energy ratio globally over a prescribed search band sur-
rounding a given initial contour. The energy to be mini-
mized is a ratio of a combination of straightness and fea-
ture weight of a contour to contour length. It is thus scale-
independent, feature-conforming, and does not have any
bias toward either short or long contours, nor any tendency
to produce a large enclosed region, as with normalized
cuts [20]. Our optimization procedure is efficient and pro-
duces promising results in postprocessing for mesh segmen-
tation. This is made possible with a novel construction of
an acyclic search graph and its associated edge weights.

While for a locally-optimizing mesh snake to locate a
desired contour C, many initial snakes close to C may need
to be specified manually, our approach requires only one
initialization, provided that the search space encompass the
desired contour. In this sense, the minimum ratio cycle ap-

(a) (b)

(c) (d)

Figure 6. (a) An initial contour. (b) Optimal contour found using regular optimization; the connectivity
artifacts are visible. (c) After optimization on refined graph, with k = 1. (d) After optimization on
refined graph, with k = 2. Evidently, higher level of refinement results in smoother contours. These
results also demonstrate the stability of our MRC algorithm.

(a) (b) (c)

Figure 7. (a) Initial contour. A large search band of width 6 is used in order to make the contour jump
to an optimal position. (b) Result after regular optimization; there is some roughness in the final
contour as a connectivity artifact. (c) Result after refined optimization has increased smoothness.

proach is more automatic and requires less user interven-
tion. As for efficiency, we expect our algorithm, especially
in the refined case, to be more expensive, by some constant,
than an individual mesh snaking session. But one needs to
keep in mind that many such sessions may be required to
obtained the desired result.

For future work, we would like to investigate whether

it is possible to introduce a bias to-wards short contours in
the minimum ratio framework, to add more flexibility to
this approach. Furthermore, we would like to extend the
search space to over the whole mesh surface. To be able to
achieve reasonable speed for such a global optimization, a
multiresolution approach may become necessary.

(a) (b) (c)

Figure 8. (a) Initial contour. (b) Using a neighborhood size of width 6 results in a locally optimal
contour. (c) By increasing the size of the band to 12, to contour jumps to a better minima. After the
contour has settled using regular optimization, refined optimization with k = 2 is used to produce
the results in (b) and (c).

(a) (b)

Figure 9. (a) Initial contour. (b) Several iterations of with a large neighborhood size of width 12 allows
the initial contour to realize a better position. Note that the contour has jumped across many local
minima to find a better minima.

References

[1] A. Amini, S. Tehrani, and T. Weymouth. Using dynamic
programming for minimizing the energy of active contours
in the presence of hard constraints. In IEEE Int. Conf. on
Computer Vision, pages 95–99, 1998.

[2] S. Bischoff and L. Kobbelt. Parameterization-free active con-
tour models. The Visual Computer, 20:217–228, 2004.

[3] S. Bischoff, T. Weyand, and L. Kobbelt. Snakes on triangle
meshes. Bildverarbeitung für die Medizin, pages 208–212,
2005.

[4] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active con-
tours. Int. Journal on Computer Vision, 22(1):61–79, 1997.

[5] L.T. Cheng, P. Burchard, B. Merriman, and S. Osher. Motion
of curves constrained on surfaces using a levet-set approach.
Journal of Computational Physics, 175:604–644, 2002.

(a) (b) (c)

Figure 10. (a) Initial contours, and search spaces of width 2 surrounding them. (b) After one iteration
of the MRC algorithm. (c) After five iterations of the regular MRC algorithm, and one subsequent
iteration using refinement with k = 1.

[6] L. Cohen. On active contour models and balloons. CVGIP:
Image Understanding, 53(2):211–218, 1991.

[7] D. Cohen-Steiner and J. M. Morvan. Restricted delaunay
triangulations and normal cycle. In Proc. 19-th Annual Sym-
posium of Computational Geometry, 2003.

[8] T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. MIT Press, 1997.

[9] I. J. Cox, S. B. Rao, and Y. Zhong. ”ratio regions”: A tech-
nique for image segmentation. In IEEE Int. Conf. on Pattern
Recognition, pages 557–564, 1996.

[10] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer,
A. Tal, S. Rusinkiewicz, and D. Dobkin. Modeling by exam-
ple. ACM Trans. on Graphics, 23(3):652–663, 2004.

[11] D. D. Hoffman and W. A. Richards. Parts of recognition.
Cognition, 18:65–96, 1984.

[12] I. Jermyn and H. Ishikawa. Globally optimal regions and
boundaries as minimum ratio weight cycles. IEEE Trans. on
Pattern Analysis Machine Intelligence, 23(10):1075–1088,
2001.

[13] M. R. Jung and H. K. Kim. Snaking across 3d meshes. In
Pacific Graphics, 2004.

[14] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. Int. Journal on Computer Vision, 1(4):321–
331, 1987.

[15] M. Lanthier, A. Maheshwari, and J-R. Sack. Approximating
weighted shortest paths on polyhedral surfaces. In Proc. 13-
th Annual Symposium of Computational Geometry, 1997.

[16] Y. Lee and S. Lee. Geometric snakes for triangular meshes.
Computer Graphics Forum, 21:229–238, 2002.

[17] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.P. Seidel. In-
telligent mesh scissoring using 3d snakes. In Pacific Graph-
ics, pages 279–287, 2004.

[18] M. J. Milroy, C. Bradley, and G. W. Vickers. Segmentation
of a wrap-around model using an active contour. Computer
Aided Design, 29(4), 1997.

[19] K. Polthier and M. Schmies. Straightest geodesics on poly-
hedral surfaces. In Mathematical Visualization, pages 391–
410, 1998.

[20] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. In IEEE Int. Conf. on Computer Vision, pages 731–737,
1997.

[21] S. Wang, T. Kubota, J. M. Siskind, and J. Wang. Salient
closed boundary extraction with ratio contours. IEEE Trans.
on Pattern Analysis Machine Intelligence, 27(4):546–561,
2005.

[22] S. Wang and J. M. Siskind. Image segmentation with min-
imum mean cut. In IEEE Int. Conf. on Computer Vision,
pages 517–524, 2001.

[23] D. Williams and M. Shah. A fast algorithm for active con-
tours and curvature estimation. CVGIP: Image Understand-
ing, 55(1):14–26, 1992.

Mesh Graph Resolution Search Band # Faces Size of Cut # Nodes # Arcs
Width

Horse Regular 2 979 9 1356 3588
Horse Refined: k = 1 2 979 34 8535 35833
Horse Refined: k = 2 2 979 78 21332 125258
Hand (finger) Regular 6 626 26 960 2629
Hand (thumb) Regular 6 1456 26 2191 6061
Hand (thumb) Regular 12 3039 50 4577 12999
Headless Regular 12 3563 49 5386 15342
Venus (left eye) Regular 2 644 9 964 2476
Venus (right eye) Regular 2 740 9 1118 2853

Table 1. Statistics for the construction of search spaces and acyclic graphs. The number of faces is
collected within the search space, on the original unrefined mesh. The number of nodes and arcs
are collected on the constructed acyclic graph, which, given a fixed search space, would grow as the
number of refinement levels k increases. These statistics are for the first iteration of optimization
only.

Mesh Max. # Graph Min. Ratio Time/Iter # Iters. Total
Neg. Iters. Construction

Horse: reg 4 0.10 0.01 0.11 1 0.11
Horse: k = 1 5 0.14 0.33 0.47 1 0.47
Horse: k = 2 6 0.22 2.47 2.69 1 2.69
Hand (finger) 5 0.00 0.01 0.01 2 0.02
Hand (thumb) 6 0.08 0.01 0.09 1 0.09
Hand (thumb) 6 0.17 0.15 0.32 1 0.32
Headless 6 0.21 0.18 0.39 2 0.78
Venus (left eye) 4 0.00 0.04 0.04 5 0.20
Venus (right eye) 5 0.00 0.06 0.06 5 0.30

Table 2. Timing statistics for our minimum ratio algorithm. Statistics for the construction of search
spaces and acyclic graphs of the models are given in Table 1. Second column shows the maximum
number of linear search steps needed per MRP problem. Third column shows time required for the
construction of the acyclic graph, including finding the search space and edge cut. Fourth column
shows time required to compute the MRC. Fifth column shows total time per iteration. Sixth column
shows the total number of graph searches (iterations) performed to locate the final optimal contour.
The last column shows the total time required. All timing statistics are averages if more than one
iteration is required, and are measured in seconds.

