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Figure 1: A triangle mesh (left) with low- and high-valence vertices (marked by black dots) remeshed into a 5-6-7 mesh with the same vertex
count (right). Intermediate steps produce an initial 5-6-7 mesh (middle left) and a decimated version (middle right) which preserves the 5-6-7
property. The final mesh is produced with redistribution of vertices to improve sampling regularity, while respecting the features. Vertices of
degrees 5, 6, and 7 are coloured by blue, green, and red, respectively.

ABSTRACT

We introduce a new type of meshes called 5-6-7 meshes. For many
mesh processing tasks, low- or high-valence vertices are undesir-
able. At the same time, it is not always possible to achieve complete
vertex valence regularity, i.e., to only have valence-6 vertices. A 5-
6-7 mesh is a closed triangle mesh where each vertex has valence
5, 6, or 7. An intriguing question is whether it is always possible
to convert an arbitrary mesh into a 5-6-7 mesh. In this paper, we
answer the question in the positive. We present a 5-6-7 remesh-
ing algorithm which converts a closed triangle mesh with arbitrary
genus into a 5-6-7 mesh which a) closely approximates the original
mesh geometrically, e.g., in terms of feature preservation, and b)
has a comparable vertex count as the original mesh. We demon-
strate the results of our remeshing algorithm on meshes with sharp
features and different topology and complexity.
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1 INTRODUCTION

The valences of vertices in a triangle mesh often have an impact
on how certain mesh processing algorithms perform. For example,
valence-three vertices will cause an edge collapse operator to gen-
erate non-manifold vertices [8] and high-valence vertices can lead
to visible artifacts in mesh subdivision [10]. When triangle quality
is of concern, neither low- nor high-valence vertices are desirable
since they often imply large or small face angles in a triangle mesh.
It is commonly known that the regular vertex valence in a triangle
mesh is 6 but complete regularity can be achieved only on a tessel-
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lation of genus-one surfaces. An intriguing question is whether it is
always possible to completely eliminate low- and high-valence ver-
tices, only keeping valences close to 6, e.g., 5, 6, and 7, for meshes
tessellating surfaces of any arbitrary genus.

In this paper, we answer the above question in the positive.
Specifically, we show that given an arbitrary closed triangle mesh
with any genus, we can always remesh it to a 5-6-7 mesh, i.e., a
triangle mesh whose vertex valences only take on values 5, 6, or 7.
We also show how to keep the face count comparable to the original
mesh, while respecting features on the original mesh.

Our interest in the specific valences 5, 6, and 7 only is motivated
by the Euler Characteristic formula, from which it can be shown
that the average valence in a closed manifold triangle mesh is 6(1−
(2−2g)

n ), where n is the number of vertices and g is the genus of
the mesh. As such, by increasing the number of vertices, we will
maintain an average valence of 6. However, since it is not always
possible to have a mesh consisting of vertices of valence 6 only,
vertices with valences higher than 6 and lower than 6 are generally
inevitable. Thus the “next best scenario” in bounding the vertex
valences away from the regular valence 6 would be to produce 5-6-
7 meshes.

Our 5-6-7 remeshing algorithm works in two phases. First is the
initial conversion which is guaranteed to convert an arbitrary closed
mesh into a 5-6-7 mesh. This step keeps the changes to mesh ge-
ometry to minimal but will increase the face count and may pro-
duce uneven vertex distribution. In the second phase, the refine-
ment phase, we perform mesh decimation and enhancement, while
maintaining the 5-6-7 property.

• 5-6-7 remeshing: We start by removing vertices with valence
lower than 5, without introducing geometric error. By geo-
metric error, we refer to the distance of the vertices to the
original surface. After that we apply a planar subdivision
scheme, which does not change the geometry either, to push
high valence vertices away from each other and surround each
high valence vertex with an unshared set of regular vertices.



Then we remove vertices with a valence greater than 7 using
only local remeshing. This operation may introduce some ge-
ometric error.

• 5-6-7 mesh refinement: We perform a 5-6-7 preserving sim-
plification to turn the mesh towards having its original vertex
count. Then a relaxation step is applied both to improve the
triangle qualities and to reduce the geometric error produced
by decimation.

The first phase of our method changes the geometry only slightly
at high valence vertices. However, in order to reduce the size (face
count) of the 5-6-7 mesh back to the size of the initial mesh, we
apply decimation and geometric enhancement which may change
the shape geometry to some extent. For this, user only needs to
specify a feature preservation threshold and the number of iterations
to relax. Our implementation provides an interactive tool to assist
the user in choosing a reasonable value.

2 RELATED WORKS

The quality of a surface mesh is crucial for two primary purposes:
3D visualization and numerical simulation. Therefore, there has
been an abundance of remeshing algorithms proposed in the past
two decades to improve the quality of a given mesh [2]. Some
remeshing algorithms are based on improving the geometry of the
mesh by redistributing the points on the underlying surface, e.g.
[11] among many others. Other works look more into the mesh
connectivity, e.g. [3, 7] and strive to reduce the degree variance of
the connectivity graph by removing irregularities, or at least mov-
ing them to more appropriate positions. Isenburg et al. [9] showed
that there is an intrinsic connection between the geometry and con-
nectivity and they are not totally independent. Therefore, a low
quality connectivity usually imposes a deficient geometry as well.
Our work falls into the latter category and it introduces a new type
of meshes, 5-6-7 meshes, aimed at valence regularity.

In applications involving terrain representations, the so-called 4-
8 subdivison surfaces [13] are widely used to achieve a semi-regular
representation of a surface. However, subdivision-based schemes
modify the mesh globally and do not provide an easy control over
the connectivity of the final mesh.

There are also works that rely on mesh parameterization. Some
of them divide the mesh into patches, and others perform a global
parameterization of the whole mesh, e.g. [1, 6] and after a resam-
pling in the parameter domain, the new triangulation is projected
back to the 3D space.The main drawbacks of these methods are
their sensitivity to the specific parameterization used, the cutting
area used for models that are not isomorphic to a disk, the inevitable
distortion, and finally, parameterization methods are usually slow
and sometimes their inefficiency makes them impractical. We take
a direct approach to 5-6-7 remeshing and work only locally on the
original mesh.

Many remeshing schemes also apply local adaptations on the
mesh, where a series of local modifications, such as vertex splits or
collapses and edge flips, are performed on the mesh, e.g. [5, 11,12]
among others that can be found in the survey [2]. While all these
existing methods are capable of producing meshes with nice vertex
valence distribution, e.g., the distribution is sharply concentrated
near the regular valence 6, we are not aware of any work that would
generate meshes with a guaranteed bound on the valences. The best
such bound would be [5,7], which is the goal we set to achieve in
this paper. The 5-6-7 meshes we produce can be useful for connec-
tivity editing in triangle meshes [7], where their editing operations
operate on a 5-6-7 mesh.

Figure 2: A simple scheme to remove a vertex of valence 3. A new
vertex and two edges, dashed lines, are added to increase the de-
gree of the v3 vertex by one.

Figure 3: Elimination of a vertex with valence 3 (left) or 4 (right). Solid
lines represent the edges in the original mesh and dashed lines are
the new edges added by the remeshing process. Note that the origi-
nal mesh edges are preserved and no geometry error is introduced.

3 5-6-7 REMESHING

In this section, we present a set of local remeshing schemes to con-
vert a closed manifold mesh to a 5-6-7 Mesh. During this proce-
dure, the size of the mesh in terms of face count is approximately
multiplied by a factor of 10. Therefore, as described in the next
section, a simplification process is applied to reduce the size of the
final mesh, while preserving the 5-6-7 property.

We denote a vertex of valence d with vd and a vertex is called
a v567 vertex if its valence is either 5, 6, or 7. We will refer to
vertices with valence less than 5 as low valence and to vertices with
valence greater than 7 as high valence.

3.1 Removing low-valence vertices

We start by removing all the low-valence vertices. During this step,
all the v3 and v4 vertices are eliminated while the region outside of
the 2-ring neighbourhood of each target vertex is kept intact.

A straightforward approach to removing a valence-3 vertex is
to split an edge of one of its neighbouring faces and connect its
midpoint to both this vertex and the vertex on the opposite side
of the edge (Figure 2). This converts the v3 vertex into a v4 ver-
tex and introduces a new v4 vertex, which has to be removed later.
Instead, we replace any vertex of valence 3 or 4 by a 5-6-7 struc-
ture, as shown in Figure 3. These two structures can be adapted to
any arbitrary geometry corresponding to a v3 or v4 vertex without
introducing geometric error. This is beneficial, as in many cases,
feature points of the mesh are vertices with a low valence and pre-
serving the geometry around those is desirable. Also note that these
structures only introduce new vertices that are v567 and may only



Figure 4: Topological subdivision to separate all the high-valence ver-
tices sufficiently far apart from each other by at least two v6 vertices.
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Figure 5: Elimination of a high-valence vertex (v14) by a series of
vertex splits, where the ellipse denotes the one-ring neighbourhood
of the vertex. This adds b 14−2

3 c− 1 = 3 of v7 vertices and one v567
vertex (in this example, the v5 vertex in the bottom-right image), while
increasing the valence of the neighbour vertices by at most one (i.e.
from v6 to v7).

increase the degree of some vertices in their two ring. But the va-
lence of no vertex is decreased. As a result, no new v3 or v4 vertex
is generated.

3.2 Subdivision

Before removing high-valence vertices, our method requires them
to be far apart from each other in the connectivity graph. More
specifically, every vertex with a valence higher than 7 should have
a unique one-ring neighbourhood consisting of only regular vertices
(v6).

This is often not the case. So, in order to guarantee this condi-
tion, we apply a planar subdivision rule to subdivide every face of
the mesh into 9 faces, as shown in figure 4.

3.3 Removing high-valence vertices

In order to remove a high-valence vertex, we iteratively split it to v7
vertices until the remaining vertex has a degree less than or equal
to 7. More specifically, we denote the vertex with degree > 7 as
our pivot. Next, we replace the pivot with a vertex of degree 7 and
another vertex of degree deg(pivot)−3. The new vertex of degree
deg(pivot)− 3 becomes our new pivot and we repeat the process
until the degree of the pivot becomes less than or equal to 7. Figure
5 illustrates the iterations involved for removing a vertex of valence
14.

It can be shown that a vertex of valence h, where h > 7, can
be replaced by b h−2

3 c− 1 vertices with valence 7, and one v567
vertex, while increasing the valence of the vertices in the one-ring
neighbourhood by at most one (refer to the appendix for the proofs).

Since the subdivision process has provided each high-valence ver-
tex with a unique one-ring of regular vertices, the high-valence
removal step replaces high-valence vertices with a 5-6-7 structure
without introducing new high or low valence vertices.

In terms of positioning of the newly created vertices, although
we can move all of them to the same location of the original high
valence vertex and introduce no geometric error, the resulting mesh
will have a degenerate geometry, which is not desirable. To solve
this problem, we initially place all the newly created vertices at the
position of the initial vertex, which is degenerate. Then we itera-
tively move each vertex towards the centroid of its adjacent vertices,
while giving the vertex itself a higher weight to keep it close to its
initial position. The new positions are iteratively calculated by the
following equation:

uinew =

αui + ∑
p∈N(ui)

p

α + |N(ui)|
,

where ui and uinew are the positions of the i-th vertex before and
after each iteration, N(ui) is the set of adjacent vertices for vertex
ui and α is a constant weight, which is chosen to be 50 in our im-
plementation. Higher values of α keeps vertices ui close to their
original position and a value of zero moves them to the centroid
of their neighbours. Since at each iteration two of the degenerate
vertices are pulled away, for k newly added vertices, we require a
minimum of b k

2c iterations.

This positioning of the vertices might distort the mesh around ui,
which can be controlled by the value of α . However, the decimation
and geometry enhancement process in the next step will move these
vertices around in a geometry-aware manner. So, this equation is
just used to create a non-degenerate mesh without fold-overs to start
with.

It is worth noting that there are cases where it is inevitable to
tolerate some error for the high valence removal step, unless if we
move all the generated vertices to the location of the original vertex,
resulting in a degenerate geometry that has no geometric error. For
example, imagine a high valence vertex being in the same plane
with its adjacent vertices. Then move every second adjacent vertex
toward the direction of the face normal, to form a lemon reamer like
shape. It can be seen that replacing the center vertex with a vertex
of lower valence, will always introduce some geometry error.

4 DECIMATION AND ENHANCEMENT

So far we have created a 5-6-7 mesh by slightly changing the ge-
ometry. However, this process has increased the face count of the
mesh approximately by a factor of 10. In order to obtain the same
face count back, we use a 5-6-7 preserving simplification method
to reduce the size of the mesh to as close as possible to its original
size.

4.1 5-6-7 Preserving Mesh Decimation

We simplify the mesh using the edge collapse simplification, and
we only allow those edge collapses, that still preserve the 567 prop-
erty of the mesh. As shown in Figure 6(left), an edge collapse be-
tween vertices v1 and v2, with valences d1 and d2, creates a merged
vertex of valence d1 +d2−4 (Lemma 1) and reduces the valence of
vertices u1 and u2 by 1. Therefore, if either u1 or u2 has a valence
of 5, we cannot collapse the edge. Moreover, we should maintain
the condition 5 ≤ d1 + d2−4 ≤ 7 or in other words, v1 and v2 can
be either v5-v5 or v5-v6. We apply edge collapse mesh decimation
governed by Quadric error measurement, while considering the 5-
6-7 preserving constraints.
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Figure 6: Edge collapse (left) and edge flip (right) that preserve the
5-6-7 property.

The simplification might stop at some point without any more
possible edges to collapse. At this point, we iterate over all the
edges of the mesh and mark those that create more collapsible
edges, as shown in Figure 6 (right) and then we flip all of them.
However, allowing an arbitrary edge to be collapsed may be dan-
gerous and can result in a substantial error. Therefore we only allow
an edge to be flipped if the dot product of the normal of its incident
faces is beyond some threshold. We also perform the same check
for the adjacent faces of the flipped edge. In our implementation a
threshold of 0.9 is used. Note that increasing this threshold allows
less edges to be flipped for the sake of a lower geometric error. One
observation here is that we usually have many flips without any ge-
ometric error because the subdivision step generated many adjacent
coplanar faces, for which flipping an edge between them will not
introduce error.

The decimation process will alternatively decimate the mesh and
then flip edges, until either the target face count is achieved or no
more edges can be flipped.

4.2 Geometry enhancement

Although the decimated mesh maintains the 5-6-7 connectivity, the
quality of the resulting mesh is not always desirable. Due to the
edge flips and also because of the constraints on the quadric sim-
plification, the decimation process is not able to collapse some of
the low error edges and instead it has to consider the next candidate
edges. Besides the geometric error, we observed that the decima-
tion process decreased the quality of the triangles as well, by creat-
ing very small or long triangles. In order to address these issues, we
apply an enhancement heuristic to relax the points on the surface of
the original mesh, while respecting the geometry features.

More specifically, we apply a Laplacian smoothing followed by
a back projection of the points to the surface of the original mesh.
In order to project the points back to the original surface, we first
find a mapping from the points of the decimated 5-6-7 mesh to the
points of the original mesh, by considering the closest point from
the original mesh to the point on the decimated mesh. Then, every
point is projected back to the closest point on the one-ring neigh-
bourhood of its corresponding vertex on the original mesh, which
is the closest point to one of the triangles that is incident to its cor-
responding vertex.

After projecting the points back to the original mesh, we may
need to update the correspondence that we calculated earlier, since
the vertices are moving around. Let c[u] be the corresponding ver-
tex for u in the original mesh, we update c[u] to the closest point
from N(c[u])∪{c[u]} to u, where N(c[u]) is the set of points in the
one-ring of c[u],

A drawback of this heuristic is that it smoothes out feature points
after each iteration. To work around this, we detect feature points

Figure 7: Comparison of the original cylinder mesh(left) with the 5-6-
7 enhanced mesh(right). The top row from left to right: the original,
5-6-7, and 5-6-7 enhanced mesh (without decimation).

and fix their positions. We first examine the normals of every ver-
tex’s incident faces, and mark that as a feature vertex if there are two
faces f and f ′ with dot(~n f , ~n f ′) < σthreshold . The value of σthreshold
is determined by the user. For instance, in Figure 7, a small positive
value will work to fix the vertices on the edge of the cylinder. We
also provide an interface to visualize the marked feature vertices as
the user changes the value. A small value for σthreshold lets some
of the feature points disappear but allows a better distribution of the
points on the surface of the mesh and a larger value will fix more
points, making the mesh less flexible towards changes.

In cases where the increased size of the mesh is not an issue,
for example when the initial mesh has a low face count, we can
bypass the decimation step and run the geometry enhancement right
after we create a 5-6-7 mesh. In such a case, the size of the mesh
is increased but the process will become faster as the decimation
step is the slowest step of our algorithm, and we also will not have
the extra error added by the decimation step. Figure 7 illustrates
a cylinder before and after converting it to a 5-6-7 mesh (without
decimating) followed by the geometric enhancement step. So, the
final mesh has significantly more faces than the original one but the
high valence vertex is replaced by a set of 5-6-7 vertices, which are
relaxed on the surface after the geometry enhancement.

5 RESULTS

Our implementation of 5-6-7 remeshing takes a closed triangle
mesh and turns it into a 5-6-7 mesh, which is simplified afterwards
and then geometrically enhanced. Although the 5-6-7 remeshing
has a linear time complexity, the decimation process can be fairly
slow and take minutes to run on a mesh with 25K vertices.

We tested our algorithm on meshes with different topologies and
different types of features. Figure 8 demonstrates the result of ap-
plying our method on a genus two manifold and Figure 9 exhibits
our feature preservation mechanism. For the geometry enhance-
ment, the user needs to set the rigidity factor (σthreshold) and the
number of iterations. Since picking the rigidity factor is not always
intuitive, an interactive tool assists the user to pick a reasonable
value.



We also incorporate edge lengths in quadric errors such that,
shorter edges become better candidates to be collapsed. This at-
tempts to eliminate small dense groups of vertices and tends to
equalize the edge lengths of the mesh, which gives a more uni-
formly distributed vertex set.

In order to quantify the quality of the resulting mesh, we com-
pute an approximation error measured by the well-known Metro
tool [4], which calculates the Hausdorff distance between the origi-
nal mesh and the final mesh after geometry enhancement. The error
is mostly a result of the simplification process, and 5-6-7 remeshing
itself does not add significant error to the mesh. The error as well
as various other statistics related to our remeshing algorithm, such
as the execution time, are shown in table 1.

6 LIMITATIONS AND FUTURE WORKS

The algorithm presented is an initial attempt at 5-6-7 remeshing
and it still leaves room for improvement. One limitation is the in-
crease of vertex count after the initial conversion. An immediate
consequence of this is inefficiency when the input mesh has a large
number of vertices. Most of these additional vertices come from
the subdivision step, since we need to sufficiently separate the high-
valence vertices from each other, to guarantee the 5-6-7 remeshing
using only local rules. Perhaps more global remeshing operators
that operate on larger regions of the mesh can alleviate the prob-
lem. In most of our experiments we observed that our decimation
algorithm is able to decimate the mesh to its original size. However,
that is not a guarantee. One counter example can be the tetrahedron,
where there is no way to decimate a 5-6-7 version of a tetrahedron
down to 4 vertices and keep the 5-6-7 property. Another interesting
challenge is creating a 5-6-7 mesh with minimum number of v5/v7
vertices.

In the geometry enhancement process, since we find the initial
correspondence by relying on the closest vertex, in cases where sur-
faces become to close geometrically, we may pick a wrong vertex
on the opposite surface and project it incorrectly. Also, choosing
the right parameter for fixing feature points affects the quality of
the results. Using a small threshold may fix some vertices, allow-
ing others around it to move and introduce a fold over. To work
around this, we check for fold overs before moving a vertex. Af-
ter all, the geometry enhancement step is a heuristic, prone to have
some pathological cases such as cases with very close surfaces, or
with geometric noise, which may be detected as features.

Geometry enhancement can also be implemented using an octree
to locate the closest point on the other mesh efficiently, and project-
ing the point back to the one-ring neighbourhood of its correspond-
ing vertex gives a fairly good approximate of the back projection to
the mesh.

Currently, our remeshing algorithm is designed to work with
closed manifold meshes only and the support for meshes with
boundaries is left as a future work. Also, we have not investi-
gated the applications of 5-6-7 meshes in this paper. We would
like to investigate the utility of 5-6-7 meshes for mesh compres-
sion, subdivision, connectivity editing, and proving bounds on the
angles of the triangles in the mesh. Another interesting question
is the placement of valence 5 and 7 vertices. It may be desirable
to place v5 vertices near convex regions and v7 vertices near con-
cave regions, or considering the density of the points in order to
correspond to the frequency of the mesh at that location. Finally,
we recall many previous works which regularize mesh connectiv-
ity by producing meshes that are dominated by valence-6 vertices,
e.g., [11]. It would be interesting to truly compare such meshes
with 5-6-7 meshes in various relevant applications.

7 CONCLUSION

In this paper, we show that a closed triangle mesh with any genus
can always be converted into a 5-6-7 mesh, a mesh with only
valence-5, 6, and 7 vertices. The initial conversion scheme removes
low- and high-valence vertices one by one and during the process, it
creates a fairly large number of new vertices. We address this with a
mesh decimation and geometry enhancement, while preserving the
5-6-7 property. In the end, we obtain a 5-6-7 mesh that closely ap-
proximates the original mesh, i.e. features are respected and has a
comparable vertex count. However, It might not always be possible
to decimate the mesh to its original face count, and, in some cases it
is even theoretically impossible to decimate the mesh to its original
face count (e.g. a tetrahedron or a great stellated dodecahedron).

A summary of our approach can be divided into the following
four steps:

1. Low Valence Removal: v3 and v4 Vertices are removed effi-
ciently without introducing error.

2. Subdivision and High Valence Removal: Vertices with va-
lence greater than 7 are removed and an arbitrarily low error
is introduced. An error of zero is achievable in a degenerate
geometry. By the end of this step, we have a 5-6-7 mesh that
has a low geometric error and the error only appears at high
valence vertices. However, the size of the mesh is multiplied
by approximately 10.

3. Decimation: In this step we decimate the mesh towards the
initial face count as much as possible, while preserving the
5-6-7 property. This step is computationally expensive and
might introduce a considerable error to the geometry.

4. Geometry Enhancement: We use a heuristic to improve the
quality of the triangles, and projecting the mesh back to the
surface of its original mesh. To preserve the features of the
mesh, we detect them and fix their position. While this heuris-
tic works in many cases, there are situations that it might gen-
erate a considerable error.
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APPENDIX

Lemma 1. The result of merging two vertices of degrees d1 and d2
is a vertex of degree d1 +d2−4.

Lemma 2. On a closed manifold M with the connectivity graph
GM , let V (GM) be the vertex set of GM and let V ′ ⊆V (GM). Also,
let ω be the result of merging V ′ into one vertex. The degree of ω

is given by the following formula, if the subgraph G′ induced by V ′
is a tree.

deg(ω) = ∑
v′i∈V ′

deg(v′i)−4(|V ′|−1) (1)

Proof. The proof can be done by induction over the size of the tree
and using lemma 1.

Lemma 3. The remaining vertex from the splitting algorithm is a
5-6-7 vertex.

Proof. By contradiction, suppose that in the last step of the algo-
rithm we have a vertex of degree y ≥ 8 which is split into a vertex
of degree 7 and a vertex of degree x≤ 4. So,

y− x≥ 4 (2)

Using lemma 1, we have y = x+7−4 So,

y− x = 3 (3)

(2) and (3) implies contradiction.

Theorem 1. Every vertex of degree h, h > 7, will be replaced by
b h−2

3 c−1 number of v7 vertices and one 5-6-7 vertex.

Proof. Using lemma 3, we know that the remaining vertex will
be a 5-6-7 vertex. Now suppose that after the split procedure we
have |V ′| vertices consisting of |V ′|− 1 number of v7 vertices and
one 5-6-7 vertex. By merging these vertices together we will re-
cover the original high valence vertex, which had a degree of h. Let
h = deg(ω) and let υ567 be the remaining vertex from the splitting
algorithm. Now, using lemma 2 we have,

h = ∑
v′i∈V ′

deg(v′i)−4(|V ′|−1)

= (7(|V ′|−1)+deg(υ567))−4(|V ′|−1)

= 3(|V ′|−1)+deg(υ567)

|V ′|= h−deg(υ567)+3
3

(4)

=
(h−2)− t

3
(5)

Where t ∈ {0,1,2} and it makes h−2 divisible by 3. So,

|V ′|=
⌊

h−2
3

⌋
(6)

Which is |V ′|−1 vertices of degree 7 and one 5-6-7 vertex.


