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Abstract

We introduce a new type of meshes called 5-6-7 meshes. For many mesh processing tasks, low- or high-valence vertices are
undesirable. At the same time, it is not always possible to achieve complete vertex valence regularity, i.e., to only have valence-6
vertices. A 5-6-7 mesh is a closed triangle mesh where each vertex has valence 5, 6, or 7. An intriguing question is whether
it is always possible to convert an arbitrary mesh into a 5-6-7 mesh. In this paper, we answer the question in the positive. We
present a 5-6-7 remeshing algorithm which converts a closed triangle mesh with arbitrary genus into a 5-6-7 mesh which a) closely
approximates the original mesh geometrically, e.g., in terms of feature preservation, and b) has a comparable vertex count as the
original mesh. We demonstrate the results of our remeshing algorithm on meshes with sharp features and different topology and
complexity.

Keywords: Geometry processing, Remeshing, Graph connectivity

1. Introduction

The valences of vertices in a triangle mesh often have an im-
pact on how certain mesh processing algorithms perform. For
example, valence-three vertices will cause an edge collapse op-
erator to generate non-manifold vertices [1] and high-valence
vertices can lead to visible artifacts in mesh subdivision [2].
When triangle quality is of concern, neither low- nor high-valence
vertices are desirable since they often imply large or small face
angles in a triangle mesh. It is commonly known that the regu-
lar vertex valence in a triangle mesh is 6 but complete regularity
can be achieved only on a tessellation of genus-one surfaces.
An intriguing question is whether it is always possible to com-
pletely eliminate low- and high-valence vertices, only keeping
valences close to 6, e.g., 5, 6, and 7, for meshes tessellating
surfaces of any arbitrary genus.

In this paper, we answer the above question in the posi-
tive. Specifically, we show that given an arbitrary closed trian-
gle mesh with any genus, we can always remesh it to a 5-6-7
mesh, i.e., a triangle mesh whose vertex valences only take on
values 5, 6, or 7. We also show how to keep the face count
comparable to the original mesh, while respecting features on
the original mesh.

Our interest in the specific valences 5, 6, and 7 only is mo-
tivated by the Euler Characteristic formula, from which it can
be shown that the average valence in a closed manifold triangle
mesh is 6(1− (2−2g)

n ), where n is the number of vertices and g
is the genus of the mesh. As such, by increasing the number of
vertices, we will maintain an average valence of 6. However,
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since it is not always possible to have a mesh consisting of ver-
tices of valence 6 only, vertices with valences higher than 6 and
lower than 6 are generally inevitable. Thus the “next best sce-
nario” in bounding the vertex valences away from the regular
valence 6 would be to produce 5-6-7 meshes.

Our 5-6-7 remeshing algorithm works in two phases. First
is the initial conversion which is guaranteed to convert an ar-
bitrary closed mesh into a 5-6-7 mesh. This step keeps the
changes to mesh geometry to minimal but will increase the face
count and may produce uneven vertex distribution. In the sec-
ond phase, the refinement phase, we perform mesh decimation
and enhancement, while maintaining the 5-6-7 property.

• 5-6-7 remeshing: We start by removing vertices with va-
lence lower than 5, without introducing geometric error.
By geometric error, we refer to the distance of the ver-
tices to the original surface. After that we apply a planar
subdivision scheme, which does not change the geome-
try either, to push high valence vertices away from each
other and surround each high valence vertex with an un-
shared set of regular vertices. Then we remove vertices
with a valence greater than 7 using only local remeshing.
This operation may introduce some geometric error.

• 5-6-7 mesh refinement: We perform a 5-6-7 preserving
simplification to turn the mesh towards having its original
vertex count. Then a relaxation step is applied both to
improve the triangle qualities and to reduce the geometric
error produced by decimation.

The first phase of our method changes the geometry only
slightly at high valence vertices. However, in order to reduce
the size (face count) of the 5-6-7 mesh back to the size of the
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Figure 1: A triangle mesh (left) with low- and high-valence vertices (marked by black dots) remeshed into a 5-6-7 mesh with the same vertex count (right).
Intermediate steps produce an initial 5-6-7 mesh (middle left) and a decimated version (middle right) which preserves the 5-6-7 property. The final mesh is produced
with redistribution of vertices to improve sampling regularity, while respecting the features. Vertices of degrees 5, 6, and 7 are coloured by blue, green, and red,
respectively.

initial mesh, we apply decimation and geometric enhancement
which may change the shape geometry to some extent. For this,
user only needs to specify a feature preservation threshold and
the number of iterations to relax. Our implementation provides
an interactive tool to assist the user in choosing a reasonable
value. An overview of our remeshing algorithm is shown in
Figure 1.

2. Related Works

The quality of a surface mesh is crucial for a variety of ap-
plications such as 3D visualization and numerical simulation.
Therefore, there has been an abundance of remeshing algo-
rithms proposed in the literature to improve the quality of a
surface mesh [3]. Some remeshing algorithms are based on im-
proving the geometry of the mesh by redistributing the points
on the underlying surface, e.g. [4] among many others. Other
works look more into the mesh connectivity, e.g. [5, 6] and
strive to reduce the degree variance of the connectivity graph
by removing irregularities, or at least moving them to more ap-
propriate positions. Isenburg et al. [7] showed that there is
an intrinsic connection between the geometry and connectivity
and they are not totally independent. Therefore, a low quality
connectivity usually imposes a deficient geometry as well. Our
work falls into the latter category and it introduces a new type
of meshes, 5-6-7 meshes, aimed at valence regularity.

In applications involving terrain representations, the so-called
4-8 subdivison surfaces [8] are widely used to achieve a semi-
regular representation of a surface. However, subdivision-based
schemes modify the mesh globally and do not provide an easy
control over the connectivity of the final mesh.

Remeshing methods based on centroidal Voronoi tessella-
tions (CVT) [9, 10, 11, 12] tend to generate meshes whose ver-
tex valences are 6-dominant, as the majority of the Voronoi cells
are hexagon when CVT converges. However, we are not aware
of theoretical guarantees that the results would be completely
void of Voronoi cells with < 5 sides or > 7 sides.

There are also works that rely on mesh parameterization.
Some of them divide the mesh into patches, and others perform
a global parameterization of the whole mesh, e.g. [13, 14, 15,

16] or use importance sampling [17] and after a resampling in
the parameter domain, the new triangulation is projected back
to the 3D space.The main drawbacks of these methods are their
sensitivity to the specific parameterization used, the cutting area
used for models that are not isomorphic to a disk, the inevitable
distortion, and finally, parameterization methods are usually
slow and sometimes their inefficiency makes them impractical.
We take a direct approach to 5-6-7 remeshing and work only
locally on the original mesh.

Many remeshing schemes also apply local adaptations on
the mesh, where a series of local modifications, such as vertex
splits or collapses and edge flips, are performed on the mesh,
e.g. [18, 4, 19] among others that can be found in the survey by
Alliez et al. [3]. While all these existing methods are capable
of producing meshes with nice vertex valence distribution, e.g.,
the distribution is sharply concentrated near the regular valence
6, we are not aware of any work that would generate meshes
with a guaranteed bound on the valences. The best such bound
would be [5,7], which is the goal we set to achieve in this paper.
The 5-6-7 meshes we produce can be useful for connectivity
editing in triangle meshes by Li et al. [6], where their editing
operations operate on a 5-6-7 mesh.

3. 5-6-7 Remeshing

In this section, we present a set of local remeshing schemes
to convert a closed manifold mesh to a 5-6-7 Mesh. During this
procedure, the size of the mesh in terms of face count is approx-
imately multiplied by a factor of 10. Therefore, as described in
the next section, a simplification process is applied to reduce
the size of the final mesh, while preserving the 5-6-7 property.

We denote a vertex of valence d with vd and a vertex is
called a v567 vertex if its valence is either 5, 6, or 7. We will
refer to vertices with valence less than 5 as low valence and to
vertices with valence greater than 7 as high valence.

3.1. Removing low-valence vertices

We start by removing all the low-valence vertices. During
this step, all the v3 and v4 vertices are eliminated while the
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Figure 2: A simple scheme to remove a vertex of valence 3. A new vertex and
two edges, dashed lines, are added to increase the degree of the v3 vertex by
one.

Figure 3: Elimination of a vertex with valence 3 (left) or 4 (right). Solid lines
represent the edges in the original mesh and dashed lines are the new edges
added by the remeshing process. Note that the original mesh edges are pre-
served and no geometry error is introduced.

region outside of the 2-ring neighbourhood of each target vertex
is kept intact.

A straightforward approach to removing a valence-3 vertex
is to split an edge of one of its neighbouring faces and connect
its midpoint to both this vertex and the vertex on the opposite
side of the edge (Figure 2). This converts the v3 vertex into a
v4 vertex and introduces a new v4 vertex, which has to be re-
moved later. Instead, we replace any vertex of valence 3 or 4
by a 5-6-7 structure, as shown in Figure 3. These two structures
can be adapted to any arbitrary geometry corresponding to a v3
or v4 vertex without introducing geometric error. This is bene-
ficial, as in many cases, feature points of the mesh are vertices
with a low valence and preserving the geometry around those
is desirable. Figure 4 depicts the 3D results of removing low
valence vertices on a cube.

As an implementation detail, note that it is possible to have
overlapping vertices, edges and faces, when eliminating low
valence vertices in Figure 3. Overlapping occurs when two
mesh elements (vertex, edge or face), which appear distinct in
the subdivision scheme, happen to be the same element in the
mesh geometry. While overlapping vertices and edges do not
pose issues for our algorithm, handling overlapping faces can
be tricky. It can only occur in the v3 removal scheme, with
the two faces outside the one-ring neighborhood. Specifically,
in a manifold configuration, it only happens in one patholog-
ical case, i.e. Tetrahedron. Note that a Tetrahedron has only
four faces, while we have five faces drawn in our V3 removal
scheme in Figure 3 and therefore, two of them are referring to
the same face in the mesh. We work around this unique case by
adding those two last edges sequentially rather than at the same
time.

Also note that these structures only introduce new vertices
that are v567 and may only increase the degree of some vertices
in their two ring. But the valence of no vertex is decreased. As
a result, no new v3 or v4 vertex is generated.

3.2. Subdivision

Before removing high-valence vertices, our method requires
them to be far apart from each other in the connectivity graph.
More specifically, every vertex with a valence higher than 7
should have a unique one-ring neighbourhood consisting of only
regular vertices (v6).

This is often not the case. So, in order to guarantee this
condition, we apply a planar subdivision rule to subdivide every
face of the mesh into 9 faces, as shown in figure 5.

3.3. Removing high-valence vertices

In order to remove a high-valence vertex, we iteratively split
it to v7 vertices until the remaining vertex has a degree less
than or equal to 7. More specifically, we denote the vertex with
degree > 7 as our pivot. Next, we replace the pivot with a vertex
of degree 7 and another vertex of degree deg(pivot)− 3. The
new vertex of degree deg(pivot)−3 becomes our new pivot and
we repeat the process until the degree of the pivot becomes less
than or equal to 7. Figure 6 illustrates the iterations involved
for removing a vertex of valence 14.
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Figure 4: Demonstration of Valence 3(top) and Valence 4(bottom) removal on
a cube.

Figure 5: Topological subdivision to separate all the high-valence vertices suf-
ficiently far apart from each other by at least two v6 vertices. The one-ring
neighborhood that is not shared with other possible high valence vertices is
indicated by the circles.
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Figure 6: Elimination of a high-valence vertex (v14) by a series of vertex splits,
where the ellipse denotes the one-ring neighbourhood of the vertex. This adds
b 14−2

3 c − 1 = 3 of v7 vertices and one v567 vertex (in this example, the v5
vertex in the bottom-right image), while increasing the valence of the neighbour
vertices by at most one (i.e. from v6 to v7).

It can be shown that a vertex of valence h, where h > 7, can
be replaced by b h−2

3 c−1 vertices with valence 7, and one v567
vertex, while increasing the valence of the vertices in the one-
ring neighbourhood by at most one (refer to the appendix for the
proofs). Since the subdivision process has provided each high-
valence vertex with a unique one-ring of regular vertices, the
high-valence removal step replaces high-valence vertices with
a 5-6-7 structure without introducing new high or low valence
vertices.

In terms of positioning of the newly created vertices, al-
though we can move all of them to the same location of the
original high valence vertex and introduce no geometric error,
the resulting mesh will have a degenerate geometry, which is
not desirable. To solve this problem, we initially place all the
newly created vertices at the position of the initial vertex, which
is degenerate. Then we iteratively move each vertex towards the
centroid of its adjacent vertices, while giving the vertex itself a
higher weight to keep it close to its initial position. The new
positions are iteratively calculated by the following equation:

uinew =

αui + ∑
p∈N(ui)

p

α + |N(ui)|
,

where ui and uinew are the positions of the i-th vertex before
and after each iteration, N(ui) is the set of adjacent vertices for
vertex ui and α is a constant weight, which is chosen to be 50 in
our implementation. Higher values of α keeps vertices ui close
to their original position and a value of zero moves them to the
centroid of their neighbours. Since at each iteration two of the
degenerate vertices are pulled away, for k newly added vertices,
we require a minimum of b k

2c iterations.
This positioning of the vertices might distort the mesh around

ui, which can be controlled by the value of α . However, the
decimation and geometry enhancement process in the next step
will move these vertices around in a geometry-aware manner.
So, this equation is just used to create a non-degenerate mesh
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without fold-overs to start with.
It is worth noting that there are cases where it is inevitable

to tolerate some error for the high valence removal step, un-
less if we move all the generated vertices to the location of the
original vertex, resulting in a degenerate geometry that has no
geometric error. For example, imagine a high valence vertex
being in the same plane with its adjacent vertices. Then move
every second adjacent vertex toward the direction of the face
normal, to form a lemon reamer like shape. It can be seen that
replacing the center vertex with a vertex of lower valence, will
always introduce some geometry error.

4. Decimation and Enhancement

So far we have created a 5-6-7 mesh by slightly changing
the geometry. However, this process has increased the face
count of the mesh approximately by a factor of 10. In order
to obtain the same face count back, we use a 5-6-7 preserving
simplification method to reduce the size of the mesh to as close
as possible to its original size.

4.1. 5-6-7 Preserving Mesh Decimation

We simplify the mesh using the edge collapse simplifica-
tion, and we only allow those edge collapses, that still preserve
the 567 property of the mesh. As shown in Figure 7(left), an
edge collapse between vertices v1 and v2, with valences d1 and
d2, creates a merged vertex of valence d1 + d2− 4 (Lemma 1)
and reduces the valence of vertices u1 and u2 by 1. Therefore, if
either u1 or u2 has a valence of 5, we cannot collapse the edge.
Moreover, we should maintain the condition 5≤ d1 +d2−4≤ 7
or in other words, v1 and v2 can be either v5-v5 or v5-v6. We
apply edge collapse mesh decimation governed by Quadric er-
ror measurement, while considering the 5-6-7 preserving con-
straints.

The simplification might stop at some point without any
more possible edges to collapse. At this point, we iterate over
all the edges of the mesh and mark those that create more col-
lapsible edges, as shown in Figure 7 (right) and then we flip all
of them. However, allowing an arbitrary edge to be collapsed
may be dangerous and can result in a substantial error. There-
fore we only allow an edge to be flipped if the dot product of
the normal of its incident faces is beyond some threshold. We
also perform the same check for the adjacent faces of the flipped
edge. In our implementation a threshold of 0.9 is used. Note
that increasing this threshold allows less edges to be flipped for
the sake of a lower geometric error. One observation here is
that we usually have many flips without any geometric error
because the subdivision step generated many adjacent coplanar
faces, for which flipping an edge between them will not intro-
duce error.

The decimation process will alternatively decimate the mesh
and then flip edges, until either the target face count is achieved
or no more edges can be flipped.
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Figure 7: 5-6-7 preserving edge collapse (left) and edge flip (right).

4.2. Geometry enhancement

Although the decimated mesh maintains the 5-6-7 connec-
tivity, the quality of the resulting mesh is not always desirable.
Due to the edge flips and also because of the constraints on the
quadric simplification, the decimation process is not able to col-
lapse some of the low error edges and instead it has to consider
the next candidate edges. Besides the geometric error, we ob-
served that the decimation process decreased the quality of the
triangles as well, by creating very small or long triangles. In
order to address these issues, we apply an enhancement heuris-
tic to relax the points on the surface of the original mesh, while
respecting the geometry features.

More specifically, we apply a Laplacian smoothing followed
by a back projection of the points to the surface of the original
mesh. In order to project the points back to the original sur-
face, we first find a mapping from the points of the decimated
5-6-7 mesh to the points of the original mesh, by considering
the closest point from the original mesh to the point on the dec-
imated mesh. Then, every point is projected back to the closest
point on the one-ring neighbourhood of its corresponding ver-
tex on the original mesh, which is the closest point to one of the
triangles that is incident to its corresponding vertex.

After projecting the points back to the original mesh, we
may need to update the correspondence that we calculated ear-
lier, since the vertices are moving around. Let c[u] be the cor-
responding vertex for u in the original mesh, we update c[u] to
the closest point from N(c[u])∪{c[u]} to u, where N(c[u]) is
the set of points in the one-ring of c[u],

A drawback of this heuristic is that it smoothes out feature
points after each iteration. To work around this, we detect fea-
ture points and fix their positions. We first examine the normals
of every vertex’s incident faces, and mark that as a feature ver-
tex if there are two faces f and f ′ with dot(~n f , ~n f ′) < σthreshold .
The value of σthreshold is determined by the user. For instance,
in Figure 8, a small positive value will work to fix the vertices
on the edge of the cylinder. We also provide an interface to visu-
alize the marked feature vertices as the user changes the value.
A small value for σthreshold lets some of the feature points disap-
pear but allows a better distribution of the points on the surface
of the mesh and a larger value will fix more points, making the
mesh less flexible towards changes.

In cases where the increased size of the mesh is not an is-
sue, for example when the initial mesh has a low face count, we
can bypass the decimation step and run the geometry enhance-
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Figure 8: Comparison of the original cylinder mesh(left) with the 5-6-7 en-
hanced mesh(right). The top row from left to right: the original, 5-6-7, and
5-6-7 enhanced mesh (without decimation).

ment right after we create a 5-6-7 mesh. In such a case, the size
of the mesh is increased but the process will become faster as
the decimation step is the slowest step of our algorithm, and we
also will not have the extra error added by the decimation step.
Figure 8 illustrates a cylinder before and after converting it to a
5-6-7 mesh (without decimating) followed by the geometric en-
hancement step. So, the final mesh has significantly more faces
than the original one but the high valence vertex is replaced by
a set of 5-6-7 vertices, which are relaxed on the surface after
the geometry enhancement.

5. Results

Our implementation of 5-6-7 remeshing takes a closed tri-
angle mesh and turns it into a 5-6-7 mesh, which is simplified
and then geometically enhanced afterwards. The 5-6-7 remesh-
ing has a linear time complexity, however the decimation pro-
cess can be slow at and take minutes to run on a mesh with 25K
vertices. Although quadric mesh decimation has a well defined
time complexity, the running time of the constrained quadric
decimation used in our work highly depends on the initial trian-
gulation and how lucky we are in the progression of the quadric
decimation. There are cases where the mesh can be decimated
to the initial size, but in some cases it can take several alter-
nations between edge collapses and edge flips to achieve the
desired size.

5.1. Parameters
The first phase of our 5-6-7 remeshing does not require pa-

rameter tuning or user interaction to produce the 5-6-7 mesh,
except for a parameter α that is used to control the distance
of the split vertices from the original location of the high pivot
vertex. Value of zero corresponds to geometric degeneracy and
zero error, and higher values may add distortion in that locality
to the mesh.

During the decimation step, we switch between edge col-
lapses and edge flips, and edge flips can produce geometric er-
ror. Therefore, only edges with almost flat incident faces are
allowed to be flipped. To detect the flatness, the dot product of
the normal of the faces has to be below some threshold β , for
that edge to be legit for a flip.

The geometry enhancement step needs two parameters: s
and σthreshold . Parameter s governs the speed of Laplacian smooth-
ing. A value of 1.0 would be the basic Laplacian smoothing.
And, parameter σthreshold is the rigidity factor described in the
previous section, and is used in the feature detection step.

In our implementation, we used the values of α = 50, β =
0.1, and s = 0.1 which are fixed for all of the experiments. Only
the value of σthreshold needs to be tuned for each model, for
which we provide an interactive tool for the user to pick an
appropriate value for it.

5.2. Test data

The results of applying our algorithm on meshes with dif-
ferent topologies and feature types are shown in figure 13. The
eight mesh shows the result of applying our method on a mesh
of genus two and the other three exhibit our feature preservation
mechanism on different feature types.

As shown in the second column of the meshes in Figure 13,
in the vicinity of the low/high valence vertices, we have added
clusters of vertices to remove them locally. In order not to have
those dense clusters, we incorporate edge lengths in quadric
errors such that, shorter edges become more suitable candidates
to be collapsed. This attempts to eliminate small dense groups
of vertices and tends to equalize the edge lengths of the mesh,
which gives a more uniformly distributed vertex set.

In order to quantify the quality of the resulting mesh, we
compute an approximation error measured by the well-known
Metro tool [20], which calculates the Hausdorff distance be-
tween the original mesh and the final mesh after geometry en-
hancement. The error is mostly the result of the simplification
process, as the remeshing phase itself does not add significant
error to the mesh. The error as well as various other statistics
related to our remeshing algorithm, such as the execution time,
are shown in Table 1.

5.3. Evaluation

In this section we would like to carry out a few more eval-
uations to show the advantages of 5-6-7 meshes. Although we
compared some example meshes with their 5-6-7 version, one
might still argue that this comparison is a bit biased because the
initial mesh might have a very bad vertex positioning, and we
are comparing it with a mesh that is geometrically enhanced at
the end of the algorithm. So for a fair evaluation, we also pro-
vide comparison of our final 5-6-7 mesh with the geometrically
enhanced version of the initial mesh in Figure 10.

It can be seen that, the existence of irregular vertices, espe-
cially in the flat regions of the mesh, enforces a non-uniform
distribution of the points even after applying the Laplacian re-
laxation on the surface of the mesh. Although this relaxation
tries to improve the point distribution on the surface of the
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Model Error # Faces Valence Time Compression (bpv)
Vlow V5 V6 V7 Vhigh Original 5-6-7

fish 0.010 1K 8.9% 24.5% 36.1% 22.5% 8% 3.3s 2.36 1.69
horse 0.018 1.5K 7.7% 27.7% 33.6% 22.1% 8.9% 4.5s 2.38 1.66
venus 0.020 1.5K 9% 25.7% 35.6% 19% 10.7% 4.2s 2.35 1.36
eight 0.010 1.5K 5.1% 23.2% 42.6% 23.9% 5.2% 5.1s 2.10 1.65
cow 0.020 6K 3.2% 17.9% 61.7% 12.5% 4.7% 18.7s 1.77 1.67

armhand 0.007 25K 3.6% 26.2% 42.7% 22.2% 5.3% 13m 1.97 1.56

Table 1: Various statistics related to 5-6-7 remeshing on several meshes. Metro error is computed between the original and the final mesh. Time represents the total
running time of the 5-6-7 remeshing algorithm and decimation. The number of vertices (in percentages) of different valences before remeshing is also included.

Figure 9: Visualization of Hausdorff distance error. Figures from top to bottom:
the original mesh, the 5-6-7 mesh, the error visualization on the 5-6-7 mesh.

mesh, the non-uniform distribution of the points is inherent in
the bad quality of the connectivity graph. For example, the ef-
fect is visible in the the v3 vertices near the eye of the fish, or
the high valence vertex on the body of the fish.

Our next evaluation is to compare the result of subdivision
algorithms on the original and 5-6-7 meshes. Figure 11 shows
the results of applying two iterations of Loop subdivision [21]
on an initial and the 5-6-7 remeshed sphere. Figure 12 presents
the same results, with material, lighting and under different
shading algorithms. Wrinkles appear in the smooth shaded ver-
sion of the original mesh after applying subdivision, which is
an inevitable artifact of subdivision algorithms around high va-
lence vertices. Although in our 5-6-7 mesh we have more non-
valence-6 vertices(rather than two extremely high valence ver-
tices) but since their valences are bounded well enough, the ar-
tifact is not apparent.

Compression: In addition, 5-6-7 meshes result in noticeable
improvement in connectivity compression. We utilized the bench-
mark tool provided by Isenburg et al. [22] and as the results are
shown in Table 1, on 5-6-7 meshes we achieve an enhancement
of about 1.5X on average. However, 5-6-7 meshes might not be
the best choice for connectivity compression, since a v6 dom-

inant mesh with few high/low valence vertices might be more
suitable for comparing to a 5-6-7 mesh with almost equal num-
ber of v5, v6 and v7 vertices. The values shown in the table
are the average bit per vertices, which is calculated as the to-
tal amount of bits required to encode the mesh divided by the
number of vertices.

Finally, in order to verify the integrity of our feature preser-
vation, we plot the per vertex error between the initial mesh
and the 5-6-7 mesh. The color of each vertex corresponds to
its Hausdorff distance from the original mesh, and the error in-
creases as we go from blue to red. As it is shown in Figure 9,
the feature areas of the hand are relatively preserved.

5.4. Limitations

Time Complexity: One of the drawbacks of our remeshing
algorithm is the time complexity of the decimation step. Al-
though other parts of the algorithm have a linear time complex-
ity and run efficiently, the decimation step requires alternating
between the edge collapses and edge flips, till it reaches the
original mesh size. In the worst case the time complexity would
be O(E2logE) in total. However, in most of the experiments,
we observed that at each edge collapse iteration, the size of the
mesh is reduced to half. Which brings it down to O(ElogE).

Subdivision Step: The subdivision step multiplies the size
of the mesh by 9, which is not desirable for most of the large
meshes. However, we were not able to find an alternative to
push irregularities away from each other.

Geometry Enhancement Step: The geometry enhancement
step needs some human interaction to pick the proper rigidity
threshold. Parameter tuning on one hand, and the possible face
fold overs on the other hand are the main downsides of this step.
Face fold overs happen mainly because our feature preservation
fixes feature points, allowing other vertices to move. One pos-
sible improvement would be allowing feature vertices to move
along the feature creases.

6. Analysis and discussion

In this section, we present some observations about 5-6-7
meshes and discuss some theoretical aspects of this class of
meshes. We show an interesting observation relating the num-
ber of vertices and the genus of the shape, which is useful in
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Figure 10: Comparison between the geometrically enhanced version of the initial mesh and the 5-6-7 mesh. On the left you see the initial mesh after running the
geometry enhancement algorithm on it, versus the 5-6-7 mesh on the right.

Figure 11: Results of subdivision on a sphere and the 5-6-7 sphere. Figures from left to right: 1) initial sphere 2) 5-6-7 sphere with the same vertex count 3) initial
sphere after applying 2 steps of Loop subdivision 4) 5-6-7 sphere after applying 2 steps of Loop subdivision.

Figure 12: Shaded results of subdivision on a sphere and the 5-6-7 sphere. Figures from left to right: 1) initial sphere flat shaded 2) 5-6-7 sphere flat shaded 3)
initial sphere smooth shaded 4) 5-6-7 sphere smooth shaded

8



Figure 13: An example of feature preservation on a complex mesh(1st row), a mesh with fairly flat areas as well as some sharp feature regions(2nd row), a mesh
with genus 2(3rd row), and the mesh of venus with subtle feature areas (4th row). From left to right: the original mesh, the 5-6-7 mesh, the decimated 5-6-7 mesh
and finally the enhanced 5-6-7 mesh.
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designing ”minimal” 5-6-7 meshes. We then talk about alterna-
tive approaches to remove non-5-6-7 vertices.

6.1. Count of 5-6-7 vertices

In this section, we study the relation between the number of
v5, v6, and v7 vertices on a mesh of an arbitrary genus. The re-
sults of this study can be beneficial in designing “minimal” 5-6-
7 meshes and having a better understanding of the relationship
between irregularities and the genus of the shape in an abstract
sense. We start by studying the number of v5 and v6 vertices in
a 5-6 mesh, then we extend it to 6-7 meshes and finally, we gen-
eralize it to 5-6-7 meshes. Knowing that the average valence of
vertices on a mesh with genus zero is less than 6, we would like
to examine the possibility of having a 5-6 remeshing. It is also
interesting to see the relation between the number of v5 and v6
vertices. Let n5, n6, and n7 be the number of v5, v6, and v7
vertices, and g be the genus of the mesh. Also let V , E, and F
denote the number of vertices, edges, and faces of the triangle
mesh. we have:

V = n5 +n6

E =
5n5 +6n6

2

F =
5n5 +6n6

3
Using Euler’s characteristic formula (V −E +F = 2−2g),

we get:
n5 = 12(1−g) (1)

It is interesting that a 5-6 remeshing of a mesh with genus
zero, requires exactly twelve v5 vertices, and any number of v6
vertices. Therefore, a mesh with minimum number of vertices
on genus zero would have no v6 vertices and exactly twelve v5
vertices, which is an Icosahedron. Following a similar calcula-
tion, for a 6-7 remeshing of meshes with genus higher than one,
we get:

n7 = 12(g−1) (2)

Intuitively it means that an increase in the genus corresponds
to an addition of twelve v7 vertices to the mesh, independently
from the number of v6 vertices. Generalizing the approach for
5-6-7 meshes, we get:

V = n5 +n6 +n7

E =
5n5 +6n6 +7n7

2

F =
5n5 +6n6 +7n7

3

(n5 +n6 +n7)−
5n5 +6n6 +7n7

2
+

5n5 +6n6 +7n7

3
= 2−2g

n5−n7 = 12(1−g) (3)

The useful observations are:

• An exact relation between the number of the irregularities
and the genus.

• An addition of every extra v5 vertex, needs to be com-
pensated with a v7 vertex, and vice versa.

These observations hold for 5-6-7 triangle meshes and also
for any 5-6-7 remeshing that preserves the genus of the shape,
which suggests that a minimal local remeshing of a low valence
vertex should contain only v5 vertices. Since added v7 vertices
should be compensated with v5 vertices, and adding v6 ver-
tices is arbitrary, an optimal remeshing should only contain v5
vertices. Nonetheless, it is not true that every local remeshing
scheme with only v5 vertices is minimal, due to the added va-
lencies in the locality.

It should be noted that even though Euler’s characteristic
formula can give a theoretical lower bound for 5-6-7 meshes,
there are cases that the minimal 5-6-7 mesh suggested by Eu-
ler’s formula is degenerate (E.g V = 0 and g = 1). Moreover, in
other cases the resulting 5-6-7 mesh cannot have planar trian-
gles and straight edges (g > 1). This is because Euler’s formula
does not have any assumptions on the geometric characteristics
of the graphs, and only suggests an abstract connectivity. This
abstract connectivity may suite our purposes or may require us
to add extra v6 vertices to produce triangle meshes with planar
faces and straight edges.

6.2. Alternative structures to remove high/low valence vertices
There are several possible schemes to remove high/low va-

lence vertices. Our choice of the high valence removal structure
is motivated by adding a relatively low number of new vertices,
while respecting the geometry. To remove high valence ver-
tices, we present two additional possible schemes, shown in
Figure 14. The first scheme, shown on the top, has a regular
structure and can be suitable for cases that we require a better
control over the vertices of the mesh to reduce the geometric
error, or in cases that we require a better distribution of the new
points. In this structure, for a vertex of degree 3d, d(d−1)

2 new
regular vertices are added. Otherwise, if the initial degree is not
a multiple of three, we can insert one or two new vertices any-
where on the boundary and convert one or two regular vertices
to a v7 vertex. Note that in this case, the degree of all of the
vertices on the boundry, except for 6 of them, is increased by
one.

The second scheme, shown at the bottom, mimics a rota-
tionally symmetric structure and can be suitable for geometric
cases such as the poles of a sphere. In this structure, we have a
set of nested rings, and moving towards the center, the number
of irregular vertices in each ring decreases by one. Most of the
vertices are regular and the total number of added vertices for a
vertex of degree d is d(d−1)

2 −21.
One can also remove a high valence vertex, and triangu-

late its one-ring neighborhood by zigzagging on the boundary,
which increases the valence of all the vertices on the boundary
except for two of them. The downside is that, this approach will
completely discard the geometry of the original vertex.

Alternative schemes for low valency removal, are shown in
Figure 15 for V4 removal and in Figure 16 for V3 removal.
These new structures produce less vertices than the previous
schemes and similarly preserve the shape of the mesh and do
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Figure 14: Two alternative schemes to remove a high valence vertex.

not add geometric error after being applied. However, we used
the structures in Figure 3 since they modify a smaller region
around the low valence vertex.

Figure 15: Two alternative schemes to remove a vertex of degree 4.

7. Conclusion and Future work

In this paper, we show that a closed triangle mesh with any
genus can always be converted into a 5-6-7 mesh, a mesh with
only valence-5, 6, and 7 vertices. The initial conversion scheme
removes low- and high-valence vertices one by one and during
the process, it creates a fairly large number of new vertices. We
address this with a mesh decimation and geometry enhance-
ment, while preserving the 5-6-7 property. In the end, we ob-
tain a 5-6-7 mesh that closely approximates the original mesh,
i.e. features are respected and has a comparable vertex count.
However, It might not always be possible to decimate the mesh
to its original face count, and, in some cases it is even theoreti-
cally impossible to decimate the mesh to its original face count
(e.g. a tetrahedron or a great stellated dodecahedron).

Figure 16: An alternative scheme to remove a vertex of degree 3.

A summary of our approach can be divided into the follow-
ing four steps:

1. Low Valence Removal: v3 and v4 Vertices are removed
efficiently without introducing error.

2. Subdivision and High Valence Removal: Vertices with
valence greater than 7 are removed and an arbitrarily low
error is introduced. An error of zero is achievable in a
degenerate geometry. By the end of this step, we have a
5-6-7 mesh that has a low geometric error and the error
only appears at high valence vertices. However, the size
of the mesh is multiplied by approximately 10.

3. Decimation: In this step we decimate the mesh towards
the initial face count as much as possible, while preserv-
ing the 5-6-7 property. This step is computationally ex-
pensive and might introduce a considerable error to the
geometry.

4. Geometry Enhancement: We use a heuristic to improve
the quality of the triangles, and projecting the mesh back
to the surface of its original mesh. To preserve the fea-
tures of the mesh, we detect them and fix their position.
While this heuristic works in many cases, there are situa-
tions that it might generate a considerable error.

Currently, our remeshing algorithm is designed to work with
closed manifold meshes only and the support for meshes with
boundaries is left as a future work. Also, an interesting question
is the placement of valence 5 and 7 vertices for which it may be
desirable to consider the density of the points and the frequency
of the mesh.

As we mentioned in the analysis section, Euler character-
istic formula does not take into account any information about
the geometry of the shape. But in most of the applications in
computer graphics, we require the triangles to be planar and the
edges to be straight lines. Therefore, an alternative formula-
tion to incorporate some constraints from the geometry into the
connectivity would be a valuable work to find minimal 5-6-7
meshes with planar triangles and straight edges.
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Appendix

Lemma 1. The result of merging two vertices of degrees d1 and
d2 is a vertex of degree d1 +d2−4.

Lemma 2. On a closed manifold M with the connectivity graph
GM , let V (GM) be the vertex set of GM and let V ′ ⊆ V (GM).
Also, let ω be the result of merging V ′ into one vertex. The
degree of ω is given by the following formula, if the subgraph
G′ induced by V ′ is a tree.

deg(ω) = ∑
v′i∈V ′

deg(v′i)−4(|V ′|−1) (.1)

Proof. The proof can be done by induction over the size of the
tree and using lemma 1.

Lemma 3. The remaining vertex from the splitting algorithm is
a 5-6-7 vertex.

Proof. By contradiction, suppose that in the last step of the al-
gorithm we have a vertex of degree y ≥ 8 which is split into a
vertex of degree 7 and a vertex of degree x≤ 4. So,

y− x≥ 4 (.2)

Using lemma 1, we have y = x+7−4 So,

y− x = 3 (.3)

(.2) and (.3) implies contradiction.

Theorem 1. Every vertex of degree h, h > 7, will be replaced
by b h−2

3 c−1 number of v7 vertices and one 5-6-7 vertex.

Proof. Using lemma 3, we know that the remaining vertex will
be a 5-6-7 vertex. Now suppose that after the split procedure we
have |V ′| vertices consisting of |V ′| − 1 number of v7 vertices
and one 5-6-7 vertex. By merging these vertices together we
will recover the original high valence vertex, which had a de-
gree of h. Let h = deg(ω) and let υ567 be the remaining vertex

from the splitting algorithm. Now, using lemma 2 we have,

h = ∑
v′i∈V ′

deg(v′i)−4(|V ′|−1)

= (7(|V ′|−1)+deg(υ567))−4(|V ′|−1)
= 3(|V ′|−1)+deg(υ567)

|V ′|= h−deg(υ567)+3
3

(.4)

=
(h−2)− t

3
(.5)

Where t ∈ {0,1,2} and it makes h−2 divisible by 3. So,

|V ′|=
⌊

h−2
3

⌋
(.6)

Which is |V ′|−1 vertices of degree 7 and one 5-6-7 vertex.
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[10] Liu Y, Wang W, Lévy B, Sun F, Yan DM, Lu L, et al. On centroidal
voronoi tessellation–energy smoothness and fast computation. ACM
Trans on Graphics 2009;28(4):1–17.

[11] Rong G, Jin M, Guo X. Hyperbolic centroidal voronoi tessellation. In:
Proceedings of the 14th ACM Symposium on Solid and Physical Model-
ing (SPM 2010). 2010, p. 117–26.

[12] Rong G, Jin M, Shuai L, Guo X. Centroidal voronoi tessellation in uni-
versal covering space of manifold surfaces. Computer Aided Geometric
Design 2011;28(8):475–96.

[13] Chiang CH, Jong BS, Lin TW. A robust feature-preserving semi-
regular remeshing method for triangular meshes. The Visual Computer
2011;27(9):811–25.

[14] Vidal V, Wolf C, Dupont F. Combinatorial mesh optimization. The Visual
Computer 2012;28(5):511–25.

[15] Hormann K, Labsik U, Greiner G. Remeshing triangulated surfaces with
optimal parameterizations. Computer-Aided Design 2001;:779–88.

[16] Alliez P, Meyer M, Desbrun M. Interactive geometry remeshing. ACM
Trans Graph 2002;:347–54.

[17] Corsini M, Cignoni P, Scopigno R. Efficient and flexible sampling with
blue noise properties of triangular meshes. IEEE Transactions on Visual-
ization and Computer Graphics 2012;18(6):914–24.

[18] Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Mesh op-
timization. In: Proceedings of the 20th annual conference on Computer
graphics and interactive techniques. SIGGRAPH ’93; 1993, p. 19–26.

12



[19] Turk G. Re-tiling polygonal surfaces. In: Proceedings of the 19th annual
conference on Computer graphics and interactive techniques. 1992, p. 55–
64.

[20] Cignoni P, Rocchini C, Scopigno R. Metro: Measuring error on simpli-
fied surfaces. Computer Graphics Forum 1998;:167–74.

[21] Loop C. Smooth Subdivision Surfaces Based on Triangles. Department
of mathematics; University of Utah; 1987.

[22] Isenburg M, Lindstrom P, Snoeyink J. A benchmark coder for poly-
gon mesh compression. 2002. URL http://www.cs.unc.edu/
isenburg/pmc/.

13

http://www.cs.unc.edu/isenburg/pmc/
http://www.cs.unc.edu/isenburg/pmc/

	Introduction
	Related Works
	5-6-7 Remeshing
	Removing low-valence vertices
	Subdivision
	Removing high-valence vertices

	Decimation and Enhancement
	5-6-7 Preserving Mesh Decimation
	Geometry enhancement

	Results
	Parameters
	Test data
	Evaluation
	Limitations

	Analysis and discussion
	Count of 5-6-7 vertices
	Alternative structures to remove high/low valence vertices

	Conclusion and Future work

