
The Visual Computer manuscript No.
(will be inserted by the editor)

Detail-Replicating Shape Stretching

Ibraheem Alhashim · Hao Zhang · Ligang Liu

Received: date / Accepted: date

Abstract Mesh deformation has become a powerful
tool for creating shape variations. Existing deforma-
tion techniques work on preserving surface details un-
der bending and twisting operations. Stretching dif-
ferent parts of a shape is also a useful operation for
generating shape variations. However, under stretching,
texture-like geometric details should not be preserved
but rather replicated. We propose a simple and efficient
method that helps create model variations by applying
non-uniform stretching on 3D models with organic ge-
ometric details. The method replicates the geometric
details and synthesizes extensions by adopting texture
synthesis techniques on surface details. We work on an-
alyzing and separating the stretching of surface details
from the stretching of the base mesh resulting in the
appearance of preserved details. The efficiency of our
method is attributed to a local parametrization of the
surface with the help of curve skeletons. We show a va-
riety of experimental results that demonstrate the use-
fulness of this intuitive stretching tool in creating shape
variations.

Keywords Detail-replication · Stretching · Geometry
synthesis · Mesh editing

1 Introduction

Surface details are essential in depicting realistic 3D
models. The simplest form of surface detail representa-
tion is textures. Extending the representation to paral-
lax mapping adds an extra level of realism and is often

I. Alhashim, H. Zhang
Simon Fraser University, Canada E-mail: iaa7@sfu.ca,
haoz@cs.sfu.ca

L. Liu
Zhejiang University, China E-mail: ligangliu@zju.edu.cn

used in real-time rendering for its efficiency in simu-
lating surface details. However, these texture represen-
tations lack the capability to represent more complex
organic surface details such as thorns, scales or realistic
bark that require geometric primitives.

Editing meshes in the presence of complex surface
details is a challenging task. State-of-the-art mesh de-
formation methods work on preserving surface details
under simple rotations and translation of some defor-
mation controllers [8]. Non-uniform scaling or stretch-
ing operations cause extreme distortion to these details
limiting the amount of deformation possible for mod-
elers when creating variation on existing models (e.g.
elongating a snake or resizing a patterned vase). Ap-
plying current shape manipulating scaling on organic
models and meshes obtained with laser scanners often
results in loss of surface properties and other visual ar-
tifacts (see Fig. 1). Another difficulty in dealing with
organic models arises when the details are composed
of several accumulated patterns that are challenging to
identify or separate (see Fig. 2). The process of applying
stretching to detailed meshes is then a time consuming
process that involves the modeler introducing geometry
to the model and synthesizing similar details. This is es-
pecially the case when dealing with shapes containing
organic patterns. Being able to efficiently produce shape
variations from existing shapes by stretching could al-
low a modeler to populate a scene more quickly.

In this article, we present an interactive and effi-
cient algorithm for applying 1D stretching of detailed
mesh parts with minimal user interaction and natural
looking results. We encode the surface details of the
input as a 2D texture, therefore reducing the problem
space to synthesis on a plane. We also constrain the
synthesis process such that the results blend well with
the original mesh while minimizing distortions to the

2 Ibraheem Alhashim et al.

Fig. 1 An example of a stretching operation: (left) input pillow and mattress shapes, (middle) applying a stretching operation
by interpolation results in large distortions to the surface details, (right) stretching with detail-replication using our method
preserves the natural look of the surface details.

Fig. 2 An example of an accumulated surface texture. This
poses a challenge when determining the base shape.

original surface details. The generated details on the
extended area matches the frequency, scale, and topol-
ogy of the source. An overview of our framework can
be seen in Fig. 3. We also show that separating surface
details into different levels can help when dealing with
complex or inhomogeneous details. The efficiency of our
method allows the user to interactively test and mod-
ify different synthesis parameters on large and highly
detailed meshes.

We achieve this by first computing a base mesh that
serves as an approximation of the general shape of the
input. A curvilinear grid is then constructed on the de-
sired stretch region from the base mesh with the help of
a curve skeleton. The region is then approximated by
a 2D texture computed by projecting this region onto
the grid. A stretching operation is specified by the user
with a simple 3D curve. The stretching factor is esti-
mated and the representing 2D texture is synthesized
accordingly. A corresponding new geometry is then re-
constructed and stitched with the source with as mini-
mum distortion as possible.

2 Related Work

2.1 Detail preservation by replication in 2D

In the image domain, the work by (author?) [14] pro-
posed re-synthesizing texture patches from the source

image to preserve details around modified feature curves.
This allows for free form deformations of a user defined
feature curve on the image while preserving the fre-
quency of the details. By replicating different source
patches in accordance to the feature curve the appear-
ance of stretched patterns caused by moving and/or
bending the curve is reduced. Another work [5] intro-
duced the PatchMatch method which allows the user to
apply stretching and widening operations on an image
while preserving the details in a similar way to [14]. The
method produces high quality outputs due to randomly
finding patches that preserve image coherence.

The method in [35] can resize 2D images contain-
ing symmetric patterns by separating the process into
two phases. First, it detects regions with translational
symmetry and segment the image into symmetric and
non-symmetric regions. Next, it resizes the different re-
gions using different techniques and then merges the re-
sults. When resizing the image, symmetric regions are
resized using a summarization algorithm that removes
or replicates cells from the extracted lattices in sym-
metric regions. The non-symmetric regions are resized
using optimized warping and the two results are seam-
lessly merged, using graph cuts, to produce the final
image. This method only works on symmetric patterns
that can be identified using their symmetry detection
algorithm. Organic patterns, however, tend not to ex-
hibit regular patterns that can be easily detected.

The reliance on existing background details and the
ability to blend pixel colors makes such methods non-
trivial in the context of 3D shape deformations. In our
3D replication, the details are constrained by the bound-
aries of the mesh’s part, therefore, the idea of a back-
ground is analogous to a single colored background in
an image. Perhaps more challenging to represent in a
flat domain are inner details containing geometry of
non-zero genus.

Detail-Replicating Shape Stretching 3

OutputInput

Height map
approximation

Grid
construction

Parameterization

Geometry
reconstruction

Texture
synthesis

SynthesisPreprocessing

Skeleton
extraction

Smooth base
computation

Fig. 3 Pipeline of our detail-replicating stretching algorithm.

2.2 Procedural modeling

Designing objects using procedural modeling or CAD
software allows us to incorporate surface details easily
by adding rules that correspond to the geometric details
as shown by [28, 27]. An inverse procedural modeling
framework in [7] takes a piece of exemplar 3D geom-
etry and extracts shape generation rules. The method
relies on finding symmetries by aligning salient feature
lines on the input. This approach works well on shapes
with highly symmetrical and distinct features. However,
when considering organic shapes this approach might
not be suitable since we may deal with small or contin-
uously varying surface details and patterns. Further-
more, the extracted rules do not allow the freedom to
merge different pieces having largely different orienta-
tions. Hence, procedural modeling is not general enough
for describing organic shapes or applying free form ed-
its. Our proposed method tries to deal with high fre-
quency geometric details which is still a hard problem
in the context of inverse procedural modeling.

2.3 Shape deformation

State-of-the-art 3D deformation methods focus on pro-
tecting large scale features of the shape. A survey by
(author?) [8] discussed different linear deformation meth-
ods that preserve details under bending and twisting
deformations. In [32] the method applies shape defor-
mation operations on an intrinsic surface representation
that encodes each vertex by its relative neighborhood
based on the Laplacian of the mesh. A user can define
a region of interest for editing and then manipulate the
shape. The surface of the area affected by that editing
operation is then reconstructed in such a way that the
original details of the shape are preserved as much as
possible. However, such methods would ignore any form
of stretching or resizing of parts but they can incorpo-
rate such operations by allowing interpolation similar to
the techniques used in [19, 12]. Unfortunately, with in-

terpolation, details are distorted regardless of the tech-
nique being used.

Another approach extracts a descriptive set of wires
and their relations allowing for intuitive resizing while
preserving major shape characteristics [17]. The wires
allow for more intuitive editing operations analogous
to real life armatures used in sculpture. The method is
suited for man-made shapes and works well on shapes
with smooth surfaces but interpolates complex surface
details during a stretch.

A non-homogeneous resizing method presented in
[20] protects some model features, particularly the dis-
tinct ones, during resizing based on a vulnerability map.
The vulnerability computation is based on a per-face
metric that combines slippage (a measure of surface
persistence under a transformation [18]) with normal
curvature. The model is then embedded into a protec-
tive volumetric grid and grid-based space-deformations
are applied during resizing. The contribution of each
cell in the grid to the scaling transformation is then
computed and the final transformations are carried back
to the model by interpolation. The method allows shape-
aware scaling of the entire model while partial scaling
operations are also possible by adding hard constrains
to a group of surrounding cells. This method is analo-
gous to image re-targeting methods [34] that work on
preserving salient features rather than replicating them.
Again, surface details will either be distorted by inter-
polation or can be preserved in their original form on
the expense of stretching other regions in the model.
Such restriction is not well suited when stretching or-
ganic shapes.

2.4 Anisotropic resizing

The method by (author?) [9] performs anisotropic re-
sizing on meshes with surface details. They extend the
grid idea from [20] to incorporate geometric textures
by separating them from the underlying surfaces and
reproducing them on the scaled surfaces using texture

4 Ibraheem Alhashim et al.

synthesis. Their method extracts the texture after a
segmentation process which would not be suitable in
shapes with non-homogeneous surface details as differ-
ent patterns belong to different segments. Furthermore,
the output of their geometric texture is sensitive to the
mesh density, thus limiting the reproduction of the de-
tails when models have low triangle count.

Our method is similar in that we replicate the sur-
face details to compensate for the extended area intro-
duced by the stretching or scaling operation. Advan-
tages of our approach over [9] can be seen in: dealing
with low density triangular models as well as large scale
meshes, working with non-homogeneous surface details,
dealing with multi-layered surface details (i.e. large and
small scale details of the surface), and the intuitive user
interface that allows for free form stretching operations.
Our experimental results show that our method is sig-
nificantly faster and it is able to deal with more types
of details.

2.5 Cut-and-paste

Cut-and-paste methods are used to combine different
parts of different models to generate new shapes. The
work in [6] described a number of algorithms based on
multi-resolution subdivision surfaces that achieve cut-
and-paste edits at interactive rates. One limitation of
their method is that it only works with regions that are
homeomorphic to a disk. In [16] a proposed topology-
free cut-and-paste editing method deals with regions of
non-zero genus while minimizing any possible distor-
tions caused by incompatible geometry between source
and target. The described surface parametrization is
used to transfer the details onto the target surface by
identifying a shared simple planar base surface. [31]
introduced another cut-and-paste tool that allows the
user to drag one mesh part onto another with some
overlap and the system snaps them together using their
proposed Soft-ICP algorithm. Also, recent work done
by [30] explored shape reuse and composition in 3D
mesh modeling by combining ideas similar to cut-and-
paste along with other techniques.

Our proposed method is related to cut-and-paste in
the sense that we automatically cut patches of the sur-
face from the same model and paste them coherently
in order to replicate the surface detail. The pasted el-
ements cover the introduced surface area during the
stretching of the mesh’s part. An advantage of our ap-
proach over cut-and-paste is that the stretched part is
merged more naturally with the source mesh.

3 Detail-replicating stretching

Inspired by deformation techniques in the image do-
main [14], we apply the concept of detail replication
when performing a stretching operation. We replicate
the surface details of the region on the detailed mesh
we intend to stretch. We adopt 2D texture synthesis to
help guide the geometry synthesis process.

First, we represent the surface details as a height-
field like image that approximates the actual details.
This is done by computing a base mesh and generat-
ing a surface approximating grid with the help of curve
skeletons. The second step is to synthesize more of the
same pattern along the direction of the skeleton edges
in the selected region. The amount of stretching is spec-
ified by a user drawn 3D curve. The synthesized image
is then used to construct geometrical surface patches
along the stretching direction. The final step is to com-
bine all the patches into one closed surface that starts
and ends with the exact geometry of the source region.
In the following we describe each stage of our method
in more detail.

3.1 Base mesh

We start by computing a base mesh B that defines the
underlying geometry of the detailed input mesh D. The
typical approach is to apply a fairing process (mesh
smoothing) that gradually smooths the high frequencies
of the surface texture. As suggested by [1], applying few
steps of mean curvature flow results in a good vertex-to-
vertex correspondence between D and B and minimizes
vertex sliding that typically occurs when fairing using
the umbrella operator.

Curvature flow smooths the mesh by iteratively mov-
ing vertices along the surface normal n with the speed
of the mean curvature κ̄ [13]. We start the fairing pro-
cess by computing the non-zero coefficients of the ma-
trix K representing the matrix of the curvature nor-
mals. We compute the entries of K with the following
discrete expression for the curvature normal at each
vertex xi:

−κ̄n =
1

4A

∑

jεN(i)

(cot αj + cot βj)(xj − xi), (1)

where αj and βj are as described in Fig. 4b, and A is
the sum of the areas of the adjacent triangles of xi as
in 4a.

We then iteratively solve the following linear sys-
tem representing the implicit integration of the diffu-

Detail-Replicating Shape Stretching 5

!

"#

#

$

!"

(a)

!!

!

!

!"#

!
!

!

"
!

!
!$#

%

&

"

%

%

%

(b)

Fig. 4 A vertex xi and its adjacent faces (a), and one term
of its curvature normal formula (b)

sion equation using the backward Euler method as de-
scribed in [13]:

(I − λdtK)Xn+1 = Xn, (2)

where λdt is the smoothing time step and as shown in
[13] increasing the value results in smoother meshes.
This linear system is sparse, thus, we are able to solve
it efficiently using a preconditioned conjugate gradient
(PCG) solver. For preconditioning we use the typical
diagonal preconditioner Ã where Ãii = 1/Aii.

This process of smoothing generally introduces shrink-
age of B. One possible way to compensate for this shrink-
age is to scale B back to its original volume. The cor-
rection factor given by [13] is β = (V 0/V n) 1

3 , where
V 0 is the volume of D and V n is the volume of B at
iteration n. Let x1

k, x2
k, x3

k be the three vertices of the
k-th triangle of the mesh, then the volume computation
for a discrete mesh is given by the following expression
[23]:

V =
1
6

nbFaces∑

k=1

gk ·Nk, (3)

where gk = x1
k+x2

k+x3
k

3 and Nk =
−−−→
x1

kx2
k ∧

−−−→
x1

kx3
k. Each

vertex of B is then multiplied by the computed vol-
ume correction factor β. Depending on the size of the
surface detail relative to the entire shape, it might not
be ideal to apply the volume correction step as it may
introduce large vertex sliding. An adaptive volume cor-
rection method would be more suitable, however, to the
best of our knowledge no such method exists.

The amount of smoothing is specified by the time
step λdt. The larger the parameter value the smoother
the mesh gets. The optimal value depends on the sur-
face details of the input. To automatically assign such a

value would require a method that can accurately sepa-
rate the pattern from the underlying surface. In general,
the problem of detecting pattern symmetries, regular-
ity, and repetitive structure is a fundamental problem
in computer graphics. Several attempts have been made
that work on extracting structure from repeated pat-
terns in 2D images [25, 26, 10]. These attempts, how-
ever, assume regular structure in the provided input
which is not always the case.

In our framework we relay on a user specified value
of λdt. The efficiency of the fairing method and our
parametrization technique allows for an interactive pro-
cess in which the user can experiment with different
λdt values and check the results immediately even with
large complex models.

3.2 Curve skeletons for shape abstraction

Curve-skeletons are 1D structures that approximate the
topology and shape of 3D objects. These shape descrip-
tors have many applications such as shape registration,
retrieval, and deformation. By representing a complex
shape in these abstract curves we are able to reduce
the complexity in such applications. A survey by (au-
thor?) [11] classifies different methods and analyzes
the advantages and limitations of each class.

In our implementation we utilize extracted curve
skeletons using the method in [3]. In the extraction pro-
cess we specify parameters such that the resulting skele-
ton is smooth and nicely embedded inside the shape.
We use these skeletons when constructing our approx-
imate surface parametrization. The skeleton also sim-
plifies the process of selecting mesh regions in which
the user intends to apply stretching using the produced
segmentation.

3.3 Surface Parameterization

A parameterization is a bijective mapping from one sur-
face onto another provided they have the same topol-
ogy. If the topology differs between the two surfaces,
cuts or other topology changing operations are required
on the source mesh. In our context, we are interested in
parameterizations that can handle any mesh regardless
of the topology. With this relaxed condition we are able
to construct an approximating parameterization mesh
that is invariant to the topology of the input.

We will refer to our parameterization domain as the
cylindrical grid as it is constructed by sweeping along
the curve skeleton and sampling the cross-section of B.
This cylindrical grid G is used in computing the approx-

6 Ibraheem Alhashim et al.

imate geometric texture as an image and its geometry
reflects the geometry of the base B.

3.4 Cylindrical grid

Given a segment on the curve skeleton selected by the
user, we construct a cylinder like surface by sweeping.
The quality of the extracted curve-skeleton affects the
construction of G and we may need to refine the edges
on that segment. We do so by subdividing its edges
and then performing Laplacian smoothing of the entire
segment. The refined segment vertices are then used as
control points for a Bézier spline C to ensure a desirable
continuity. We then parametrize C with t ∈ [1, 0] and
uniformly sample it based on the specified grid resolu-
tion h.

The ideal grid resolution is dependent on the surface
texture. More detailed textures require a larger h to
ensure a more faithful representation in the resulting
texture image. In practice we set h in the range of 70 to
140 pixels, Fig. 6 shows the result of different resolution
values. Given the grid resolution h, we compute the size
used for the grid cells y with the following expression:

y =
2πr

h
, (4)

where r is the closest distance from the base mesh B to
the curve C computed by projecting a sample of vertices
onto the skeleton segment. We can now compute the
grid width:

w =
LC

y
, (5)

where LC is the arc length of the spline C . The values
h and w would respectively represent the height and
width of the approximating texture image.

Next, we sample w cross-sections by intersecting a
plane pi with the base mesh B. The plane pi passes
through C at ti = i

w with a normal ni equal to the
tangent of C at ti. The resulting cross-section Si forms
a closed polygon. In the case of missing geometry or
multiple curves we simply select the largest connected
part and then close that polygon.

An arbitrary vector a0 on the plane p0 is computed
and transported along C. We compute at each ti the
closest point on the polygon Si to the curve C along
the direction of ai and denote this point as the start
of Si. These start vectors can be rotated around the
point ti on the curve if the original pattern exhibits

(a) (b)

!
!

!
!

"
!

"
"

#
!

#
!

"
!

$
!

(c)

Fig. 5 Grid construction by sweeping: (a) the source mesh.
(b) the computed base mesh with the medial curve represent-
ing the provided skeleton. We sample along the curve using
w planes shown in green. (c) detailed view of the base mesh
sampling process during grid construction. The green curves
on each plane represent the cross-section computed from the
base. The yellow polygon is an equidistant polygon sampled
from the closest intersecting point to ai and it contains w
edges.

some twisting. We then resample Si by walking along
the polygon in h segments of length:

∆e =
LSi

h
. (6)

Lastly we orient Si such that its normal is in the
same direction as ni. The re-sampled Si can now be
encoded as a vector of scalar values representing the
distances between C(ti) and the samples. This vector Yi

helps to indicate the shape of the underlying structure
at ti. Fig. 5c shows an overview of this grid construction
via our sweeping process.

The geometric construction of the grid is done by
connecting the corresponding sample points on Si with
the points on Si+1. The height value from equation (5)
results in grid cells with an aspect ratio of a square-like
cell minimizing distortions. The resulting shape of the
grid represents an abstraction of B with a resolution
dependent on h. Fig. 7 shows an example of our grid
construction.

Detail-Replicating Shape Stretching 7

Grid range

!" #$" %#&!"#

Fig. 6 Grid resolution: the grid defined on the blue region
of the input shape (left) and the resulting texture image at
different resolutions (right).

Source mesh Generated grid

Fig. 7 Cylindrical grid: a mesh with geometric surface de-
tails (left), the grid constructed from the base shown in red
and blue (right)

3.5 Geometric texture representation

We use the constructed grid G to generate a 2D im-
age that approximates the surface details of D and to
parametrize their geometry by projecting the vertices
to the nearest cell in G.

Computing the texture image I is a straightforward
operation. Let nc be the normal of the grid cell cxy and
pc is the centroid, where x ∈ [1, w] and y ∈ [1, h] then
the pixel value d

d = ‖q − pc‖, (7)

at the pixel Ixy is:

Ixy =

{
d if pc is belowD
−d otherwise

, (8)

where q is the intersection point on D computed by
shooting a ray with origin pc and direction nc. The sign
of d is determined by which side of the plane defined
by the intersecting face on D does pc falls into. We
perform these intersection tests efficiently using a space
partitioning octree [33].

We then parametrize the geometry of D onto the
domain of G using the following steps: for each vertex
v of the selected region on D, we search for the closest
grid cell using ray-triangle intersections. The ray r has
the origin v and normalized direction −d, where d is
the normal of the corresponding vertex on the base B.
For each hit, we encode the location of v with two quan-
tities: a scalar height value; and a shift quantity with

respect to a local frame on the intersected grid cell. The
main idea of this process is to project the source onto
the grid in a flattening manner.

In order to compute the height value, we first com-
pute the weights of the mean value coordinate (MVC)
[15] of the intersection point inside the cell. Let αi be
the angle at the intersection point v0 in the virtual tri-
angle [v0, vi, vi+1] (see Fig. 8) where vi>0 are the corners
of the cell, the mean value coordinates are computed
using the weights:

λi =
wi∑k

j=1 wj

, wi =
tan(αi−1/2) + tan(αi/2)

‖vi − v0‖

and in our cells k is always equal to 4 corners. It is now
possible to reconstruct the intersection point v0 using:

v0 =
4∑

j=1

λivi.

When the intersection point falls on the boundary
of the cell we only need to linearly interpolate on that
edge. The height value q at v0 is then defined as:

q = nc · (v − v0).

The shift factor depends on the local frame of the
grid cell and it is defined by the two scalar quantities
m and θ using the following equations:

p′ = v0 + (qnc),

s = v − p′, k = v4 − v1,

m = ‖s‖,

θ = arccos(
s · k

‖s‖ ‖k‖). (9)

The shift factor helps compensate for any vertex
sliding that occurs during the smoothing operation and
allows us to encode points that do not constitute simple
displacements from B.

With these three quantities we can reconstruct the
vertex v given a new cell by the following expression:

v = v′0 + qnc + mR, (10)

where v′0 is the intersection point computed in the new
cell and R is the rotated vector k′ along the axis nc′

with
angle θ using a the shortest quaternion rotation. The
entire vertex displacement encoding is detailed in Fig. 8.

8 Ibraheem Alhashim et al.

v v

v0
v1

v4

v3
v2

pk
θ

α1

Fig. 8 Mesh projection onto the grid cells.

3.6 Synthesizing stretched parts

The synthesis process starts after the user specifies the
stretching operation by simply drawing a curve E′ that
extends the original length of the selected segment of D.
The most practical approach of texture synthesis in our
context is the one that produces the largest connected
patches. We experimented with various 2D texture syn-
thesis methods [21, 22, 29] and the most seamless re-
sults were produced by the one that uses the entire
input as the patch.

3.6.1 Texture synthesis of details

Given the input texture I with dimensions w and h
defined by our grid, we are interested in synthesizing I ′

such that its width is equal to:

w′ = w + e, e =
L(E′)− L(C)

y
,

where the function L(x) is the arc length of the curve x,
and y is the segment length as in equation (4). We per-
form the synthesis by copying the entire patch I over-
lapped by b pixels n times where n = &w′

w '. The amount
of overlap b is highly dependent on the source texture.
Complex patterns may require larger overlap to allow
for more room to circumvent some distinct features of
the pattern.

In the overlap region we compute the minimum er-
ror boundary cut by computing a weighted L2-norm of
differences between the two overlapping patches A and
B at each pixel p:

Dp(A, B) = ‖Ap −Bp‖2.

We then find the minimum cut on a graph M in
which each pair of adjacent pixels s,t in the overlap
have an arc with the following cost:

Ms,t(A, B) = Ds(A, B) + Dt(A, B). (11)

We then connect the top row with a start node and
the bottom row with an end node with arcs of zero
cost and find the shortest path c given by Dijkstra’s
algorithm. The computed path c defines a binary mask
that we use to copy the new patch B to I ′. In order
to preserve the initial surface details in I we start the
synthesis with a simple copy of I as the first step. To
add some variety on the output we can slightly random-
ize the band size b or the source of subsequent patches.
The output of the entire synthesis process is the matrix
T that represents the corresponding pixel indices of I ′

with respect to the source I. Fig. 9 shows an overview of
the tiling process. Using this method, the complexity of
our texture synthesis algorithm is bounded by the com-
plexity of solving Dijkstra’s algorithm for each patch.
A drawback of this approach is the apparent repetition
when synthesizing highly random patterns.

3.6.2 Geometry reconstruction

We use the indices matrix T to construct the actual
geometry of the extended area. First, we combine the
two curves C and E′ into one curve E. To extend the
grid G to the new width of E we start by splitting G
in half and copy the exact structure of its first half to
the target grid G′. We then go over the middle section
of E and generate interpolated Si cross-sections until
we reach i = w′ − w

2 where we switch back to simply
copying from the end half of G. The idea behind this
split is to preserve as much original geometry as possi-
ble to help minimize any distortions resulting from our
approximations.

Interpolating the cross-sections of the middle region
might not always be the best option. If the input pat-
tern corresponds to both local and global changes on
the surface then a better approach is to correspond
these cross-sections with the patches given by T . Fig. 10
shows an example where cross-section interpolation is
preferable.

We now have the extended grid G′ with the new
width specified by the user’s stretching operation. The
next step is to reconstruct the geometry of each patch
in T by finding complete faces f ∈ F belonging to that
patch. A face f is complete if all of its vertices are lo-
cated inside the patch. We do this by constructing a
hash table of all the indices of the vertices collected
from the patch’s cells and then simply test against the
set of faces in the selected region of D. We can then
reconstruct the geometry of the vertices in the set F
using equation (10). The result of this process is a set
of separated patches of geometry representing the syn-
thesized image I ′.

Detail-Replicating Shape Stretching 9

extracted pattern tiling patches resulting shape

c

b Iʹ

w

w wʹ

Fig. 9 Texture synthesis by tiling: the pattern is extracted as a grayscale image (left), we synthesize an extension I′ by tiling
the patches with an overlap b and compute the best cut c (middle), after the geometry reconstruction process we obtain the
extended shape (right).

source interpolated tiled

Fig. 10 Extending cross-sections by (middle) interpolation
or by (right) copying the source.

3.7 Patch stitching

The final step in our framework is the stitching of the
synthesized patches. We formulate the problem as that
of hole-filling [2, 24]. Between the patches A and B there
exists a small empty region that separates the geometry
of the two. Our objective is to fill this region such that
B blends well with A resulting in the least amount of
visual artifacts. Aesthetically pleasing stitches are the
ones that triangulate the area while avoiding triangles
that stand out by having long edges or sharp curvature.

The general approach to hole-filling is to compute
the minimum area triangulation of the hole, refine the
new triangles to match the surrounding ones, and fi-
nally apply a surface fairing operation [24]. We apply a
similar three steps method where we: treat the bound-
ary of the two consecutive patches; zip the two bound-
aries BA and BB by simply advancing to the best ad-
jacent vertices; then apply a local fairing operation on
bad triangles.

Our objective in the boundary treatment step is to
produce a more flat and smooth boundary. For every
adjacent edges e1and e2 we add a new boundary trian-

gle between them if their angle φ < 5π
9 and the dihedral

angle between their respective two boundary faces is
ω < π

4 . These angle conditions can be seen in Fig. 11.
The first condition φ ensures a flatter boundary and
the second condition ω helps preserve sharp edges of
the original shape. We iteratively apply this refinement
stage until no new faces are added to the boundary. The
resulting edges on the final boundary are more well ad-
justed for the second zipping stage.

We start the zipping stage by first aligning the bound-
aries BA and BB and assigning the start vertices on
each boundary to the closet pair vA

i and vB
j . We tra-

verse the two boundaries in a greedy manner and con-
struct connecting faces along the way [4]. Fig. 12 shows
an example result of our boundary stitching approach.
Local quality measures can be further applied [2] since
our stitching process does not guarantee having regions
free of self-intersecting triangles.

3.8 Adding variation

A common feature of organic patterns is randomness
in both structure and frequency. In such patterns, our
synthesized parts may exhibit an artificial look of rep-
etition, for instance, tree trunks do not have the ex-
act cross-section as they grow. Our method allows the
user to produce some random appearance on the re-
sulting cross-sections. These fluctuations on the surface
can follow a pattern themselves (e.g. a wave) or can be
randomly generated from gradient noise as shown in
Fig. 13. A nice feature of this randomness effect is that
high frequency details are not equally affected as the
base surface due to the separation in our synthesis pro-
cess.

10 Ibraheem Alhashim et al.

ω

Φ

boundary edges angle dihedral angle

Fig. 11 The boundary treatment tests applied.

BB

BA

Fig. 12 Boundary treatment step (top) and an example of
our patch stitching method (bottom).

interpolation wave pattern gradient noise

Fig. 13 Variation on the cross-sections

4 Implementation Details

Our detail-replicating stretching tool is implemented in
C++ on a 3.0 GHz quad core PC equipped with 4GB
memory. The graphical user interface is implemented in
Windows using the Qt framework. Graphics function-
ality is implemented in OpenGL and most stretching
operations are done at interactive rates.

In an editing session, the user starts by loading an
arbitrary triangular mesh. Our method supports edit-
ing of meshes containing boundaries and can be of non-
zero genus. We assume the availability of a previously
extracted curve skeleton that contains both the skele-
ton graph and a basic segmentation of the mesh. The
user then simply selects a point on the surface and the
corresponding node on the skeleton is set as the start.
Next the user clicks on a different part of the the sur-
face that specifies the end. We assign to each edge on
the skeleton a weight of one and run Dijkstra’s algo-
rithm to obtain the shortest path from the start to the

end. We then collect all the branches and loops between
the two selected nodes in this path. This step is nec-
essary for surface details that are complex enough to
produce branching on the skeleton. The result of this
user interaction is a set of faces and their major medial
curve.

There are three parameters that control the texture
extraction and synthesis: the smoothing step size, grid
resolution, and the overlap size. All three parameters
are highly dependent on the input pattern. The smooth-
ing parameter λdt specifies the amount of smoothing
needed to obtain a base mesh. In most of our examples
we set λdt = 0.001 by default and for objects with more
complex surface details we increase it to around 0.01.
The second parameter is the grid resolution h which we
set to 70 pixels by default. For more regular structured
patterns a lower grid resolution produces good results
with low computational cost. The last parameter is the
overlap b that is used by the texture synthesis process.
The best overlap size is one that covers the largest fea-
ture of the pattern. We set the default value as 20% of
the width of the input image.

The next step is drawing the curve defining the
stretching operation. We allow the user to draw a curve
on the screen that specifies the stretching direction and
path during the synthesis. We project the cursor’s po-
sition in screen space onto the focal plane defined by
the camera. For each different stretching operation the
user needs to rotate the camera such that the viewing
direction is almost orthogonal to their desired direction
of stretching (Fig. 14). After the curve is drawn, we
embed this curve in 3D in a way that ensures better
continuity with the original shape. Let va be a unit
vector representing the starting tip of the user drawn
curve and let vb be the tangent vector on the curve
skeleton at the middle of the selected input region (see
Fig. 15b). We compute the rotation that aligns va with
vb and apply it to the drawn curve. We then translate
the drawn curve so that its starting point at a is on the
mid-point b of the selected part of the curve skeleton
(see Fig. 15).

The final step is tuning the parameters previously
mentioned to achieve aesthetically pleasing stretching.
The efficiency of our method allows for an interactive
editing experience. The synthesis process is fast and
usually takes two seconds to finish on medium sized
objects (about 50K vertices). Perhaps the most chal-
lenging parameter to automate is the overlap width
which is still an open problem in 2D texture synthe-
sis as it relates to texture and pattern recognition. To
better understand how the process works in practice,
the reader is invited to watch the video accompanying
this paper.

Detail-Replicating Shape Stretching 11

Camera

Camera

Drawn curve

Drawn curve

Fig. 14 Applying two different stretching operations by
sketching different curves (yellow) from different viewing di-
rections

We realize that the nature of our synthesis process
allows for a large number of opportunities of parallel
optimizations that can lead to near real-time editing.
Such parallel opportunities are during grid construc-
tion, the tile-based synthesis, and the patch stitching.
We exploited some of these opportunities of parallelism
using OpenMP, for example when smoothing, and we
have witnessed a considerable performance increase.

5 Results and Examples

We present examples of stretching operations on vari-
ous shapes using our method. Fig. 16 shows a number
of different meshes with stretched parts. The timing for
each of these stretching operations are listed in Table 1.
These times, however, do not include the preprocessing
stage required once per loaded mesh. Depending on the
size of the input mesh, skeleton extraction would re-
quires a couple of seconds to several minutes using the
mesh contraction method [3]. Base computation via im-
plicit fairing typically takes a couple of seconds for our
largest mesh (about 170K vertices).

Fig. 17 shows more examples using our method. In
Fig. 17b the mattress and the pillow were stretched
separately using the same user drawn stretching curve.
Fig. 17c shows a mesh containing multiple parts with
different surface details and two variations resulting
from different stretching operations. Fig. 18 is a good
example showing the usefulness of our stretching tool
as opposed to any interpolating method. The details on
both the dragon’s torso and the base are replicated thus
appearing to be preserved while the model’s coverage
is expanded.

Fig. 19 shows two examples where our method fails
to produce natural looking results. Several factors af-
fect the outcome of a stretching operation. Mesh quality
can affect the stitching process greatly since we relay on
the existing triangulation of the source shape. Another
factor is the topological complexity of surface details.
For details with genus higher than zero, the grid con-

Mesh Points count Stretch Factor Time (s)
Capsule 3360 9.2 0.640

Stanford Dragon 1845 19.9 1.738
Armadillo 1549 3.2 0.219

XYZ Dragon 3023 7.7 1.032

Table 1 Timing statistics for our stretching examples in
Fig. 16. The number of points are the number of vertices
considered in the selected mesh region to be stretched.

structed is not sufficient to encode them resulting in
visible distortions.

6 Limitations

Currently we can only handle well surface details of
low topological complexity. Surface details of non-zero
genus are not encoded accurately resulting in distorted
reconstructions. A possible solution to this problem is
to apply a preprocessing process that might simplify
such regions.

Another limitation of our implementation is the abil-
ity to stretch along a single direction. If we consider
a box with varying surface details on all faces we are
only able to replicate details along one of its three main
axis. For a successive expansion of the box on a different
axis, we need to compute a new grid along that axis.
One solution is to construct a box grid that truthfully
represents the underlaying shape of the input. The re-
liance on curve skeletons also limits our ability to deal
with shapes for which it is not easy to compute such
skeletons for (e.g. thin sheets).

As shown in Fig. 19, not all surface patterns we ex-
perimented with replicated without distortion. Due to
our surface approximation, we might fail to accurately
encode the original surface geometry resulting in visible
artifacts when reconstructing the stretched surface.

7 Conclusion and Future Work

We have presented an interactive and intuitive mesh
editing tool that preserves organic like surface details
during 1D stretching. Instead of interpolating details
during an extension operation, we replicate parts of
the surface by synthesizing and stitching appropriate
patches from the original mesh. Separating the synthe-
sis of large scale details from small ones allows us to
apply such global operations on the shape with low dis-
tortions and minimum artifacts along the seams. We
demonstrated our efficient technique with a variety of
synthesized examples that are generated in a matter of
seconds.

12 Ibraheem Alhashim et al.

Camera

Screen plane

used path

drawn curve

Viewing frustum

(a)

used stretch path

drawn curve

va
vb b

a

(b)

Fig. 15 Details of the embedding of user drawn stretching curves. In order to ensure continuity, user drawn curves are
transformed to align with the existing curve skeleton of the source shape. This is done by transforming the start of the drawn
curve (green curve) at a to match the curve skeleton at the middle, point b, of the selected input region (dashed blue line).

(a) (b)

(c) (d)

Fig. 16 Results of stretching operations on various meshes. Input meshes are shown in yellow, and in green is the output of
a user defined stretching operation using our method.

Detail-Replicating Shape Stretching 13

(a) (b)

(c)

Fig. 17 More stretching results. (a) the seat is stretched independently from the base. (b) a snake model stretched using our
method. The scales are made of dense geometry. (c) a mesh with several possible parts to stretch.

Fig. 18 Preserving surface details via replication: (left) the source model. (middle) details are distorted when stretching by a
free-form deformation using a 2x2 lattice. (right) using our method, the surface details appear to be preserved. Note that the
dragon and the base were stretched separately.

There are several avenues of future work to explore.
A more general grid needs to be constructed to accom-
modate stretching of arbitrary surfaces. Such a grid
would also enable stretching operations to be performed
in 2D. One idea is to employ a polycube parameteriza-
tion or any quad re-meshing of a base mesh when con-
structing such a flexible grid. Also, problems in texture
synthesis and arbitrary boundary stitching still apply

to our method and it can greatly benefit from advances
in these areas.

References

1. V. Andersen, M. Desbrun, J. A. Baerentzen,
and H. Aanaes. Height and tilt geometric tex-
ture. In ISVC ’09: Proceedings of the 5th Inter-

14 Ibraheem Alhashim et al.

Fig. 19 Some failure cases due to coarse approximations
(left) or topologically complex surface details (right).

national Symposium on Advancesin Visual Com-
puting, pages 656–667, Berlin, Heidelberg, 2009.
Springer-Verlag.

2. M. Attene. A lightweight approach to repairing
digitized polygon meshes. The Visual Computer,
26:1393–1406, 2010. 10.1007/s00371-010-0416-3.

3. O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or,
and T.-Y. Lee. Skeleton extraction by mesh con-
traction. ACM Trans. Graph., 27:44:1–44:10, Au-
gust 2008.

4. G. Barequet and M. Sharir. Filling gaps in the
boundary of a polyhedron. Comput. Aided Geom.
Des., 12(2):207–229, 1995.

5. C. Barnes, E. Shechtman, A. Finkelstein, and D. B.
Goldman. Patchmatch: a randomized correspon-
dence algorithm for structuralimage editing. In
SIGGRAPH ’09: ACM SIGGRAPH 2009 papers,
pages 1–11, New York, NY, USA, 2009. ACM.

6. H. Biermann, I. Martin, F. Bernardini, and
D. Zorin. Cut-and-paste editing of multiresolution
surfaces. ACM Trans. Graph., 21(3):312–321, 2002.

7. M. Bokeloh, M. Wand, and H.-P. Seidel. A con-
nection between partial symmetry and inverse pro-
cedural modeling. ACM Trans. Graph., 29:104:1–
104:10, July 2010.

8. M. Botsch and O. Sorkine. On linear varia-
tional surface deformation methods. IEEE Trans-
actions on Visualization and Computer Graphics,
14(1):213–230, 2008.

9. L. Chen and X. Meng. Anisotropic resizing of
model with geometric textures. In SPM ’09: 2009
SIAM/ACM Joint Conference on Geometric and
Physical Modeling, pages 289–294, New York, NY,
USA, 2009. ACM.

10. M.-M. Cheng, F.-L. Zhang, N. J. Mitra, X. Huang,
and S.-M. Hu. Repfinder: finding approximately
repeated scene elements for image editing. ACM
Trans. Graph., 29:83:1–83:8, July 2010.

11. N. Cornea, D. Silver, and P. Min. Curve-skeleton
properties, applications, and algorithms. Visualiza-
tion and Computer Graphics, IEEE Transactions
on, 13(3):530 –548, may. 2007.

12. T. Derose and M. Meyer. Harmonic coordinates.
In Pixar Technical Memo 06-02, Pixar Animation
Studios, 2006.

13. M. Desbrun, M. Meyer, P. Schroder, and A. H.
Barr. Implicit fairing of irregular meshes using dif-
fusion and curvature flow. In SIGGRAPH ’99: Pro-
ceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 317–324,
New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

14. H. Fang and J. C. Hart. Detail preserving shape
deformation in image editing. ACM Trans. Graph.,
26(3):12, 2007.

15. M. S. Floater. Mean value coordinates. Comput.
Aided Geom. Des., 20(1):19–27, 2003.

16. H. Fu, C.-L. Tai, and H. Zhang. Topology-free cut-
and-paste editing over meshes. In GMP ’04: Pro-
ceedings of the Geometric Modeling and Processing
2004, page 173, Washington, DC, USA, 2004. IEEE
Computer Society.

17. R. Gal, O. Sorkine, N. J. Mitra, and D. Cohen-Or.
iwires: an analyze-and-edit approach to shape ma-
nipulation. ACM Trans. Graph., 28(3):1–10, 2009.

18. N. Gelfand and L. J. Guibas. Shape segmentation
using local slippage analysis. In Proceedings of the
2004 Eurographics/ACM SIGGRAPH symposium
on Geometry processing, SGP ’04, pages 214–223,
New York, NY, USA, 2004. ACM.

19. K. Hormann and M. S. Floater. Mean value coor-
dinates for arbitrary planar polygons. ACM Trans-
actions on Graphics, 25:1424–1441, 2006.

20. V. Kraevoy, A. Sheffer, A. Shamir, and D. Cohen-
Or. Non-homogeneous resizing of complex models.
ACM Trans. Graph., 27(5):1–9, 2008.

21. V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bo-
bick. Graphcut textures: image and video synthesis
using graph cuts. ACM Trans. Graph., 22(3):277–
286, 2003.

22. S. Lefebvre and H. Hoppe. Parallel controllable
texture synthesis. ACM Trans. Graph., 24(3):777–
786, 2005.

23. S. Lien and J. Kajiya. A symbolic method for cal-
culating the integral properties of arbitrary non-
convex polyhedra. CGA, 4(10):35–41, 1984.

24. P. Liepa. Filling holes in meshes. In SGP ’03:
Proceedings of the 2003 Eurographics/ACM SIG-
GRAPH symposium on Geometry processing, pages
200–205, Aire-la-Ville, Switzerland, Switzerland,
2003. Eurographics Association.

25. Y. Liu, R. T. Collins, and Y. Tsin. A computa-
tional model for periodic pattern perception based
on frieze and wallpaper groups. IEEE Trans. Pat-
tern Anal. Mach. Intell., 26:354–371, March 2004.

Detail-Replicating Shape Stretching 15

26. Y. Liu, W.-C. Lin, and J. Hays. Near-regular
texture analysis and manipulation. ACM Trans.
Graph., 23(3):368–376, 2004.

27. P. Müller, P. Wonka, S. Haegler, A. Ulmer, and
L. Van Gool. Procedural modeling of buildings.
ACM Trans. Graph., 25(3):614–623, 2006.

28. Y. I. H. Parish and P. Müller. Procedural modeling
of cities. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and
interactive techniques, pages 301–308, New York,
NY, USA, 2001. ACM.

29. M. Sabha and P. Dutré. Image welding for texture
synthesis. In Vision, Modeling, and Visualization
2006, pages 97–104. IEEE Computer Society, 2006.

30. R. Schmidt and K. Singh. meshmixer: an inter-
face for rapid mesh composition. In SIGGRAPH
’10: ACM SIGGRAPH 2010 Talks, pages 1–1, New
York, NY, USA, 2010. ACM.

31. A. Sharf, M. Blumenkrants, A. Shamir, and
D. Cohen-Or. Snappaste: an interactive tech-
nique for easy mesh composition. Vis. Comput.,
22(9):835–844, 2006.

32. O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa,
C. Rössl, and H.-P. Seidel. Laplacian surface
editing. In Proceedings of the Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing,
pages 179–188. Eurographics Association, 2004.

33. L. Szirmay-Kalos, V. Havran, B. Balázs, and
L. Szécsi. On the efficiency of ray-shooting accel-
eration schemes. In Proceedings of the 18th spring
conference on Computer graphics, SCCG ’02, pages
97–106, New York, NY, USA, 2002. ACM.

34. D. Vaquero, M. Turk, K. Pulli, M. Tico, and
N. Gelfand. A survey of image retargeting tech-
niques. In Proceedings of the SPIE 7798, 779814,
San Diego, California, August 2010.

35. H. Wu, Y.-S. Wang, K.-C. Feng, T.-T. Wong, T.-
Y. Lee, and P.-A. Heng. Resizing by symmetry-
summarization. ACM Transactions on Graphics
(SIGGRAPH Asia 2010 issue), 29(6):159:1–159:9,
December 2010.

I. Alhashim is a Ph.D. can-
didate in the Graphics, Us-
ability, and Visualization lab
at Simon Fraser University
in Burnaby, Canada. He also
holds a B.Sc. from Portland
State University, Oregon. His
research interests include ge-
ometry synthesis and shape
generation.

H. Zhang co-directs the
Graphics, Usability, and Visu-
alization Lab at Simon Fraser
University, Canada, where he
is an associate professor in
the School of Computing Sci-
ence. He received his Ph.D.
from the Dynamic Graphics
Project (DGP), Department
of Computer Science, Univer-
sity of Toronto in 2003 and
M.Math. and B.Math. degrees
from the University of Water-
loo. His research interests in-
clude geometry processing and

computer graphics. Recently,
he has served on the program

committees of Eurographics, SGP, Pacific Graphics, among
others. He was a winner of the Best Paper Award from SGP
2008.

L. Liu is a professor at
Department of Mathematics,
Zhejiang University. He re-
ceived his PhD degree in com-
puter graphics from Zhejiang
University in 2001. After he
had worked at Microsoft Re-
search Asia during 2001 and
2004, he moved to Zhejiang
University. He paid an aca-
demic visit at Harvard Uni-
versity during 2009 and 2011.
His research interests include
computer graphics, geometric

modeling and processing, and
image processing.

	Introduction
	Related Work
	Detail-replicating stretching
	Implementation Details
	Results and Examples
	Limitations
	Conclusion and Future Work

