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Abstract

Multi-Agent Path Finding (MAPF) aims to arrange collision-
free goal-reaching paths for a group of agents. Anytime MAPF
solvers based on large neighborhood search (LNS) have gained
prominence recently due to their flexibility and scalability,
leading to a surge of methods, especially those leveraging ma-
chine learning, to enhance neighborhood selection. However,
several pitfalls exist and hinder a comprehensive evaluation
of these new methods, which mainly include: 1) Lower than
actual or incorrect baseline performance; 2) Lack of a unified
evaluation setting and criterion; 3) Lack of a codebase or ex-
ecutable model for supervised learning methods. To address
these challenges, we introduce a unified evaluation frame-
work, implement prior methods, and conduct an extensive
comparison of prominent methods. Our evaluation reveals that
rule-based heuristics serve as strong baselines, while current
learning-based methods show no clear advantage on time effi-
ciency or improvement capacity. Our extensive analysis also
opens up new research opportunities for improving MAPF-
LNS, such as targeting high-delayed agents, applying contex-
tual algorithms, optimizing replan order and neighborhood
size, where machine learning can potentially be integrated.

1 Introduction
Multi-Agent Path Finding (MAPF) refers to the problem of
arranging collision-free paths for a group of agents (Stern
et al. 2019). Many real-world applications involving mul-
tiple agents are closely related to MAPF, e.g., warehouse
robots (Ma and Koenig 2017; Li et al. 2021c), aircraft-towing
vehicles (Morris et al. 2016; Fines, Sharpanskykh, and Vert
2020), and navigation in video games (Ma et al. 2017).

MAPF is NP-hard to solve optimally (Yu and LaValle
2013). In recent years, anytime MAPF solvers based on large
neighborhood search (LNS) (Li et al. 2021a) have gained
prominence since previous centralized solvers often suffer
from poor efficiency with low scalability despite their so-
lution optimality, e.g, conflict-based search (CBS) (Sharon
et al. 2015), or low solution quality despite their fast speed
and good scalability, e.g., prioritized planning (PP) (Erdmann
and Lozano-Perez 1987). Learning decentralized suboptimal
policies via reinforcement learning has also been explored,
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but typically requires subtle environment design (Sartoretti
et al. 2019; Ma, Luo, and Ma 2021; Ma, Luo, and Pan 2021).
Among these approaches, MAPF-LNS has emerged as the
leading method for finding fast and near-optimal solutions
to large-scale MAPF problems within a time budget. It starts
from a fast initial solution, often obtained using a fast subop-
timal MAPF solver, e.g., PP, and incrementally improves the
solution quality to near-optimal over time. In LNS, a subset of
agents, called a neighborhood, is selected, and their paths are
iteratively destroyed and repaired. MAPF-LNS has consis-
tently ranked first in various competitions, including the 2023
Robot Runners (Jiang et al. 2024), AMLD 2021 Flatland 3
Challenge (Chen et al. 2023), and the 2020 NIPS Flatland
Challenge (Li et al. 2021b), demonstrating its excellence in
both speed and solution quality.

One key challenge of MAPF-LNS lies in selecting an
improving neighborhood to efficiently minimize total de-
lays. To address this, various strategies have been proposed,
which generally fall into two categories: rule-based and
learning-based methods. Rule-based strategies rely on pre-
defined heuristics to generate neighborhoods (Li et al. 2021a),
while learning-based strategies predict the optimal neighbor-
hood generated by rule-based strategies (Huang et al. 2022;
Yan and Wu 2024) or dynamically select one of the rule-
based strategies based on environmental conditions (Phan
et al. 2024). However, as an emerging research topic, no cur-
rent work systematically examines the efficiency of different
MAPF-LNS methods, especially the new advances using ma-
chine learning. Upon examination, we find several pitfalls in
their evaluation, which impede a reasonable comparison. This
includes: 1) Underreported or incorrect performance. We
observe that the final delays of rule-based methods reported
in Huang et al. (2022) are usually significantly higher than
those in Li et al. (2021a). Phan et al. (2024) directly import
these values from Huang et al. (2022). Additionally, Yan and
Wu (2024) adopts final delays from Li et al. (2021a) but uses
slightly different maps for evaluation, leading to inconsis-
tencies. For example, the result of map ‘random-32-32-20’
in Li et al. (2021a) has been incorrectly adopted as the re-
sult for ‘random-32-32-10’ by Yan and Wu (2024). Such
discrepancies make it difficult to draw reliable conclusions
from current results. 2) Lack of a unified setting. Various
factors potentially influence the efficiency of MAPF-LNS,
such as the initial solution and path replan solver. Initial



solutions generally vary among different MAPF-LNS pa-
pers, and unsolved scenarios are usually discarded. While
PP serves as the default replan solver in most MAPF-LNS
methods, priority-based search (PBS) (Ma et al. 2019) is used
by Yan and Wu (2024). Different evaluation metrics are also
employed in different papers, such as area under the curve
(AUC) (Li et al. 2021a), win/loss (Huang et al. 2022), and
average gap (Yan and Wu 2024). This lack of a unified setting
makes direct comparison difficult. 3) Lack of a codebase
or executable model. The performance of supervised learn-
ing heavily depends on data quality and parameter tuning.
However, codebases, running instructions, or executable mod-
els are generally missing for supervised learning methods,
making it challenging to reproduce their results.

To address these issues, we propose a unified evaluation
setting under the same benchmark and hyperparameter config-
urations. We investigate and standardize several key aspects
in MAPF-LNS, including initial solutions, replan solvers,
and time-counting schemes during evaluation, which are not
fully studied, obscure, or incorrect in previous works. We
then implement and reevaluate prior methods in this uni-
fied framework. Our key finding is that rule-based heuristics
for neighborhood selection are still strong baselines com-
pared to learning-based methods in terms of time efficiency
and improvement capacity. Our analysis also leads to sev-
eral interesting future directions for improving MAPF-LNS,
which are less explored in the previous MAPF-LNS litera-
ture, e.g., targeting high-delayed agents, applying contextual
algorithms, optimizing replan order and neighborhood size,
where machine learning can potentially be integrated.

2 Preliminaries
2.1 Background: MAPF and MAPF-LNS
The MAPF variants are summarized by Stern et al. (2019).
In this work, we follow the common settings: 1) considering
vertex and swapping conflicts, i.e., agents can not occupy the
same vertex or traverse the same edge in opposite directions
simultaneously; 2) agents ‘stay at target’ instead of disappear-
ing; 3) minimizing the sum of individual costs, i.e., the total
time steps for all agents to reach their targets.

MAPF is formally defined as follows. The input is a graph
G = (V,E), where V is the set of vertices and E is the set of
edges, along with a set of N agents A = {a1, ..., aN}. Each
agent ai is assigned a start vertex si ∈ V and a goal (target)
vertex gi ∈ V (gi is accessible from si). At each discrete time
step, an agent can either move to an adjacent vertex or wait at
its current vertex. Consequently, the path pi of ai consists of a
sequence of vertices that are adjacent or identical. A solution
is a set of collision-free paths, one for each agent from si to gi.
Let d(si, gi) denote the length of the shortest path between
si and gi, and l(pi) denote the length of path pi. Then, the
delay of path pi is delay(pi) = l(pi) − d(si, gi). Note that
l(pi) counts the edges of both move and wait actions. The
task is to find a solution P = {pi}Ni=1 that minimizes the
sum of costs

∑N
i=1 l(pi), which equals to minimize the sum

of delays
∑N

i=1 delay(pi).
LNS is a type of improvement heuristic that iteratively

reoptimizes a solution by the destroy and repair operations

until some stopping condition is met (Pisinger and Ropke
2010). In the destroy operation, it breaks a part of the solu-
tions, named a neighborhood. In repair operation, it solves
the reduced problem by treating the remaining part as fixed.

MAPF-LNS framework operates as follows: given a
MAPF instance, an initial (non-optimal) solution P0 is ob-
tained via a non-optimal solver. In each iteration k, a sub-
set of agents Ã ⊂ A is selected based on a criterion. Ã
is called a neighborhood. The paths of agents in Ã are
then removed from previous solution Pk−1, resulting in
P−
k−1 = {pi ∈ Pk−1|ai /∈ Ã}. Subsequently, those paths

of Ã are replanned by an algorithm to avoid collisions with
each other and with the paths in P−

k−1. If the resulting solu-
tion has a smaller sum of delays than Pk−1, it is accepted as
Pk, otherwise, Pk remains as Pk−1.

2.2 Neighborhood Selection
Selecting the neighborhood is crucial to the success of MAPF-
LNS. In this section, we give an overview of the existing
selection strategies.

Rule-based strategies: There are four major rule-based
strategies in the literature: RandomWalk, Intersection, Ran-
dom, and Adaptive, proposed by Li et al. (2021a). Different
rule-based strategies improve the current solution from dif-
ferent perspectives. RandomWalk lets an unoptimized high-
delayed agent move towards a shorter path and collect collid-
ing agents and itself as a neighborhood. Intersection focuses
on improving solutions around intersection vertices (vertices
with a degree greater than two) by adding agents that visit
the same intersection to the neighborhood. Random strategy
selects agents uniformly at random from the set of agents,
ensuring a broad exploration of the solution space. Although
simple, this method introduces sufficient diversity, prevent-
ing the algorithm from getting stuck in local optima, and
is widely used in LNS (Demir, Bektaş, and Laporte 2012;
Song et al. 2020). Adaptive dynamically switches between
RandomWalk, Intersection, and Random strategies, adjusting
their sampling probability weights based on relative success
in improving the current solution.

Learning-based methods: There are three prominent
learning-based strategies: SVM-LNS (Huang et al. 2022)
(denoted as SVM), Neural-LNS (Yan and Wu 2024) (de-
noted as NNS), and Bandit-LNS (Phan et al. 2024) (denoted
as Bandit). SVM and NNS are supervised learning methods,
where a ranking model is trained to predict the best neigh-
borhood over a set of neighborhood candidates generated
by rule-based strategies. Bandit incorporates a bandit algo-
rithm to select rule-based strategies and neighborhood size as
bi-level arms. The reward signal is the delay improvement.

2.3 Discussion on Selection Strategies
RandomWalk (Li et al. 2021a). The main idea of this heuris-
tic is to prioritize replanning for agents with high delays.
On investigating this method, we find some designs of its
algorithm may hinder re-optimizing high-delayed agents,
e.g., once a high-delayed agent is selected in one round, it
is added to a tracking list that will not be selected in next
round. Also, agents are randomly chosen if the neighborhood



size is not reached after one RandomWalk search. We make
two modifications to RandomWalk by removing the tracking
list and sampling agents according to their delays. We name
this modified heuristic as RandomWalkProb, and we find
these simple modifications lead to significant improvement
in several domains. (See Sec. 6.2 in Appendix on details of
RandomWalkProb.)

SVM (Huang et al. 2022) and NNS (Yan and Wu 2024).
Both two utilize supervised learning to rank neighborhood
candidates given the query information, i.e., some solution Pk

in iteration k. This implies the queries {Pk}Tk=1 are treated as
independent and identically distributed (i.i.d.) during training.
However, they are non i.i.d. in practice since Pk+1 highly
depends on Pk within the sequential optimization of LNS.
In the literature of learning to rank, several works suggest
explicitly capturing the temporal information among queries
to increase the robustness and generalization ability of rank
models (Yu et al. 2019; Li, Wang, and McAuley 2020).

Bandit (Phan et al. 2024). MAPF-LNS can be framed as a
contextual bandit problem, where optimal actions (e.g., strate-
gies and neighborhood sizes) should be determined based on
the context information (e.g., the map and the solution Pk

at iteration k). Different contexts can be treated as distinct
states. However, Bandit-LNS employs non-contextual bandit
algorithms, which operate under the assumption of a single
state or no state at all, and thus select optimal actions without
considering contextual information. This creates a theoretical
inconsistency, as the problem setting (contextual) does not
align with the algorithm applied (non-contextual).

3 A Unified Setting for Evaluation
In this section, we elaborate our unified setting for MAPF-
LNS evaluation1. We investigate and standardize several key
aspects of MAPF-LNS before conducting a comprehensive
comparison among existing methods.

3.1 Environments
MAPF algorithms are generally evaluated on MAPF bench-
mark suite2, which provides 2D grid maps of different layouts
simulating various real-world environments, such as ware-
houses and empty rooms. Among many maps in the suite,
we choose six representative maps (i.e., commonly chosen
maps in the aforementioned papers and cover diverse lay-
outs) from each MAPF benchmark category: empty-32-32
of size 32 × 32 (denoted as empty), random-32-32-20 of
size 32× 32 (denoted as random), warehouse-10-20-10-2-1
of size 161 × 63 (denoted as warehouse), ost003d of size
194× 194, den520d of size 256× 257, and Paris 1 256 (de-
noted as Paris) of size 256× 256. We utilize the ’25 random
scenarios’ included in the suite, where each scenario offers
a distinct set of agent start and goal locations for a given
map and specified number of agents. For methods requiring
training data, e.g., SVM-LNS and Neural-LNS, we gener-
ate additional scenarios using the same map layouts with
new random start-goal pairs for model training, such that

1Code and data are available at:
https://github.com/ChristinaTan0704/mapf-lns-unified

2https://movingai.com/benchmarks/mapf/index.html

all methods are evaluated on the same 25 scenarios in the
benchmark.

3.2 Initial Solution
As an anytime algorithm, we would expect MAPF-LNS to
quickly find an initial feasible solution and then improve its
quality to near-optimal as time progresses. Therefore, we set
the time limit for finding the initial solution to 10 seconds by
following Li et al. (2021a).

Three representative suboptimal MAPF solvers, discussed
by Li et al. (2021a), are considered as potential initial solvers:
Explicit Estimation CBS (EECBS) (Li, Ruml, and Koenig
2021), Prioritized Planning (PP) (Erdmann and Lozano-Perez
1987) with a random priority ordering, and Parallel Push and
Swap (PPS) (Sajid, Luna, and Bekris 2012). However, as
highlighted by Li et al. (2021a) (see Fig 3 of Li et al. (2021a)),
none of the three successfully solve all 25 scenarios across
varying numbers of agents within the time limit, yielding un-
solved scenes being discarded. To ensure that initial solutions
are available for all 25 scenarios within 10s, we adopt the
following two methods as initial solvers.

1) LNS2 (Li et al. 2022). It is an improved version of
PP. It repeatedly repairs the collisions met by PP until the
paths become collision-free. 2) LaCAM2 (Okumura 2023).
It was recently proposed as a fast suboptimal MAPF method.
Though it is faster than LNS2, its solution quality is generally
worse than LNS2.

3.3 Replan Solver
The replan solver is invoked iteratively to update paths for the
neighborhood and refine the solution in real-time, making a
fast and efficient solver highly desirable. Except for Yan and

Initial Solver: LNS2; Time limit: 60s

N
Final Delay Iter (x1k)

N
Final Delay Iter (x1k)

PP PBS PP PBS PP PBS PP PBS

em
pt

y

300 431.7 436.9 8.98 0.44

ra
nd

om

150 350.1 346.9 7.39 0.63
350 1109.8 1081.8 4.22 0.25 200 959.6 875.5 2.88 0.19
400 2570.1 2238.2 2.28 0.15 250 2423.8 2301.4 1.99 0.05
450 4873.5 4293.6 1.83 0.09 300 5309.6 4533.1 1.47 0.03
500 7817.6 6874.2 1.51 0.05 350 8966.9 8076.5 1.57 0.02

w
ar

eh
ou

se

150 122.1 128.3 6.59 0.57

os
t0

03
d

200 183.9 897.6 1.75 0.06
200 266.8 310.2 2.65 0.27 300 915.5 4630.9 0.92 0.02
250 477.6 760.3 1.83 0.15 400 3230.7 8032.7 0.52 0.03
300 832.7 1740.3 1.15 0.09 500 9335.316 709.3 0.21 0.01
350 1495.0 3237.5 0.73 0.06 60017 998.324 525.7 0.15 0.01

de
n5

20
d

500 899.6 6195.8 1.28 0.05

Pa
ri

s

350 82.2 383.7 5.98 0.17
600 1321.3 8485.5 1.72 0.06 450 136.5 2274.2 6.44 0.11
700 4436.516 642.9 0.78 0.02 550 219.3 4878.6 4.72 0.06
800 7342.821 909.0 0.61 0.02 650 317.1 9304.6 4.49 0.04
90013 032.029 352.2 0.44 0.01 750 614.914 707.1 3.07 0.03

Table 1: Final delay and total iteration of using PP and PBS
within 60s when initial solver is LNS2, neighborhood se-
lection strategy is RandomWalk, and neighborhood size is
25. Cases where PBS performs better are highlighted in red.
Note: ‘N’ denotes the number of agents.



Wu (2024), most methods typically select PP as the replan
solver due to its fast speed in completing a single iteration
(e.g., faster than CBS and EECBS (Li et al. 2021a)), allowing
for more iterations within the time limit. However, Yan and
Wu (2024) argues that while Priority-Based Search (PBS) is
more time-consuming per iteration, it can outperform PP in
certain scenarios due to its greater improvement in a single
iteration. To evaluate the efficiency of PP and PBS, we set
the neighborhood size to 25 and the time limit to 60s (neigh-
borhood size 25 is recommended in 3/5 cases by Yan and
Wu (2024), and 60s is used in their plots). The time-counting
criterion for evaluation is detailed in Sec. 3.5. The initial
solver used is LNS2, with RandomWalk as the heuristic.

The final delays in different maps with various amount of
agents by using PP and PBS are shown in Table 1. Though
our results coincide with Yan and Wu (2024) that PBS is
better in empty and random maps, it is significantly worse
than PP in larger maps with more agents. We also include
the number of iterations performed by PP and PBS in the
table. We see that PP runs notably faster than PBS and thus
can explore a substantially larger number of neighborhoods
within the time limit. Therefore, we choose PP as the replan
solver. (More comparison results between PP and PBS are
shown in Table 11 and Table 12 in Appendix, which include
cases where the initial solver is LaCAM2, and the time limit
is 300s. These results also suggest that PP is better than PBS
in most cases.)

3.4 Neighborhood Size and Number of Agents
Intuitively, a smaller neighborhood size accelerates each iter-
ation but may yield limited improvements, whereas a larger
neighborhood size slows down each iteration but has the po-
tential to deliver more significant improvements. To evaluate
those strategies, we test a variety of neighborhood sizes, i.e.,
{2, 4, 8, 16, 32}, by following Li et al. (2021a).

The number of agents in a map affects the congestion level
of a MAPF problem. We select a broad spectrum of agent
amounts in each map to encompass the range of numbers
evaluated in previous papers. The number of agents evaluated
for each map is summarized in Table 6 in Appendix.

3.5 Evaluation Criterion
Given the time-sensitive nature of MAPF-LNS, we mainly
focus on the relationship between delay and time. Specifi-
cally, we report the final delay and area under the curve
(AUC) of the delay-versus-time curve within a specified time
limit. A common criterion is a time limit of 60s. However,
we observe that the delay may not converge within 60s. To
address this, we extend the time limit to 300s (we still report
the results when the time limit is 60s). To reduce the influence
of overhead from other operations, we only measure the time
spent on the core processes of each method, i.e., the time
used for destroying (remove agents) and repairing (replan
paths). Note that SVN-LNS and Neural-LNS require calling
the rule-based methods to propose neighborhood candidates
and calling the trained model to predict the top neighborhood.
This part of time is included in the time used by these two
methods. The model prediction of Neural-LNS is performed
on GPU to accelerate.

3.6 Implementation Details
We develop based on the codebase of Li et al. (2021a) to pro-
duce results for rule-based strategies, including RandomWalk,
Intersection, Random, Adaptive, and RandomWalkProb. We
use the codebase of Phan et al. (2024) to produce results for
Bandit, where Thompson Sampling is the underlying ban-
dit algorithm since it performs the best in our experiments.
No open-source codebase is available for SVM, and neither
executable models nor training data are provided for NNS.
As a result, we implement and train both methods. Note that
the original SVM and NNS use different initial solutions for
different maps and are not clearly specified. We fix the initial
solution to LNS2 (Li et al. 2022) when recovering their re-
sults. Please refer to Sec. 7 in Appendix for training details,
e.g., dataset construction and hyperparameter tuning.

To validate the reliability of our reproductions of SVM and
NNS, we first conduct the following sanity checks. 1) Match-
ing the reported statistics. We reproduce SVM and NNS by
training models using instructions and parameters provided
in their original papers. The time measurement scheme is
not clearly detailed in Huang et al. (2022); Yan and Wu
(2024). Thus, we compare the delay-versus-iteration of our
reproduced results with reported ones, which is independent
of hardware specifications and time-counting schemes. For
NNS, we compare the reduction in delays after 100 iterations,
starting from roughly the same initial delays in shared maps
(we use PBS as the replan solver in this comparison for con-
sistency with Yan and Wu (2024)). The results of our trained
NNS and reported performances are shown in the bottom
of Table 2. The maximum discrepancy in performance is
only 8.9 steps per agent in den520d, and our reproduced
model performs better in empty and warehouse, con-

Average Rank of SVM

Rank / Total

Map N Reproduce Report

warehouse 100 5.9/20 6.0/20

ostd003d 100 6.2/20 5.4/20

den520d 200 7.6/20 7.0/20

Paris 250 7.7/20 6.7/20

Reduction in delays of NNS

Initial delays Delay elimination

Map N Reproduce Report Reproduce Report

empty 300 3140.7 3200 2202 1850

warehouse 100 5731.8 5500 4908 4700

ost003d 100 8690.4 8600 4585.1 5000

den520d 200 20 510.2 20 500 12 721.3 14 500

Table 2: Reproduced and reported metrics of SVM (top) and
NNS (bottom). Note: ‘N’ is the number of agents. ‘Reproduce’
is our reproduced results. ‘Report’ is reported values of
SVM (Huang et al. 2022) and NNS (Yan and Wu 2024).



firming the reliability of our reproduction. For SVM, delay-
versus-iteration statistics are not provided, so we compare the
“average ranking”. Average ranking defined by Huang et al.
(2022) is the average rank of the predicted top neighborhood
out of 20 candidates. The results, shown in the top of Table 2,
reveal that the discrepancy in average rank is no greater than
one, further validating our reproduction. 2) Generalization
ability. It is costly and impossible to train separate models
for different parameters, such as the number of agents or
neighborhood size. Instead, we wish to train models under
one parameter setting and evaluate their performance by gen-
eralizing to unseen configurations, a goal also emphasized
in their original papers. To assess generalization, we con-
duct experiments comparing the performance of two models
evaluated under the same setting but trained with one key
parameter altered. The key parameters include neighborhood
size, selection strategy, number of agents, and initial solver.
We observe that the final delays produced by the generalized
models (trained and tested under different configurations)
are generally comparable to those of the ungeneralized mod-
els (trained and tested under the same configuration). See
Table 10 in the appendix for detailed numerical results.

4 Findings and Future Directions
We perform evaluation for aforementioned approaches under
the unified framework outlined in Sec. 3, which reveals six
key insights that challenge existing research perspectives and
highlight four promising directions for future work.

The results are mainly presented as running curves and
value tables. For simplicity and clarity, we present represen-
tative results when the initial solver is LNS2, with a focus
on the highest number of agents in each map, since those are
the most congested and challenging cases. We also present
cases with a medium number of agents, which are used to
train SVM and NNS. Including the case of medium num-
ber makes it easier to access the performance of SVM and
NNS. The results in other settings reflect similar observations
and are deferred to Sec. 8.4 in Appendix. We also include
the results of the reproduced SVM and NNS when they are
trained according to their original papers. We add a prefix
‘Ori-’ (e.g., Ori-SVM, Ori-NNS) to distinguish with SVM
and NNS trained under our unified setting.

For rule-based methods, the results are obtained using the
best-performing neighborhood size. For evaluating SVM and
NNS, we select the optimal combination of heuristic and
neighborhood size for proposing neighborhood candidates.
For example, in empty map with 500 agents, RandomWalk
with neighborhood size 8 achieves the lowest delay within
300s. Consequently, we use RandomWalk to generate neigh-
borhood candidates for SVM and NNS, and employ neighbor-
hood size 8 during execution in that scenario. For evaluating
Ori-SVM, and Ori-NNS, we adhere to the heuristic and neigh-
borhood size specified in their original papers.

4.1 Key Insights and Analyses
1) Rule-based strategies are strong competitors to
learning-based strategies in terms of time efficiency. Note
that the final delays we report for rule-based strategies are

Runtime (s)

D
e

la
y
 (
×
1
k
)

Best Rule-Based Bandit SVM NNS

empty+400 random+250 warehouse+250

ost003d+400 den520d+700 Paris+550

Figure 1: Delay vs. Time in maps with a Medium num-
ber of agents. Error bars represent the variance of delay
across 25 different scenes. The best rule-based strategies are
Adaptive for empty and warehouse, RandomWalk for
random, and RandomWalkProb for ost003d, den520d,
and Paris.

generally lower than those in previous studies, as we only
measure the time spent on core processes. This same time
measurement scheme is applied to learning-based strategies,
ensuring a fair comparison. Table 4 presents the final delays
and AUCs of delay-versus-time curves when the time limits
are 300s and 60s (with the highest number of agents in each
domain). Rule-based strategies achieve the best final delays
in 83.3% (20/24) of the cases. To minimize the impact of
generalizing to untrained scenarios on the performance of
SVM and NNS, we also investigate their performance on
maps with a medium number of agents where training data
are collected. The delay-versus-time curves for these sce-
narios are shown in Figure 1. For clarity, only the curves of
the best-performing rule-based strategies are included. NNS
matches the efficiency of the best rule-based strategy only
in the ost003d map. In other domains, SVM and NNS are
generally slower.

Our findings contradict those of learning-based studies. For
example, Huang et al. (2022) claimed that SVM-based neigh-
borhood prediction outperforms rule-based methods in terms
of time efficiency. However, under our unified evaluation
framework, SVM shows no clear advantage over rule-based
ones. Additionally, Phan et al. (2024) directly adopted the
results from Huang et al. (2022) and suggested that Bandit
outperforms SVM. In our evaluation, however, Bandit is bet-
ter than SVM in some cases but worse in others. We also
notice that the final delays for rule-based methods reported in
Huang et al. (2022) are significantly higher than those in Li
et al. (2021a), and their time measurement schemes are not
clearly described. This raises the possibility that rule-based
strategies were under-reported or evaluated using inconsis-
tent time measurement schemes. Yan and Wu (2024) focused
solely on cases where PBS outperforms PP and aimed to
improve these cases using deep learning (though our evalua-
tion shows PP is generally better than PBS). Consequently,
their application scope is limited. When applied to diverse
scenarios in our evaluation, NNS does not demonstrate faster



performance than rule-based approaches.
2) SVM and NNS incur high overheads compared to PP
replanning. To understand the time inefficiency of SVM and
NNS, we analyze their additional overheads compared to rule-
based methods. In each iteration, SVM and NNS introduce
two main additional sources of overheads: 1) Proposition,
which involves generating a set of neighborhood candidates
using rule-based strategies (20 candidates in SVM, and 100
in NNS); 2) Prediction, which predicts the best neighborhood
using trained ranking models. Table 3 summarizes the per-
centage of these overheads in total time used for maps with
the highest number of agents.

The proposition overhead in SVM is negligible due to the
small number of candidates (i.e., 20), but it increases greatly
in NNS due to a larger candidate pool (i.e., 100). The predic-
tion overhead is notably high for both SVM and NNS. This is
because PP replanning is super fast per iteration, making the
prediction speed of the machine learning models the bottle-
neck. We also report the overheads of Ori-NNS when PBS is
used for replanning. In this case, the proposition and predic-
tion overheads in NNS become relatively small because PBS
takes a longer time to execute. This observation supports Yan
and Wu (2024)’s approach of applying deep learning only
in cases where PBS performs better, as the neural network
overhead becomes acceptable with PBS replanning. However,
this further highlights the limited application scope of NNS.
3) The improvement capacity of supervised learning meth-
ods per iteration is limited. As discussed above, SVM and
NNS introduce high time overheads. Here, we investigate
their improvement capacity per iteration, which is indepen-
dent of the time overheads. We compare them with the best
rule-based strategies using the delay-versus-iteration crite-
rion in maps with medium number of agents. Note that the
best rule-based strategies in these scenarios are employed to
generate training data for SVM and NNS. The performance
curves are shown in Figure 2.

SVM and NNS aim to predict and select the best neigh-
borhood from the candidate pool for replanning in each it-
eration. However, as illustrated in Figure 2, only in empty
and den520d, SVM is able to predict a better neighborhood
than the one picked by rule-based methods. In other cases,
the improvement capacity of supervised learning models fails
to surpass that of rule-based strategies. Also, as indicated in
Table 2, the trained ranking models struggle to accurately
select the ground truth best neighborhood. This suggests that

Methods
empty random warehouse ost003d den520d Paris
+500 +350 +350 +600 +900 +750

Prop Pred Prop Pred Prop Pred Prop Pred Prop Pred Prop Pred

SVM 0.4 41.4 3.2 38.2 0.4 33.4 1.9 33.5 1.7 45.0 1.5 35.1

NNS 7.5 53.2 11.3 46.8 16.7 47.6 7.6 13.1 16.3 27.8 34.8 29.3

Ori-NNS 8.4 1.4 4.7 3.4 0.8 0.6 0.8 1.9 0.4 0.7 2.3 1.4

Table 3: Percentage of proposition and prediction overheads
in SVM and NNS. Initial solver is LNS2. Note: Numbers
are shown in percentage (%). ’Prop’ represents proposition.

’Pred’ represents prediction.
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Best Rule-Based SVM NNS
empty+400 random+250 warehouse+250

ost003d+400 den520d+700 Paris+550

Figure 2: Delay vs. Iteration in maps with a Medium num-
ber of agents. Error bars represent the variance of delay
across 25 different scenes. The best rule-based strategies are
Adaptive for empty and warehouse, RandomWalk for
random, and RandomWalkProb for ost003d, den520d,
and Paris.

achieving a clear advantage over rule-based strategies re-
quires a more powerful neighborhood ranking model with
higher prediction accuracy.
4) Under-performance of Bandit vs. Adaptive. Bandit is
another learning-based method, but it employs reinforcement
learning instead of supervised learning. As a result, it requires
no training data and dynamically identifies the best rule-based
strategies in each iteration during execution. This allows us
to view it as another variant of Adaptive, where bandit logits
serve as weights for selecting rule-based strategies.

When comparing Bandit and Adaptive in Table 4, Ban-
dit performs worse than Adaptive in 66.6% cases (16/24) in
terms of final delays. The performance gap between them is
particularly significant in map den520d. As discussed in
Sec. 2.3, Bandit uses a non-contextual algorithm, whereas a
contextual algorithm is more appropriate, which may explain
its under-performance. However, we also observe that with
a short time limit, i.e., 60s, Bandit achieves the lowest de-
lay and AUC in maps like random and warehouse. This
suggests that properly switching among rule-based strategies
and neighborhood sizes can accelerate MAPF-LNS.
5) RandomWalk (with its variant RandomWalkProb)
shows robust performance across diverse scenarios. The
complete results for final delays across various maps and
number of agents are provided in Sec. 8.4 in Appendix. In
the majority of cases, RandomWalk (with its variant Ran-
domWalkProb) achieves the best final delays. Even in sce-
narios where it does not rank first, its performance remains
close to the best. This observation slightly contrasts with the
findings of Li et al. (2021a), where Adaptive outperformed
RandomWalk in more than half of the cases. While the time
measurement scheme in Li et al. (2021a) is not clearly speci-
fied, under our unified evaluation framework, RandomWalk
and its variant exhibit a clear advantage over other methods.
6) Quality of the initial solution is not highly critical. In
our experiments, we study two initial solvers: LNS2 and La-
CAM2. LaCAM2 is faster but generally produces low-quality



Highest Number of Agents; Time: 300s Medium Number of Agents; Time: 300s

Methods
empty random warehouse ost003d den520d Paris empty random warehouse ost003d den520d Paris
+500 +350 +350 +600 +900 +750 +400 +250 +250 +400 +700 +550

Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC

RW 4050.5 145.4 4439.2 150.4 1041.8 41.3 6069.5 318.3 2290.1 166.7 404.7 25.4 1397.2 49.1 1504.5 50.4 433.1 15.3 761.8 48.3 934.1 80.3 203.6 9.1
INT 4205.4 143.9 4609.3 155.5 1949.2 84.6 8824.9 404.8 6776.0 347.7 1680.8 110.9 1513.7 53.7 1582.6 53.2 695.2 32.8 2048.3 100.6 3415.0 175.9 540.8 38.3
RAND 4438.9 155.5 4635.2 167.8 1515.9 66.2 8424.3 399.2 6447.9 345.6 1211.7 99.1 1703.2 59.6 1606.3 53.3 537.7 23.4 1668.8 86.3 2907.4 171.7 345.4 33.7
ADP 4093.8 140.4 4432.8 150.1 1073.0 44.1 6325.9 323.0 2611.1 187.9 396.9 33.7 1418.6 50.0 1527.5 50.6 435.6 16.2 746.1 51.0 1049.8 88.0 192.2 11.7
RWP 4051.3 143.9 4408.2 156.6 1134.9 44.7 4731.3 260.7 1387.2 130.6 375.6 21.8 1431.1 50.1 1534.4 50.9 443.8 16.4 652.3 39.3 620.2 48.3 183.8 7.4

SVM 5053.2 167.1 4800.2 175.8 1107.4 65.7 10104.8 459.1 1816.6 216.5 388.7 65.3 1588.3 64.5 1713.9 59.1 439.6 19.3 850.3 84.3 665.2 77.9 184.7 16.5
NNS 4803.2 179.7 5466.7 193.5 1871.1 77.1 5501.2 294.6 1821.4 168.1 468.2 36.6 1928.5 70.0 1683.7 57.5 749.0 31.4 679.5 41.2 814.0 68.2 217.5 12.2
Bandit 4318.5 150.8 4564.1 155.8 1047.6 38.1 6093.6 311.4 5343.4 308.8 576.9 70.6 1537.2 54.2 1507.3 49.3 414.2 14.1 1276.3 75.2 2297.3 150.2 205.3 20.7
Ori-SVM 4776.3 174.7 5105.2 186.3 1100.9 64.6 8604.1 457.2 6161.2 420.2 483.2 126.6 1640.4 63.9 1662.8 58.3 441.0 21.1 1086.3 106.5 1880.1 200.1 196.5 37.6
Ori-NNS 5305.6 186.4 6004.1 206.3 1094.5 56.1 11426.4 517.9 13367.1 624.8 2409.4 243.5 1464.8 56.8 1528.0 54.8 417.4 17.7 1483.2 109.0 4228.7 286.7 721.5 67.7

Highest Number of Agents; Time: 60s Medium Number of Agents; Time: 60s

RW 4949.4 34.9 5280.3 37.7 1331.4 14.1 13845.4 110.0 7159.6 84.2 559.5 14.5 1726.2 13.2 1744.9 12.5 472.7 4.5 1785.4 24.3 2583.3 38.4 216.2 4.1
INT 5117.5 35.9 5456.2 38.4 3346.2 26.9 16830.7 127.1 14664.4 127.0 4604.3 49.8 1900.5 14.3 1862.1 13.2 1333.8 11.7 3975.2 38.2 7100.6 68.3 1494.2 19.8
RAND 5376.6 36.2 5416.5 37.4 2420.4 23.5 16765.7 127.9 14546.4 124.7 4620.3 45.2 2105.9 15.2 1841.5 13.1 791.7 9.1 3482.2 34.5 7256.5 67.9 1485.0 18.7
ADP 4997.9 35.0 5290.9 37.2 1463.4 15.4 14271.5 108.2 8506.6 89.3 689.1 16.8 1768.8 13.3 1762.5 12.3 488.3 5.2 2013.8 25.3 3317.7 43.1 236.4 5.2
RWP 5024.8 35.5 5224.1 37.1 1455.6 14.3 11123.2 99.2 4547.5 67.6 549.0 10.7 1765.6 13.4 1761.4 12.5 534.6 5.1 1127.0 16.9 1498.7 28.9 200.6 2.9

SVM 6565.9 43.7 6543.7 46.4 3105.0 31.6 18765.4 130.6 10998.2 111.5 2267.7 50.0 2584.0 19.7 1990.0 14.8 600.5 8.0 4096.8 44.1 3562.8 46.6 243.5 11.8
NNS 6355.9 43.2 6877.1 46.4 2677.8 22.7 12267.2 102.9 6444.6 85.6 907.1 20.6 2461.4 18.1 2049.3 14.6 1018.5 9.4 1338.2 19.5 2115.6 38.8 292.2 5.8
Bandit 5473.0 38.0 5540.1 38.5 1216.4 12.0 13217.6 106.2 13552.1 115.6 3220.9 41.1 1916.4 14.3 1699.9 11.7 446.8 4.0 3127.5 31.4 6821.9 63.3 692.2 13.9
Ori-SVM 6566.5 44.6 7113.9 47.7 2971.2 30.5 20754.1 140.7 20674.6 153.4 7769.9 82.1 2416.5 18.9 2176.5 14.8 657.2 10.0 5713.4 53.8 11421.6 93.5 1628.3 29.6
Ori-NNS 6908.0 46.0 7514.5 48.9 2182.7 24.1 21677.9 144.8 26155.1 172.3 12831.9 97.3 2127.1 17.3 1973.9 14.6 531.7 7.0 5246.7 49.7 13704.0 102.6 3342.0 39.5

Table 4: Final delays and AUC across methods in maps with the highest and medium number of agents. Time limits are 300s and
60s, respectively. Initial solver is LNS2. Note: RW, INT, RAND, ADP, and RWP stand for RandomWalk, Intersection, Random,
Adaptive, and RandomWalkProb, respectively. The number of agents follows the name of a map, i.e., after “+”. Highlighted are
the results ranked the first, and second.

solutions compared to LNS2 (see Table 5 for a comparison
of their initial delays in maps with the highest number of
agents). However, running various LNS methods starting
from LaCAM2 initial solutions yields final delays similar to
those starting from LNS2 initial solutions. The discrepancies
in final delays for RandomWalkProb between LNS2 and La-
CAM2 within 300s are consistently less than 350 across all
maps. Even under a 60s limit, the discrepancies remain below
770, except for map ost003d. We also examine the final
delays when using EECBS as the initial solver. Although
EECBS provides higher-quality initial solutions than LNS2,
it fails to solve all instances within 10s. Nevertheless, the dif-
ferences in final delays for RandomWalkProb between LNS2
and EECBS within both 300s and 60s are consistently be-
low 400. These findings suggest that delays decrease rapidly
in the early stages of the LNS process. Consequently, fast

Solver
empty
+500

random
+350

warehouse
+350

ost003d
+600

den520d
+900

Paris
+750

LNS2 8724.2 9305.4 8020.1 26806.3 31463.2 20460.5
LaCAM2 13058.5 14969.3 22804.4 38632.1 51204.5 31249.1

Table 5: Delays of the initial solutions found by LNS2 and
LaCAM2 in maps with the highest number of agent.

and scalable solvers like LaCAM2 and LNS2, which can
solve most MAPF instances with many agents, should be
preferred even if their initial solutions are of lower quality
(see Tables 17 and 18 in the appendix for numerical results
on LaCAM2 and EECBS).

4.2 Outlooks on Improving MAPF-LNS
Our evaluation within the unified framework reveals that
current learning-based methods do not exhibit a clear advan-
tage over rule-based strategies in terms of time efficiency
or improvement capacity. This is primarily due to high time
overheads, inaccurate predictions, or the use of inappropriate
algorithms in these methods. Nevertheless, our comprehen-
sive analysis indicates several promising future directions for
improving MAPF-LNS.
1) Properly targeting high-delayed agents. The core idea
of RandomWalk is to optimize high-delayed agents in each
iteration. The superior performance of RandomWalk and
RandomWalkProb over others suggests that improving high-
delayed agents is an efficient empirical heuristic. Intuitively,
focusing on high-delayed agents aligns with the principles
of greedy algorithms, which are widely recognized as power-
ful tools in combinatorial optimization (Papadimitriou and
Steiglitz 1998). They provide efficient solutions to complex
problems by making locally optimal choices at each step and
strike a balance between solution quality and efficiency, espe-
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Figure 3: Delay vs. Iteration when the replan solver is PBS
or PP. The neighborhood selection strategy is RandomWalk
with a neighborhood size of 25 in all cases.

cially for NP-hard problems. Different algorithm designs of
RandomWalk and RandomWalkProb result in marginally dif-
ferent performance in experiments, other viable approaches
for targeting high-delayed agents can be explored.
2) Contextual bandit for sequential decision-making. We
observe that the supervised learning methods, e.g., SVM and
NNS, incur high time overheads. In contrast, Bandit alter-
nates among rule-based strategies in each iteration as sequen-
tial decision-making with minimal computational overhead.
This makes Bandit particularly suitable for integration into
the MAPF-LNS framework. Although Bandit employs an
inappropriate non-contextual bandit algorithm, it performs
well in two domains under a 60s time limit. This suggests
that a well learned policy for selecting the best rule-based
strategies at each time step can significantly enhance MAPF-
LNS. Therefore, exploring contextual bandit algorithms is
a promising direction. Contextual bandits can address the
theoretical limitations of non-contextual approaches by in-
corporating contextual information into decision-making, po-
tentially leading to better and robust empirical results.
3) Learning the priority order of replan agents. We ob-
serve that PBS performs better than PP on a per-iteration
basis. This is illustrated by the delay-versus-iteration curves
shown in Figure 3 for various scenarios. In random and
ostd003d, the disparity in delay elimination between PBS
and PP is huge. In warehouse, although PP initially re-
duces delays quickly, it still requires significantly more it-
erations to achieve the same final delay as PBS. The better
per-iteration performance of PBS is due to its strategy of
searching for partial priorities among replan agents. In con-
trast, PP randomly assigns full priority to agents. However,
as discussed in Sec. 3.3, PBS struggles with time efficiency
when evaluated on a runtime basis, as searching for partial
priorities is computationally expensive. This highlights an
opportunity for improvement: if a fast learning model can
predict a reasonable priority order for replan agents, it can
enhance time efficiency while improving solution quality.
4) Identifying the suitable neighborhood size. Neighbor-
hood size is a critical factor for MAPF-LNS, but is underex-
plored in previous papers. Intuitively, a smaller neighborhood
size allows for faster iterations but may limit the improve-
ment in solution quality. Conversely, a larger neighborhood
size can lead to more improvement per iteration, but at the
cost of increased computational time. Thus, there is a trade-
off between runtime efficiency and the improvement quality.
To highlight the importance of neighborhood size, we com-

empty+400 random+250 warehouse+250

ost003d+400 den520d+700 Paris+550
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Figure 4: Final Delays using the Best and Worst neighbor-
hood size within 300s. RW, INT, RAND, ADP, and RWP
stand for RandomWalk, Intersection, Random, Adaptive, and
RandomWalkProb. The blue and pink columns indicate the
highest and lowest delays. The neighborhood sizes are la-
beled at the top of each subfigure.

pare the final delays achieved by rule-based strategies using
the best and worst neighborhood sizes within a 300s time
limit, as shown in Fig. 4. Since a neighborhood size of 2 is
generally ineffective, we consider sizes from {4, 8, 16, 32}.
In most cases, using the best size reduces final delays by ap-
proximately 50% compared to the least favorable size. This
difference suggests the potential for performance gains by
learning to identify a suitable neighborhood size dynamically.

The only work that attempts to dynamically determine
neighborhood size is Bandit. However, as previously dis-
cussed, it employs a non-contextual algorithm, which is un-
suitable for this purpose. We observe that its performance
is similar to selecting neighborhood sizes uniformly at ran-
dom (we build a baseline, named Uni-Bandit, by modifying
the second arm in Bandit to randomly choose neighborhood
sizes, results in Table 9 in the appendix validate this simi-
larity). Therefore, a more sophisticated approach, such as a
contextual bandit or other advanced methods, is necessary
for effective neighborhood size selection.

5 Conclusion
In this work, we conducted a comprehensive reevaluation of
prominent MAPF-LNS methods, including recent advances
leveraging machine learning. We identified several pitfalls
in their evaluations and proposed a unified framework to
address these challenges. Our results demonstrate that cur-
rent learning-based methods fail to exhibit a clear advantage
over simple rule-based heuristics, while RandomWalk and its
variant RandomWalkProb, consistently deliver robust perfor-
mance across diverse scenarios. Furthermore, our evaluation
and extensive experiments highlight promising directions
for advancing MAPF-LNS, such as targeting high-delayed
agents, employing contextual algorithms for strategy selec-
tion, learning replanning agent orders, and dynamically iden-
tifying suitable neighborhood sizes. We believe this work will
encourage future research to adopt more rigorous experimen-
tal designs and inspire innovative approaches to enhancing
MAPF-LNS through machine learning.
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APPENDIX
6 Summary of Unified Evaluation and

RandomWalkProb
We provide a summary of the unified evaluation framework,
including details on initial solutions, replan solvers, and the
number of agents in each map. Additionally, we clarify the
missing implementation details of RandomWalkProb, a mod-
ified variant of RandomWalk.

6.1 Unified Evaluation
The initial solutions, replan solvers, and neighborhood sizes
used for different methods, and the number of agents evalu-
ated in different maps are summarized in Table 6. All methods
are evaluated on a machine equipped with an Intel E5-2683
CPU with a memory limit of 2G. Specifically, the execution
of the neural network in Neural-LNS is performed on an
NVIDIA P100 GPU.

Method Initial Solution Replan Solver Neighborhood size

RandomWalk LaCAM2, LNS2 PP {4, 8, 16, 32}
Intersection LaCAM2, LNS2 PP {4, 8, 16, 32}

Random LaCAM2, LNS2 PP {4, 8, 16, 32}
Adaptive LaCAM2, LNS2 PP {4, 8, 16, 32}

name LaCAM2, LNS2 PP {4, 8, 16, 32}
SVM LaCAM2, LNS2 PP {4, 8, 16, 32}
NNS LaCAM2, LNS2 PP {4, 8, 16, 32}

Bandit LaCAM2, LNS2 PP {2, 4, 8, 16, 32} by second arm

Ori-SVM PP, PPS, EECBS PP Uniformly select from 5 to 16
Ori-NNS PP, PPS PBS {10, 25, 50} for different maps

Ori-Bandit PP, PPS, EECBS PP {2, 4, 8, 16, 32} by second arm

Map Number of agents

empty-32-32 (empty) 300, 350, 400, 450, 500
random-32-32-20 (random) 150, 200, 250, 300, 350

warehouse-10-20-10-2-1 (warehouse) 150, 200, 250, 300, 350
ost003d 200, 300, 400, 500, 600
den520d 500, 600, 700, 800, 900

Paris 1 256 (Paris) 350, 450, 550, 650, 750

Table 6: Top: Initial solutions, replan solvers, neighborhood
sizes used for evaluating different methods. ’Ori-’ refers to
methods evaluated according to its original papers. Bottom:
number of agents evaluated in different maps.

6.2 Algorithm Design of RandomWalkProb
RandomWalkProb shares the same motivation as Ran-
domWalk, which focuses on improving the high-delayed
agents. However, the original algorithm of RandomWalk has
two potential limitations: 1) it uses a tracking set to record
previously selected high-delayed agents, preventing them
from being selected again for subsequent random walk
searches even if they still have significant delays; 2) when
the neighborhood size is not reached after a random walk
search, a random agent is chosen as the next starting agent,
which is less informative regarding the delays. Therefore, we
conduct two modifications on RandomWalk. First, we remove

the tracking set. Second, whenever to start a random walk
search, the starting agent is sampled according to a probabil-
ity proportional to its delay, i.e. Pr(ai) =

delay(pi)∑
j delay(pj)

.
Algo. 1 is the pseudo code comparing RandomWalk and

RandomWalkProb (gray lines only exist in RandomWalk, and
blue lines only exist in RandomWalkProb). RandomWalk
tracks previously selected starting agents into a tabuList
[Line 2 to Line 3], which is reset after all delayed agents
have been chosen as the starting agents [Line 4]. When the
neighborhood size is not reached after one search, a random
agent is chosen from Ã as the start agent [Line 9] to perform
another random walk search. RandomWalkProb selects
the starting agent ak by sampling according to a probability
proportional to delays [Line 1 and Line 8].

After selecting the starting agent ak, both RandomWalk
and RandomWalkProb use the same random walk()
search function [Line 7; Line 10 to Line 18] to prioritize
moving the starting agent ak towards a shorter path. The
random walk() function first randomly selects a start
state x along agent ak’s path pk [Line 11]. It then collects
possible vertices v ∈ Nx where agent ak at time step t+1 can
reach and move towards a shorter path to gk while ignoring
other agents [Line 12]. Since any path passing through vertex
v at time step t+1 must be at least t+1+d(v, gk) in length,
the condition for selecting v is t+ 1 + d(v, gk) < l(pk). As
long as Nx is not empty and collected agents are not enough
[Line 13], the agent moves to a random vertex y ∈ Nx [Line
14] and adds any agents who collide with action to Ã [Line
15] and updates the set Nx [Line 17].

7 SVM/Neural-LNS Training Details
We outline the training details for SVM-LNS and Neural-
LNS, including replicating their reported performance by
adhering to the settings specified in their original papers, and
the reevaluation under our unified settings.

7.1 SVM-LNS
Training Data for original SVM-LNS according to Huang
et al. (2022). We use the suggested number of agents
in Huang et al. (2022) to train SVM if the map ex-
ists in the original paper (i.e. 100 for warehouse, 100
for ostd003d, 200 for den520d and 250 for Paris).
For maps not evaluated in Huang et al. (2022), we
use 300 agents for empty-32-32 and 150 agents for
random-32-32-20. The neighborhood size is uniformly
selected between 5 and 16 (as denoted in Table 6). Follow-
ing the original paper, we run 16 scenes on each map and
switch between RandomWalk and Intersection with equal
probability to generated 20 neighborhood candidates. The
ground truth ranking information for these 20 candidates is
determined by the delay improvement if each neighborhood
is removed and replaced.

Training Data for SVM-LNS under our unified settings.
We use the best rule-based strategy with the best neighbor-
hood size for each map to collect training data. The maps
contain a medium number of agents. The used strategy with
the neighborhood size for collecting training data are the



Algorithm 1: RandomWalk / RandomWalkProb
Input: Graph G = (V,E), agents A = {a1, ..., an},

neighborhood size M , paths P = {p1, ..., pn},
tabuList from previous LNS iteration,
number of delayed agents Ndelay

1 ak ∼ Pr(ak) =
delay(pk)∑
i delay(pi)

2 ak ← argmaxai∈A\ tabuList {delay (pi)}
3 tabuList← tabuList ∪{ak}
4 if |tabuList| = Ndelay then tabuList← ∅
5 Ã← {ak}
6 while |Ã| < M do
7 Ã← random walk(G, ak, P, Ã,M )
8 ak ∼ Pr(ak) =

delay(pk)∑
i delay(pi)

9 ak ← random agent in Ã

10 Function random walk(G, ak, P, Ã,M):
11 (x, t)← (pk[t], t), where t is a random timestep

of pk
12 Nx ← {v ∈ V |(x, v) ∈

E ∪ {(x, x)} ∧ t+ 1 + d(v, gk) < l(pk)}
13 while |Nx| > 0 ∧ |Ã| < M do
14 y ← a random vertex in Nx

15 Ã← Ã ∪ { agents collide with action
’moving to y’ }

16 (x, t)← (y, t+ 1)
17 Nx ← {v ∈ V |(x, v) ∈

E ∪ {(x, x)} ∧ t+ 1 + d(v, gk) < l(pk)}
18 return Ã

same as training Neural-LNS under our unified setting, e.g.,
see the first three columns of the bottom part of Table 7.

Validation Data. We run SVM-LNS on 4 additional scenes
for each map with 100 iterations to collect validation data.
In each iteration, the best neighborhood is selected as the
ground truth.

Training. SVM-LNS trains its SVM model dynamically
during execution. The implementation of SVM is using
SVMrank3, which is suggested by original authors. The
model is updated immediately after collecting new data and
is then used to gather additional data in the next iteration.
Training is conducted on 16 scenes per map, resulting in
16 new data points collected per LNS iteration. The model
undergoes training for 100 iterations, with the best model
selected based on its average rank on the validation set.

7.2 Neural-LNS
Training Data for original Neural-LNS according to Yan
and Wu (2024). We used the number of agents, rule-based
strategies and neighborhood size suggested by the authors to
collect data for the training set, which are summarized in the
top of Table 7. We run 25 to 50 iterations to collect data for
each map until there is no further decrease in delays.

3https://www.cs.cornell.edu/people/tj/svm light/svm rank.html

Ori-NNS Training Data Collection

Map Strategy NB Iteration Scene Data Amount

empty Random 50 50 5000 250000
random RandomWalk 25 50 5000 250000

warehouse RandomWalk 25 25 5000 125000
ost003d RandomWalk 10 25 1000 25000
den520d RandomWalk 25 50 5000 250000

Paris RandomWalk 25 50 4000 200000

NNS Training Data Collection

Map Strategy NB Iteration Scenes Data Amount

empty Adaptive 8 1400 300 420000
random RandomWalk 8 1000 100 100000

warehouse Adaptive 32 200 200 40000
ost003d RandomWalkProb 16 400 250 100000
den520d RandomWalkProb 16 500 200 100000

Paris RandomWalkProb 32 200 350 70000

Table 7: Top: Training Data Collection Strategy of Ori-NNS.
Bottom: Training Data Collection Strategy of NNS trained
under our unified setting. ‘NB’ is the neighborhood size.

In each iteration, 100 neighborhood candidates are pro-
posed using the suggested rule-based strategy and neighbor-
hood size. The ground truth ranking of these 100 neighbor-
hood candidates is determined by the delay improvement.

Training Data for Neural-LNS under our unified settings.
We use the best rule-based strategy with the best neighbor-
hood size for each map to collect training data. The maps
contain a medium number of agents. The replan solver is
PP, which requires more iterations than PBS to converge. As
a result, we use fewer scenes per map to gather a compara-
ble amount of data. The exact number of iterations, scenes,
neighborhood sizes, and removal strategies for each map are
detailed in the bottom part of Table 7.

Validation Data. We run additional 25 scenes to gather
validation data for original NNS. We run additional 4 scenes
to collect validation data for NNS under our unified setting.
Similar to collecting training data, we use fewer scenes than
original NNS because we use PP as the replan solver, al-
lowing more iterations to generate more data from a single
scene.

Training. For each map, the model is trained on the cor-
responding training set. We stop the training when the loss
converges and the average ranking on the validation set no
longer improves for another 1, 000 steps. We calculate the
average rank on the validation set to select the best model
checkpoint for inference. Here, ’average ranking’ means the
mean ranking of the best neighborhood predicted by the
model appearing in the ground truth ranking over the valida-
tion dataset.

Hyperparameters. We search for the optimal learning
rate within {0.1, 0.01, 0.001, 0.0001, 0.00001} and choose
0.00001. This is smaller than the 0.0001 learning rate used in
the original paper. We find that a smaller learning rate results



in a more stable reduction in loss on our training data. We use
a batch size of 16 and train the model for 10, 000 to 100, 000
steps until the loss and validation score no longer improve
for an additional 1, 000 steps. The entire training process is
completed in less than 24 hours.

Testing. We use an NVIDIA P100 GPU for neural net-
work inference. The average GPU inference overhead of is
summarized in Table 8.

Map N Overhead (s) Map N Overhead (s) Map N Overhead (s)

em
pt

y

300 0.016

ra
nd

om

150 0.014

w
ar

eh
ou

se

150 0.042
350 0.017 200 0.015 200 0.043
400 0.019 250 0.021 250 0.043
450 0.022 300 0.024 300 0.044
500 0.028 350 0.026 350 0.044

os
t0

03
d

200 0.020

de
n5

20
d

500 0.033

Pa
ri

s

350 0.038
300 0.020 600 0.041 450 0.038
400 0.024 700 0.041 550 0.038
500 0.024 800 0.055 650 0.040
600 0.027 900 0.045 750 0.042

Table 8: Average Overhead of NNS inference on GPU.

8 Additional Results
8.1 Uni-Bandit vs. Bandit
The comparison between our baseline, Uni-Bandit (which
modifies the second arm in Bandit to randomly select neigh-
borhood sizes), and the original Bandit is summarized in
Table 9. The results validate that the performance of Bandit’s
second arm is similar to choose neighborhood sizes uniformly
at random.

n
Delay AUC

n
Delay AUC

Bandit Uni-B Bandit Uni-B Bandit Uni-B Bandit Uni-B

em
pt

y

300 386.3 391.7 13.3 13.6

ra
nd

om

150 330.1 330.5 10.3 10.3
350 811.5 812.4 28.5 28.5 200 779.1 778.7 24.9 24.8
400 1537.2 1547.1 54.2 54.7 250 1507.3 1525.7 49.3 49.7
450 2753.7 2761.2 96.5 96.0 300 2746.0 2760.5 92.0 92.0
500 4318.5 4302.1 150.8 149.5 350 4564.1 4565.1 155.9 155.1

w
ar

eh
ou

se

150 107.9 111.8 3.6 3.7

os
t0

03
d

200 158.2 163.8 8.3 8.3
200 239.4 234.3 8.0 7.9 300 532.8 484.3 33.4 31.2
250 414.2 414.0 14.2 14.5 400 1276.3 1327.3 75.2 75.0
300 669.5 677.2 23.8 24.1 500 3059.8 2873.5 163.6 155.8
350 1047.7 1042.6 38.2 39.1 600 6093.7 6430.8 311.4 321.9

de
n5

20
d

500 607.8 593.6 47.8 47.3

Pa
ri

s

350 71.9 74.0 4.6 5.0
600 1247.0 1234.2 89.2 87.9 450 130.8 120.8 11.0 10.1
700 2297.4 2195.9 150.2 144.2 550 205.3 212.5 20.7 21.4
800 3330.3 3607.8 209.4 221.5 650 307.5 303.0 37.0 36.9
900 5343.5 5421.0 308.9 310.6 750 577.0 523.6 70.6 66.2

Table 9: Final delay of Bandit and Uni-Bandit. Time
limit is 300s. Note: ‘Uni-B’ represents the baseline Uni-
Bandit, which uniformly selects a neighborhood size from
2, 4, 8, 16, 32 at random.

8.2 Generalization of SVM-LNS and NNS-LNS
Collecting training data and retraining SVM-LNS and NNS-
LNS for every agent number is costly and impractical. A
key strength of supervised learning models is their ability
to generalize. We evaluate this by varying one factor at a
time—agent number, removal strategy, neighborhood size,
or initial solution—while keeping the others fixed. Table 10
compares the final delays and AUC of generalized and un-
generalized models across these variations, showing compa-
rable performance and validating the generalization ability
of both models.

8.3 PP vs. PBS
PBS is claimed to be superior over PP in some cases by Yan
and Wu (2024) (e.g., see Table 1 of (Yan and Wu 2024)). We
investigate the efficiency of these two replan solvers in all 30
evaluation cases, i.e., 6 maps with 5 different agent amounts,
along with two initial solvers. We fix the neighborhood se-
lection heuristic as RandomWalk and the neighborhood size
as 25, which are suggested by Yan and Wu (2024) in most
cases. We report the total iterations, final delays, and AUC of
the delay-versus-time curves with time limits 60s and 300s
in Table 11 and Table 12. The results where PBS is better
than PP is highlighted in red. For final delays, PP is better
than PBS in 72.5% (87/120) cases. For AUC, PP is better
than PBS in 81.7% (98 / 120) cases. Even though PBS is
better than PP in random map, the final delays and AUC are
relatively close. In general, PP runs significantly faster than
PBS and thus can explore a substantially larger number of
neighborhoods within the time limit.

8.4 Full Results
The complete results are shown in Table 13 (time limit: 300s,
initial solver: LNS2), Table 14 (time limit: 60s, initial solver:
LNS2), Table 15 (time limit: 300s, initial solver: LaCAM2),
and Table 16 (time limit: 60s, initial solver: LaCAM2).

8.5 Different Initial Solvers
The comparison of LNS2 and LaCAM2 initial delays in maps
with the highest number of agents is provided in Table 5.

The final delays when initial solver is LaCAM2 in maps
with medium and highest number of agents are shown in
Table 17. The final delays when initial solver is EECBS in
maps with a medium number of agents are shown in Table 18.



Neighborhood Size Generalization Selection Strategy Generalization

NB SVM NNS Removal Strategy SVM NNS

Map Train Test Delay AUC Delay AUC Map Train Test Delay AUC Delay AUC

random 8
16

1688.2 61.3 1829.5 61.9 random RW
ADP

1576.1 56.6 1752.7 58.3
+250 16 1700.6 60.7 1912.3 64.8 +250 ADP 1566.2 55.3 1735.0 58.0

den520d 16
8

837.6 97.8 1485.7 76.8 den520d RWP
ADP

1793.0 168.3 2759.8 126.9
+700 8 861.5 98.5 1150.0 62.4 +700 ADP 1662.9 164.3 1964.9 93.2

Number of Agents Generalization Initial Solver Generalization

Agent Num SVM NNS Initial Solution SVM NNS

Map Train Test Delay AUC Delay AUC Map Train Test Delay AUC Delay AUC

random
250

350
4800.2 175.8 5466.7 193.5 random LNS2

LaCAM2
1521.2 60.1 1747.1 63.6

350 4806.8 177.7 5513.1 188.9 +250 LaCAM2 1517.5 61.4 1811.4 65.7

random
250

250
1713.9 59.1 1683.7 57.5 random LNS2

EECBS
1443.6 50.0 1604.9 53.9

350 1578.6 56.3 1738.5 60.4 +250 EECBS 1452.2 51.4 1591.6 53.7

den520d
700

900
1816.6 216.5 1821.4 168.1 den520d LNS2

LaCAM2
660.7 138.1 816.6 85.9

900 4171.4 329.7 1426.5 87.6 +700 LaCAM2 710.9 128.0 771.5 79.1

den520d
900

700
931.5 134.9 793.6 67.3 Paris LNS2

EECBS
113.4 3.6 125.2 4.1

700 665.2 77.9 814.0 68.2 +450 EECBS 115.7 3.6 131.9 4.2

Table 10: Generalization results on four key parameters of SVM and NNS. The time limit is 300s. Note: ‘NB’ is the neighborhood
size. RW, ADP, and RWP stand for RandomWalk, Adaptive, and RandomWalkProb. Every two rows in a block represent a set of
generalization experiments on one map.



Run Time Limit: 60s

In n
Iter (x1k) Final delays AUC (x10k)

In n
Iter (x1k) Final delays AUC (x10k)

PP PBS PP PBS PP PBS PP PBS PP PBS PP PBS

em
pt

y

L
aC

A
M

2

300 8.21 0.48 439.6 424.5 3.9 6.07

ra
nd

om
L

aC
A

M
2

150 6.21 0.58 352.1 343.1 2.5 3.6
350 4.13 0.22 1,127.6 1,286.8 9.4 14.2 200 3.01 0.20 952.5 874.9 7.3 7.6
400 2.24 0.12 2,663.1 2,982.4 20.2 27.1 250 2.22 0.07 2,449.5 2,443.6 18.6 21.7
450 2.15 0.11 5,110.7 5,211.0 36.9 41.4 300 2.03 0.04 5,318.2 5,693.2 39.6 44.9
500 2.40 0.08 8,400.6 8,815.3 59.2 64.5 350 2.61 0.00 14,729.1 14,630.2 82.4 83.7

L
N

S2

300 8.98 0.44 431.7 436.9 3.5 4.8

L
N

S2

150 7.39 0.63 350.1 346.9 2.3 2.8
350 4.22 0.25 1,109.8 1,081.8 8.7 9.8 200 2.88 0.19 959.6 875.5 6.8 6.5
400 2.28 0.15 2,570.1 2,238.2 18.7 17.5 250 1.99 0.05 2,423.8 2,301.4 16.7 16.2
450 1.83 0.09 4,873.5 4,293.6 32.7 29.9 300 1.47 0.03 5,309.6 4,533.1 33.7 30.4
500 1.51 0.05 7,817.6 6,874.2 49.3 45.2 350 1.57 0.02 8,966.9 8,076.5 54.7 51.2

w
ar

eh
ou

se L
aC

A
M

2

150 6.41 0.60 116.8 133.1 1.4 6.6

os
t0

03
d L

aC
A

M
2

200 1.73 0.09 198.5 1,074.5 3.7 12.4
200 2.94 0.25 259.8 319.3 7.3 7.6 300 0.93 0.07 988.8 3,117.1 13.9 35.6
250 1.74 0.13 486.7 941.4 18.6 21.7 400 0.57 0.03 3,285.9 9,320.1 37.3 81.6
300 1.06 0.07 845.2 2,987.7 39.6 44.9 500 0.19 0.01 12,164.9 21,539.9 98.6 145.5
350 0.65 0.03 1,625.8 7,963.7 82.4 83.7 600 0.13 0.01 27,290.3 35,498.7 188.7 221.2

L
N

S2

150 6.59 0.57 122.1 128.3 2.3 2.8

L
N

S2

200 1.75 0.06 183.9 897.6 2.8 9.5
200 2.65 0.27 266.8 310.2 6.8 6.5 300 0.92 0.02 915.5 4,630.9 12.3 35.2
250 1.83 0.15 477.6 760.3 16.7 16.2 400 0.52 0.03 3,230.7 8,032.7 32.4 62.3
300 1.15 0.09 832.7 1,740.3 33.7 30.4 500 0.21 0.01 9,335.3 16,709.3 72.3 107.8
350 0.73 0.06 1,495.0 3,237.5 54.7 51.2 600 0.15 0.01 17,998.3 24,525.7 125.2 152.2

de
n5

20
d L

aC
A

M
2

500 1.44 0.04 871.6 8,082.4 18.5 77.1

Pa
ri

s
L

aC
A

M
2

350 7.48 0.16 99.8 817.8 1.8 18.5
600 1.07 0.02 2,266.5 17,753.3 35.3 129.3 450 6.69 0.10 134.3 3,032.1 6.2 79.9
700 0.86 0.02 4,396.1 24,979.7 57.9 175.6 550 5.37 0.05 213.7 8,664.9 10.6 119.2
800 0.53 0.01 9,205.8 35,921.6 96.9 234.4 650 4.58 0.03 298.0 15,771.8 18.5 165.3
900 0.49 0.01 12,900.4 45,686.7 124.4 291.1 750 3.57 0.02 483.6 24,171.6 18.5 165.3

L
N

S2

500 1.28 0.05 899.6 6,195.8 15.9 52.9

L
N

S2

350 5.98 0.17 82.2 383.7 1.0 8.4
600 1.72 0.06 1,321.3 8,485.5 29.8 79.2 450 6.44 0.11 138.7 2,274.2 1.8 22.8
700 0.78 0.02 4,436.5 16,642.9 49.1 111.9 550 4.72 0.06 219.3 4,878.6 4.1 46.0
800 0.61 0.02 7,342.8 21,909.0 73.2 142.2 650 4.49 0.04 317.1 9,304.6 4.6 14.7
900 0.44 0.01 13,032.0 29,352.2 105.6 181.4 750 3.07 0.03 614.9 14,707.1 14.8 104.5

Table 11: Total iterations, final delays, and AUC in different evaluation cases within a time limit of 60s, using PP and PBS as
replan solvers. The neighborhood selection strategy is RandomWalk with a neighborhood size of 25. ’In’ refers to the algorithm
used for finding initial solutions. For both final delays and AUC, lower values are better. The settings where PBS performs better
are highlighted in red, for all other settings, PP is superior.



Run Time Limit: 300s

In n
Iter (x10k) Final delays AUC (x10k)

In n
Iter (x10k) Final delays AUC (x10k)

PP PBS PP PBS PP PBS PP PBS PP PBS PP PBS

em
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y

L
aC

A
M

2

300 4.29 0.21 367.9 332.3 13.3 14.6

ra
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om
L

aC
A

M
2

150 3.11 0.24 329.5 321.4 10.6 11.4
350 2.07 0.12 840.3 692.6 31.7 33.9 200 1.58 0.10 789.8 723.6 27.3 25.8
400 1.09 0.06 1971.6 1544.3 73.2 75.0 250 1.24 0.03 1857.1 1618.0 67.8 66.5
450 1.07 0.04 3899.8 3259.0 140.4 135.0 300 1.21 0.02 4102.7 3603.0 147.9 145.2
500 1.28 0.03 6615.2 6092.5 232.3 231.8 350 1.06 0.01 8553.1 7610.3 315.3 310.0

L
N

S2

300 4.64 0.19 364.0 339.0 12.6 13.5

L
N

S2

150 3.78 0.23 333.9 328.9 10.5 10.8
350 2.09 0.12 853.1 695.7 31.2 28.8 200 1.53 0.10 812.8 741.7 27.4 25.2
400 1.10 0.07 1920.6 1400.2 70.0 57.5 250 1.21 0.03 1841.2 1651.3 65.4 61.2
450 1.00 0.04 3749.9 3010.3 132.3 112.7 300 0.95 0.01 4253.8 3527.6 146.1 123.1
500 0.98 0.02 6447.5 5352.5 216.7 186.7 350 0.87 0.01 8225.2 6477.2 260.5 221.7

w
ar
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ou

se L
aC

A
M

2

150 3.01 0.19 113.4 127.0 4.1 9.7

os
t0

03
d L

aC
A

M
2

200 0.87 0.04 154.0 278.8 7.6 24.6
200 1.48 0.12 247.9 262.5 9.4 16.1 300 0.50 0.03 382.0 1160.6 26.8 82.8
250 0.93 0.08 435.5 445.9 18.2 38.0 400 0.37 0.02 1009.4 4071.9 76.5 207.7
300 0.55 0.05 678.7 741.9 31.9 74.8 500 0.13 0.01 4618.9 9758.7 275.9 483.5
350 0.35 0.03 1082.9 1471.1 61.1 154.8 600 0.07 0.00 15629.5 26768.7 691.4 960.1

L
N

S2

150 2.11 0.19 117.9 123.9 3.7 6.4

L
N

S2

200 0.50 0.02 152.4 273.4 6.7 19.8
200 0.98 0.11 247.5 261.3 8.3 11.1 300 0.40 0.01 384.2 1976.4 24.4 106.5
250 0.70 0.07 431.7 462.3 15.3 21.9 400 0.31 0.01 1047.9 4422.1 72.2 192.3
300 0.55 0.05 694.7 757.5 26.4 41.5 500 0.15 0.01 3671.8 10219.3 204.6 417.5
350 0.36 0.03 1042.3 1365.1 43.4 75.2 600 0.08 0.00 11334.0 19107.2 465.1 668.7

de
n5
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d L

aC
A

M
2

500 7.41 0.24 313.6 2545.8 28.7 174.8

Pa
ri

s
L

aC
A

M
2

350 35.13 0.70 99.3 98.3 4.2 22.9
600 5.34 0.14 612.7 5572.8 59.3 355.1 450 31.77 0.48 130.4 273.6 6.3 65.3
700 4.52 0.12 1110.3 8460.1 104.3 525.7 550 25.61 0.33 204.0 1520.5 11.2 168.1
800 2.79 0.08 2410.8 16784.3 198.8 832.8 650 22.87 0.21 267.5 4650.5 17.2 302.8
900 2.75 0.06 3648.2 27560.2 274.3 1148.4 750 16.96 0.15 366.1 8294.7 27.7 506.1

L
N

S2

500 6.64 0.24 296.6 2551.8 26.0 146.3

L
N

S2

350 20.20 0.71 80.4 100.9 3.0 11.6
600 5.23 0.16 583.8 5301.9 52.5 241.9 450 24.70 0.50 136.5 216.7 5.2 38.6
700 4.07 0.12 1196.9 8145.6 97.4 384.8 550 12.81 0.33 205.3 1159.8 9.1 107.8
800 3.27 0.11 2076.0 12242.9 159.8 535.8 650 20.25 0.23 280.0 3658.0 14.1 203.4
900 2.33 0.03 3979.5 23163.4 262.4 807.2 750 9.60 0.17 414.2 6561.7 25.5 323.9

Table 12: Total iterations, final delays, and AUC in different evaluation cases within a time limit of 300s, using PP and PBS as
replan solvers. The neighborhood selection strategy is RandomWalk with a neighborhood size of 25. ’In’ refers to the algorithm
used for finding initial solutions. For both final delays and AUC, lower values are better. The settings where PBS performs better
are highlighted in red, for all other settings, PP is superior.



m
ap n

RW INTC RAND ADP RWP SVM NNS Bandit Ori-SVM Ori-NNS

Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC

em
pt

y

300 358.0 12.2 406.4 13.8 435.1 15.2 369.0 12.6 369.9 12.6 381.5 15.4 724.6 26.9 386.3 13.3 395.6 18.2 325.9 12.9
350 750.9 25.6 814.6 28.6 922.4 31.5 770.1 26.5 769.0 27.7 800.7 32.9 1209.9 42.9 811.5 28.5 807.7 32.8 734.3 28.9
400 1397.2 49.1 1513.7 53.7 1703.2 59.6 1418.6 50.0 1431.1 50.1 1588.3 64.5 1928.5 70.0 1537.2 54.2 1640.4 63.9 1464.8 56.8
450 2551.0 90.5 2695.0 95.4 2908.1 101.8 2577.6 90.7 2585.3 91.1 2766.0 105.0 3136.3 112.2 2753.7 96.5 2936.5 109.9 2876.6 107.5
500 4050.5 145.4 4205.4 143.9 4438.9 155.5 4093.8 140.4 4051.3 143.9 5053.2 167.1 4803.2 179.7 4318.5 150.8 4776.3 174.7 5305.6 186.4

ra
nd

om

150 332.6 10.5 352.6 11.4 357.2 11.3 330.1 10.4 337.4 10.8 331.4 10.6 360.5 11.9 330.1 10.3 338.8 11.0 323.3 10.4
200 762.0 25.4 811.2 26.2 831.1 27.0 771.3 25.6 784.4 25.4 786.5 27.3 900.2 30.4 779.1 24.9 790.8 26.3 728.5 24.2
250 1504.5 50.4 1582.6 53.2 1606.3 53.3 1527.5 50.6 1534.4 50.9 1713.9 59.1 1683.7 57.5 1507.3 49.3 1662.8 58.3 1528.0 54.8
300 2687.7 93.8 2839.7 98.6 2885.9 100.1 2737.2 93.9 2777.2 94.6 2885.9 104.9 3045.2 108.4 2746.0 92.0 3005.0 107.0 3207.8 115.5
350 4439.2 150.4 4609.3 155.5 4635.2 167.8 4432.8 150.1 4408.2 156.6 4800.2 175.8 5466.7 193.5 4564.1 155.8 5105.2 186.3 6004.1 206.3

w
ar

eh
ou

se

150 117.2 3.7 123.5 7.0 122.6 4.8 109.0 3.6 113.0 3.6 114.1 4.6 244.7 8.9 107.9 3.6 112.7 4.0 164.7 5.5
200 244.2 8.1 317.7 15.6 286.6 12.2 242.8 8.4 252.1 8.7 245.3 9.7 469.6 17.7 239.4 8.0 252.6 9.8 269.1 10.5
250 433.1 15.3 695.2 32.8 537.7 23.4 435.6 16.2 443.8 16.4 439.6 19.3 749.0 31.4 414.2 14.1 441.0 21.1 417.4 17.7
300 663.9 25.6 1161.5 53.7 950.3 42.0 683.7 29.1 729.3 27.9 681.3 34.3 1501.2 57.3 669.5 23.8 703.2 36.8 664.8 31.1
350 1041.8 41.3 1949.2 84.6 1515.9 66.2 1073.0 44.1 1134.9 44.7 1107.4 65.7 1871.1 77.1 1047.6 38.1 1100.9 64.6 1094.5 56.1

os
t0

03
d

200 150.8 6.8 290.7 14.4 194.0 9.9 149.2 6.3 147.6 5.5 148.6 6.6 165.0 6.6 158.2 8.3 155.0 9.9 245.4 12.0
300 327.3 19.9 929.5 45.6 632.0 36.5 337.6 21.3 298.0 13.9 315.4 23.9 338.4 15.8 532.8 33.4 338.2 34.3 582.6 39.2
400 761.8 48.3 2048.3 100.6 1668.8 86.3 746.1 51.0 652.3 39.3 850.3 84.3 679.5 41.2 1276.3 75.2 1086.3 106.5 1483.2 109.0
500 2051.4 142.9 4460.2 223.1 3611.6 193.7 2094.8 141.0 1515.2 103.4 2928.2 217.0 2012.2 121.8 3059.8 163.6 3092.7 223.4 4673.8 270.5
600 6069.5 318.3 8824.9 404.8 8424.3 399.2 6325.9 323.0 4731.3 260.7 10104.8 459.1 5501.2 294.6 6093.6 311.4 8604.1 457.2 11426.4 517.9

de
n5

20
d

500 293.5 22.8 1414.3 72.4 906.1 57.9 306.2 26.1 248.5 14.1 252.5 28.0 313.5 20.4 607.8 47.8 394.3 60.7 732.3 87.8
600 536.9 44.4 2293.2 116.0 1656.1 101.5 583.1 50.2 396.7 26.5 389.0 46.3 496.1 37.0 1247.0 89.2 972.6 117.2 1786.5 173.4
700 934.1 80.3 3415.0 175.9 2907.4 171.7 1049.8 88.0 620.2 48.3 665.2 77.9 814.0 68.2 2297.3 150.2 1880.1 200.1 4228.7 286.7
800 1476.1 123.0 4535.4 234.8 4639.0 258.2 1685.4 131.9 883.2 75.4 1003.4 142.8 1102.0 99.7 3330.2 209.4 3876.9 312.9 7766.6 431.3
900 2290.1 166.7 6776.0 347.7 6447.9 345.6 2611.1 187.9 1387.2 130.6 1816.6 216.5 1821.4 168.1 5343.4 308.8 6161.2 420.2 13367.1 624.8

Pa
ri

s

350 80.0 2.9 121.5 9.4 83.8 6.5 75.5 3.3 76.4 2.7 71.9 6.3 78.6 10.7 1066.5 4.6 81.7 7.4 193.5 38.9
450 127.4 4.9 273.6 22.2 172.7 17.2 124.9 6.6 118.8 4.5 120.7 12.2 142.6 7.1 737.1 11.0 123.2 20.3 130.8 42.9
550 203.6 9.1 540.8 38.3 345.4 33.7 192.2 11.7 183.8 7.4 184.7 16.5 217.5 12.2 205.3 20.7 196.5 37.6 721.5 67.7
650 278.1 14.0 963.6 66.7 650.2 57.1 270.2 17.7 257.1 12.2 262.0 35.7 313.1 18.7 1022.0 37.0 286.8 78.2 307.5 128.7
750 404.7 25.4 1680.8 110.9 1211.7 99.1 396.9 33.7 375.6 21.8 388.7 65.3 468.2 36.6 576.9 70.6 483.2 126.6 2409.4 243.5

Table 13: Final delays and AUC (divided by 10k) of different methods with best neighborhood size, evaluated on maps with
differing numbers of agents within 300s. Initial solver is LNS2. Highlighted are the results ranked first, and second.



m
ap n

RW INTC RAND ADP RWP SVM NNS Bandit Ori-SVM Ori-NNS

Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC

em
pt

y

300 409.2 3.0 463.1 3.5 522.2 4.0 416.6 3.1 424.7 3.1 497.3 5.6 972.6 7.4 456.7 3.5 584.5 7.6 432.3 4.4
350 885.6 6.6 989.7 7.6 1083.0 8.2 911.8 6.9 913.5 6.9 1287.2 11.0 1540.9 11.3 994.7 7.7 1163.0 10.9 1031.4 9.2
400 1726.2 13.2 1900.5 14.3 2105.9 15.2 1768.8 13.3 1765.6 13.4 2584.0 19.7 2461.5 18.2 1916.4 14.3 2416.5 18.9 2127.1 17.3
450 3198.8 22.9 3359.8 23.9 3640.0 24.9 3248.1 23.1 3226.7 23.2 4094.3 28.4 4170.4 29.0 3455.3 24.8 4148.1 29.6 4095.3 29.4
500 4949.4 34.9 5117.5 35.9 5376.6 36.2 4997.9 35.0 5024.8 35.5 6565.9 43.7 6355.9 43.2 5473.0 38.0 6566.5 44.6 6908.0 46.0

ra
nd

om

150 354.8 2.4 374.0 2.5 379.4 2.5 349.6 2.3 354.9 2.3 355.8 2.5 408.2 2.9 345.1 2.2 361.1 2.6 349.8 2.5
200 846.4 5.8 897.1 6.2 927.2 6.4 850.0 5.8 868.6 5.9 963.7 7.3 1065.9 7.6 845.1 5.6 894.1 6.5 830.1 6.1
250 1744.9 12.5 1862.1 13.2 1841.5 13.1 1762.5 12.3 1761.4 12.5 1990.0 14.8 2049.4 14.6 1699.9 11.7 2176.5 14.8 1973.9 14.6
300 3152.5 22.3 3307.9 23.0 3351.4 22.9 3216.7 22.3 3235.6 22.6 4001.1 28.1 3978.8 27.9 3216.5 22.6 4043.2 27.5 4298.4 29.4
350 5280.3 37.7 5456.2 38.4 5416.5 37.4 5290.9 37.1 5224.1 37.1 6543.7 46.4 6877.1 46.4 5540.1 38.5 7113.9 47.7 7514.5 48.9

w
ar

eh
ou

se

150 121.9 0.9 239.7 2.7 139.4 1.4 115.9 0.9 118.7 0.9 119.0 1.8 323.3 2.7 118.2 0.9 126.5 1.2 178.4 1.5
200 258.5 2.1 620.8 6.0 375.2 4.0 265.2 2.4 285.1 2.4 275.5 3.7 638.8 5.5 256.8 2.1 290.9 3.5 316.2 3.8
250 472.7 4.5 1333.8 11.7 791.7 9.1 488.3 5.2 534.6 5.1 600.5 8.0 1018.6 9.4 446.8 4.0 657.2 10.0 531.7 7.0
300 772.8 8.2 2188.3 18.4 1510.1 15.5 839.2 8.8 888.6 8.3 1252.4 16.1 2149.1 18.0 758.0 7.1 1265.9 18.2 1024.5 13.4
350 1331.4 14.1 3346.2 26.9 2420.4 23.5 1463.4 15.4 1455.6 14.3 3105.0 31.6 2677.8 22.7 1216.4 12.0 2971.2 30.5 2182.7 24.1

os
t0

03
d

200 170.3 2.6 522.0 5.6 331.6 4.4 176.1 2.5 161.4 1.5 200.4 2.8 205.6 2.4 274.0 4.0 221.0 5.9 359.7 5.4
300 517.9 8.3 1761.0 17.5 1397.5 15.6 636.3 9.3 386.5 5.4 871.3 13.8 443.0 7.0 1309.4 15.3 1543.0 20.6 1520.9 20.2
400 1785.4 24.3 3975.2 38.2 3482.2 34.5 2013.8 25.3 1127.0 16.9 4096.8 44.1 1338.2 19.5 3127.5 31.4 5713.4 53.8 5246.7 49.7
500 5433.1 55.8 8847.5 75.9 8225.8 73.5 6074.1 58.4 4083.8 45.4 10580.2 82.1 5033.3 53.8 6941.8 62.2 10876.4 90.5 12373.4 94.0
600 13845.4 110.0 16830.7 127.1 16765.7 127.9 14271.6 108.2 11123.2 99.2 18765.4 130.6 12267.2 102.9 13217.6 106.2 20754.1 140.7 21677.9 144.8

de
n5

20
d

500 578.3 11.2 2824.2 28.6 2318.1 26.3 740.0 13.1 335.4 7.7 760.6 20.5 536.7 11.6 1947.7 24.2 3239.3 38.5 4594.9 46.3
600 1330.7 22.5 4479.9 45.2 4246.6 44.2 1683.4 25.9 675.0 15.5 1324.7 33.8 1101.3 22.2 3808.8 41.3 6340.4 63.2 9197.9 74.7
700 2583.3 38.4 7100.6 68.3 7256.5 67.9 3317.7 43.1 1498.7 28.9 3562.8 46.6 2115.6 36.8 6821.9 63.3 11421.6 93.5 13704.0 102.6
800 4658.6 60.1 9677.4 90.0 11136.0 97.0 5919.9 66.9 2665.5 45.7 7819.7 83.1 3867.7 58.7 9650.5 85.3 16086.6 125.6 19454.3 136.2
900 7159.6 84.2 14664.4 127.0 14546.4 124.7 8506.7 89.4 4547.5 67.6 10998.2 111.5 6444.6 85.6 13552.1 115.6 20674.6 153.4 26155.1 172.3

Pa
ri

s

350 82.3 0.9 332.1 5.1 176.4 4.0 81.2 1.5 79.6 0.9 95.5 4.3 305.5 5.2 82.5 2.9 84.1 5.4 1232.7 12.2
450 133.8 1.8 857.4 12.0 680.5 10.1 129.7 2.7 124.7 1.6 166.9 9.2 186.9 3.4 253.2 7.4 436.5 17.0 1425.0 21.6
550 216.2 4.1 1494.2 19.8 1485.0 18.7 236.4 5.2 200.6 2.9 243.5 11.8 292.3 5.8 692.2 13.9 1628.3 29.6 3342.0 39.5
650 302.1 7.1 2671.8 32.3 2501.0 28.9 356.3 9.0 291.2 5.2 1081.9 27.6 447.8 10.4 1508.9 23.8 3940.2 59.4 7253.6 65.1
750 559.5 14.5 4604.3 49.8 4620.3 45.2 689.1 16.8 549.0 10.7 2267.7 50.0 907.1 20.6 3220.9 41.1 7769.9 82.1 12831.9 97.3

Table 14: Final delays and AUC (divided by 10k) of different methods with best neighborhood size, evaluated on maps with
differing numbers of agents within 60s. Initial solver is LNS2. Highlighted are the results ranked first, and second.



m
ap n

RW INTC RAND ADP RWP SVM NNS Bandit Ori-SVM Ori-NNS

Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC

em
pt

y

300 350.5 12.3 402.1 14.0 441.9 15.8 369.0 13.0 368.1 13.0 374.8 16.4 790.5 30.7 389.3 13.9 397.0 25.0 371.0 18.9
350 740.3 25.9 824.2 29.1 930.2 32.8 758.3 27.0 759.4 27.0 823.0 40.5 1296.4 48.7 844.4 30.2 880.2 52.6 826.4 40.4
400 1447.9 52.9 1593.4 58.3 1756.2 61.4 1476.5 53.1 1484.4 53.9 1692.4 83.4 2094.8 81.6 1579.0 57.6 1857.5 97.6 1614.3 74.4
450 2638.0 96.2 2779.5 100.9 3040.7 108.2 2684.1 97.2 2681.5 98.4 3020.0 140.3 3598.3 138.1 2828.1 103.1 3506.0 166.1 3318.3 143.9
500 4237.7 155.7 4448.5 162.9 4828.2 171.8 4374.5 156.5 4335.7 159.8 5194.9 223.5 5808.0 221.1 4772.6 173.8 5793.6 244.0 6085.3 242.9

ra
nd

om

150 327.4 10.4 344.3 11.4 348.4 11.2 324.6 10.5 331.0 10.7 332.9 11.7 361.7 12.1 326.5 10.3 337.6 12.3 330.2 11.9
200 751.1 25.5 805.8 26.4 836.8 27.5 770.6 25.2 767.8 26.1 780.8 32.9 887.4 31.2 732.4 23.8 777.5 30.5 770.6 30.9
250 1472.7 50.2 1537.2 53.6 1613.5 54.3 1506.7 51.0 1494.1 50.6 1521.2 60.1 1747.1 63.6 1456.3 48.6 1604.8 67.4 1698.5 70.9
300 2547.4 91.9 2769.2 99.7 2811.8 100.1 2622.6 92.8 2663.6 95.3 2800.1 119.8 3171.0 122.6 2674.4 92.3 3084.9 138.8 3435.9 147.2
350 4341.6 169.1 4622.2 184.6 4683.9 186.6 4406.5 163.8 4367.5 166.6 5162.7 241.2 5886.5 241.8 4598.5 169.3 5983.6 262.9 7438.8 312.2

w
ar

eh
ou

se

150 114.0 4.3 127.6 7.6 121.3 5.5 111.4 4.2 112.8 4.2 112.0 8.9 188.7 10.2 110.3 4.2 114.8 8.0 206.5 22.8
200 247.5 9.2 309.6 19.1 281.0 14.0 244.2 10.2 249.1 10.1 248.8 16.1 420.8 21.6 239.4 9.0 250.6 18.4 375.5 57.7
250 430.0 18.1 698.5 48.0 562.4 29.8 424.9 19.3 446.7 20.1 444.6 41.1 782.1 38.3 426.2 16.6 445.1 36.3 961.5 127.2
300 680.6 34.3 1264.3 86.3 973.9 56.0 673.7 34.7 703.5 36.9 673.7 69.7 1423.9 78.9 695.9 29.4 716.2 70.5 2248.7 214.7
350 1043.0 56.8 2011.0 158.7 1509.0 93.0 1055.0 63.1 1130.8 67.0 1042.4 100.4 1907.0 101.4 1067.6 49.7 1097.6 112.2 5255.1 361.6

os
t0

03
d

200 155.6 7.5 299.4 15.7 183.3 10.3 153.3 6.8 147.4 5.9 147.5 8.8 162.3 7.0 170.1 9.5 154.7 15.0 496.8 44.8
300 333.8 18.8 868.4 43.4 611.8 35.9 333.4 19.6 296.1 15.1 297.9 27.6 339.3 17.4 496.5 33.5 359.8 52.2 1698.9 143.1
400 714.7 49.3 1849.6 97.5 1488.2 91.6 805.2 55.2 622.9 38.9 762.5 96.4 675.3 46.4 1253.3 78.4 1083.7 123.7 5277.4 310.2
500 2341.8 191.4 4338.9 243.2 3900.2 231.6 2067.5 157.8 1637.6 137.0 4386.8 314.1 2379.1 171.6 3023.9 176.6 3719.0 312.9 12525.6 573.9
600 7514.0 450.6 10394.8 529.4 12466.1 613.5 8216.9 469.6 5875.0 383.3 13066.6 618.0 8469.1 465.0 7244.6 400.1 10153.9 625.0 25804.5 963.0

de
n5

20
d

500 311.1 27.6 1433.0 72.9 972.7 62.8 311.5 29.1 241.6 16.4 240.1 33.4 322.6 26.1 764.6 64.4 440.5 102.5 3437.9 272.1
600 546.3 52.3 2289.3 118.9 1649.3 109.2 597.4 55.6 386.6 31.2 381.0 75.9 513.4 50.2 1235.4 95.9 1353.4 228.2 8231.3 469.5
700 933.1 87.0 3163.0 169.0 2782.7 176.2 1075.2 91.3 622.4 55.4 660.7 138.1 816.6 85.9 2439.2 165.8 2259.0 327.1 15529.0 726.0
800 1548.6 128.4 4437.5 245.0 4337.2 266.4 1574.1 132.9 911.5 95.2 1003.6 200.9 1323.8 147.8 3671.6 244.9 4906.7 499.1 21966.5 952.2
900 2486.1 201.9 6426.0 351.1 6923.5 396.9 2819.9 225.6 1382.0 151.6 2058.6 335.4 2067.1 217.6 5595.4 346.7 15199.0 723.9 31694.0 1247.0

Pa
ri

s

350 87.4 4.0 130.6 10.4 84.4 8.3 78.1 4.4 75.8 3.6 79.0 21.3 181.7 14.2 83.6 6.7 80.0 20.0 1285.3 78.7
450 132.5 6.5 274.9 22.8 174.6 19.0 123.3 7.9 118.4 5.7 119.7 16.0 144.4 9.5 133.4 15.0 133.0 46.6 1483.0 134.5
550 198.0 10.7 776.5 58.2 466.9 48.6 194.8 15.3 183.3 9.7 184.7 33.0 228.9 17.1 210.2 28.7 200.6 105.3 2643.7 261.4
650 276.7 16.9 960.1 74.0 758.5 72.3 275.4 20.7 257.5 14.1 260.6 70.0 319.2 28.4 337.4 50.1 319.8 145.7 7697.9 459.3
750 373.2 27.5 1821.2 123.2 1362.6 115.0 385.8 39.4 366.0 23.9 369.9 108.0 498.8 47.8 627.3 87.1 616.3 261.5 13831.5 656.4

Table 15: Final delays and AUC (divided by 10k) of different methods with best neighborhood size, evaluated on maps with
differing numbers of agents within 300s. Initial solver is LaCAM2. Highlighted are the results ranked first, and second.



m
ap n

RW INTC RAND ADP RWP SVM NNS Bandit Ori-SVM Ori-NNS

Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC

em
pt

y

300 402.2 3.5 461.9 3.9 529.8 4.3 421.5 3.5 420.6 3.5 513.9 6.7 1111.1 9.2 465.4 4.0 1065.8 13.2 584.3 8.7
350 869.9 7.2 994.5 8.2 1115.7 8.9 917.5 7.6 919.0 7.5 1814.8 16.6 1741.3 14.1 1041.3 8.4 2497.8 23.1 1449.0 16.8
400 1845.7 15.2 2030.1 16.6 2130.5 16.4 1861.8 14.8 1877.7 15.1 3679.9 30.5 2981.6 24.6 2027.8 16.1 4503.6 34.8 2942.8 27.9
450 3414.6 27.3 3581.4 28.2 3827.3 29.1 3455.5 26.9 3513.2 26.9 5998.8 45.5 5185.4 39.6 3679.1 28.9 7318.2 51.7 5961.3 46.3
500 5605.0 43.8 5895.3 45.6 6076.0 43.2 5631.0 41.8 5790.6 44.7 8973.6 63.7 8475.4 60.3 6294.5 48.1 9866.2 67.5 9953.8 68.3

ra
nd

om

150 344.7 2.5 367.3 2.6 373.6 2.6 348.4 2.5 355.1 2.6 357.2 3.5 409.5 3.1 342.4 2.4 375.2 4.0 386.2 3.6
200 840.0 6.1 885.8 6.5 930.6 6.6 843.3 6.1 846.5 6.2 1085.9 12.7 1093.4 8.4 799.1 5.7 996.5 10.7 1045.8 10.7
250 1698.3 13.2 1830.5 14.5 1832.2 14.0 1733.5 13.1 1711.6 13.1 2274.6 19.9 2246.3 18.2 1652.8 12.2 2587.1 23.6 2674.5 23.3
300 3083.6 23.9 3254.9 25.6 3323.0 24.6 3175.9 25.9 3076.8 23.8 4683.8 40.2 4521.7 36.6 3149.7 24.7 5975.6 47.1 5967.4 46.2
350 5535.2 46.4 6027.2 50.6 5764.9 46.7 5544.0 45.5 5463.2 45.6 10463.7 75.4 9710.6 71.7 5944.0 49.9 10815.6 76.9 12978.2 83.9

w
ar

eh
ou

se

150 121.5 1.4 238.2 3.9 147.8 2.3 116.5 1.5 116.6 1.4 124.9 6.1 349.1 4.2 118.7 1.5 124.8 5.2 869.0 15.5
200 259.1 3.1 635.2 9.7 368.0 6.1 261.1 3.9 288.2 4.2 301.7 9.9 722.1 8.9 270.8 3.1 298.4 12.1 3349.3 33.9
250 470.1 7.2 1731.4 24.9 813.2 14.3 485.4 8.7 537.1 8.8 1144.1 28.8 1201.9 16.1 466.8 6.1 873.0 24.4 7424.5 60.5
300 837.5 14.8 3361.8 42.1 1631.3 28.7 864.6 17.3 935.5 18.6 2498.1 48.7 2821.1 33.7 809.0 11.9 3117.9 46.5 11665.5 85.4
350 1421.0 30.4 7091.6 72.7 2764.4 49.8 1577.1 33.5 1514.4 34.2 4450.8 63.3 3366.5 45.0 1334.3 22.4 5331.1 71.1 17479.6 119.6

os
t0

03
d

200 173.5 3.2 556.1 6.7 336.9 5.0 180.0 2.9 161.1 2.3 174.3 5.2 204.0 2.8 302.0 4.7 269.6 10.9 2176.5 23.8
300 547.6 9.7 1577.8 17.4 1308.2 16.0 604.4 10.2 376.7 6.6 991.2 18.1 480.7 8.5 1305.7 16.2 2078.2 35.1 7563.8 58.8
400 1717.2 27.2 3618.8 41.1 3750.1 41.2 2023.8 29.1 1143.8 21.4 5073.1 52.7 1541.2 25.7 3118.4 35.2 6332.8 69.6 14720.5 102.2
500 7329.4 78.1 10386.2 96.3 9934.0 93.0 7268.4 76.0 5425.1 66.6 14676.1 117.5 7609.4 78.6 7467.7 73.2 15632.3 125.7 24107.7 156.0
600 20549.4 163.0 21653.0 171.5 22508.1 173.3 20281.3 160.2 17560.6 153.4 26121.5 188.0 20302.9 162.1 16993.8 146.6 29866.4 204.3 36312.5 224.6

de
n5

20
d

500 659.4 14.5 2692.4 30.3 2410.6 30.0 885.1 17.5 324.1 10.1 625.9 26.4 580.2 17.1 2792.7 33.0 5518.3 71.4 13834.4 99.3
600 1483.9 28.8 4485.7 49.8 4631.4 50.8 1630.7 29.2 728.0 20.2 3301.9 57.7 1419.7 33.7 3979.6 47.5 14197.2 119.0 21399.6 141.3
700 2642.0 46.8 6254.7 71.3 7336.5 76.6 3418.0 51.8 1494.6 36.2 6070.3 97.5 2934.0 56.2 7198.2 75.1 19781.8 158.8 30196.8 191.7
800 4720.1 73.6 9333.7 101.2 11107.2 110.0 5110.1 73.6 2774.8 58.0 10157.1 128.7 5846.9 92.4 10615.0 106.9 26036.7 198.6 38304.4 241.5
900 8274.1 108.8 13091.0 138.6 16636.2 154.7 9786.3 114.8 4788.8 86.8 18143.9 185.3 9199.7 126.9 14398.9 144.2 30208.9 191.0 47864.2 297.4

Pa
ri

s

350 93.3 1.8 318.1 6.1 227.5 5.6 84.9 1.9 79.1 1.6 228.5 19.2 407.7 8.2 111.1 4.6 171.8 18.0 3826.4 36.5
450 136.5 3.3 842.0 12.9 664.6 12.4 128.6 3.6 124.5 2.7 180.9 13.0 210.9 5.6 356.3 11.1 1575.7 41.3 7541.4 62.5
550 217.2 5.9 2269.4 27.1 2110.1 27.1 236.4 7.4 202.5 5.2 545.6 27.9 350.3 10.9 960.8 20.8 7313.9 78.0 13938.8 99.1
650 307.5 10.0 2891.9 37.3 3069.1 38.2 380.5 13.8 287.6 7.7 2474.7 58.9 549.9 19.3 2019.2 33.8 9380.0 103.1 20920.9 137.6
750 471.4 18.0 4794.1 57.7 5078.5 55.7 681.7 22.3 462.8 13.6 5088.3 85.1 1080.6 32.8 3743.0 53.0 18276.6 146.3 27245.0 175.1

Table 16: Final delays and AUC (divided by 10k) of different methods with best neighborhood size, evaluated on maps with
differing numbers of agents within 60s. Initial solver is LaCAM2. Highlighted are the results ranked first, and second.



Highest Number of Agents; Time: 300s Medium Number of Agents; Time: 300s

Methods
empty random warehouse ost003d den520d Paris empty random warehouse ost003d den520d Paris
+500 +350 +350 +600 +900 +750 +400 +250 +250 +400 +700 +550

Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC

RW 4237.7 155.7 4341.6 169.1 1043.0 56.8 7514.0 450.6 2486.1 201.9 373.2 27.5 1447.9 52.9 1472.7 50.2 430.0 18.1 430.0 18.1 933.1 87.0 198.0 10.7
INT 4448.5 162.9 4622.2 184.6 2011.0 158.7 10394.8 529.4 6426.0 351.1 1821.2 123.2 1593.4 58.3 1537.2 53.6 698.5 48.0 1849.6 97.5 3163.0 169.0 776.5 58.2
RAND 4828.2 171.8 4683.9 186.6 1509.0 93.0 12466.1 613.5 6923.5 396.9 1362.6 115.0 1756.2 61.4 1613.5 54.3 562.4 29.8 1488.2 91.6 2782.7 176.2 466.9 48.6
ADP 4374.5 156.5 4406.5 163.8 1055.0 63.1 8216.9 469.6 2819.9 225.6 385.8 39.4 1476.5 53.1 1506.7 51.0 424.9 19.3 805.2 55.2 1075.2 91.3 194.8 15.3
RWP 4335.7 159.8 4367.5 166.6 1130.8 67.0 5875.0 383.3 1382.0 151.6 366.0 23.9 1484.4 53.9 1494.1 50.6 446.7 20.1 622.9 38.9 622.4 55.4 183.3 9.7

SVM 5194.9 223.5 5162.7 241.2 1042.4 100.4 13066.6 618.0 2058.6 335.4 369.9 108.0 1692.4 83.4 1521.2 60.1 444.6 41.1 762.5 96.4 660.7 138.1 184.7 33.0
NNS 5808.0 221.1 5886.5 241.8 1907.0 101.4 8469.1 465.0 2067.1 217.6 498.8 47.8 2094.8 81.6 1747.1 63.6 782.1 38.3 675.3 46.4 816.6 85.9 228.9 17.1
Bandit 4772.6 173.8 4598.5 169.3 1067.6 49.7 7244.6 400.1 5595.4 346.7 627.3 87.1 1579.0 57.6 1456.3 48.6 426.2 16.6 1253.3 78.4 2439.2 165.8 210.2 28.7
Ori-SVM 5793.6 244.0 5983.6 262.9 1097.6 112.2 10153.9 625.0 15199.0 723.9 616.3 261.5 1857.5 97.6 1604.8 67.4 445.1 36.3 1083.7 123.7 2259.0 327.1 200.6 105.3
Ori-NNS 6085.3 242.9 7438.8 312.2 5255.1 361.6 25804.5 963.0 31694.0 1247.0 13831.5 656.4 1614.3 74.4 1698.5 70.9 961.5 127.2 5277.4 310.2 15529.0 726.0 2643.7 261.4

Highest Number of Agents; Time: 60s Medium Number of Agents; Time: 60s

RW 5605.0 43.8 5535.2 46.4 1421.0 30.4 20549.4 163.0 8274.1 108.8 471.4 15.2 1845.7 15.2 1698.3 13.2 470.1 7.2 1717.2 27.2 2642.0 46.8 217.2 5.9
INT 5895.3 45.6 6027.2 50.7 7091.6 72.7 21653.0 171.5 13091.0 138.6 2030.1 16.6 2030.1 16.7 1830.5 14.5 1731.4 24.9 3618.8 41.1 6254.7 71.3 2269.4 27.1
RAND 6076.0 43.2 5764.9 46.7 2764.4 49.8 22508.1 173.3 16636.2 154.7 2130.4 16.4 2130.5 16.4 1832.2 14.0 813.2 14.3 3750.1 41.2 7336.5 76.6 2110.1 27.1
ADP 5631.0 41.8 5544.0 45.5 1577.1 33.5 20281.3 160.2 9786.3 114.8 1861.7 14.8 1861.8 14.8 1733.5 13.1 485.4 8.7 2023.8 29.1 3418.0 51.8 236.4 7.4
RWP 5790.5 44.6 5463.1 45.6 1514.3 34.2 17560.6 153.3 4788.8 86.8 462.8 13.5 1877.6 15.1 1711.6 13.1 537.1 8.8 1143.8 21.4 1494.6 36.2 202.5 5.2

SVM 8973.6 63.7 10463.7 75.4 4450.8 63.3 26121.5 188.0 18143.9 185.4 5088.3 85.1 3679.9 30.5 2274.6 19.9 1144.1 28.8 5073.1 52.7 6070.3 97.5 545.6 27.9
NNS 8475.4 60.3 9710.6 71.7 3366.5 45.0 20302.9 162.1 9199.7 126.9 1080.6 32.8 2981.6 24.6 2246.3 18.2 1201.9 16.1 1541.2 25.7 2934.0 56.2 350.3 10.9
Bandit 6294.5 48.2 5944.0 49.9 1334.3 22.4 16993.8 146.6 14398.9 144.2 3743.0 52.9 2027.9 16.1 1652.8 12.2 466.8 6.1 3118.4 35.3 7198.2 75.1 960.8 20.8
Ori-SVM 9866.2 67.5 10815.6 76.9 5331.1 71.1 29866.4 204.3 30208.9 191.0 18276.6 146.3 4503.6 34.8 2587.1 23.6 873.0 24.4 6332.8 69.6 19781.8 158.8 7314.0 78.0
Ori-NNS 9953.8 68.3 12978.2 83.9 17479.6 119.6 36312.5 224.6 47864.2 297.4 27245.0 175.1 2942.8 27.9 2674.5 23.3 7424.5 60.5 14720.5 102.2 30196.8 191.7 13938.8 99.1

Table 17: Final delays and AUC across methods in maps with the highest and medium number of agents. Time limits are 300s and
60s, respectively. Initial solver is LaCAM2. Note: RW, INT, RAND, ADP, and RWP stand for RandomWalk, Intersection, Random,
Adaptive, and RandomWalkProb, respectively. The number of agents follows the name of a map, i.e., after “+”. Highlighted are
the results ranked the first, and second.

Medium Number of Agents; Time: 300s Medium Number of Agents; Time: 60s

Methods
empty random warehouse ost003d den520d Paris empty random warehouse ost003d den520d Paris
+400 +250 +250 +400 +700 +550 +400 +250 +250 +400 +700 +550

Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC

RW 1116.1 38.5 - - 402.0 12.9 - - - - - - 1313.8 9.4 - - 436.9 2.9 - - - - - -
INT 1228.2 41.1 - - 470.4 15.6 - - - - - - 1412.4 10.1 - - 549.7 3.7 - - - - - -
RAND 1311.3 43.5 - - 440.4 14.1 - - - - - - 1438.8 9.9 - - 474.5 3.2 - - - - - -
ADP 1170.1 39.0 - - 408.8 13.1 - - - - - - 1342.7 9.3 - - 446.6 3.1 - - - - - -
RWP 1202.1 39.9 - - 430.5 14.2 - - - - - - 1369.4 9.7 - - 488.4 3.3 - - - - - -

SVM 1252.4 47.8 - - 408.1 13.2 - - - - - - 1826.7 14.6 - - 451.0 3.1 - - - - - -
NNS 1506.5 51.7 - - 524.0 17.3 - - - - - - 1823.5 13.1 - - 599.9 4.1 - - - - - -
Bandit 1250.0 42.3 - - 404.8 12.7 - - - - - - 1474.0 10.6 - - 425.4 2.8 - - - - - -
Ori-SVM 1313.6 51.8 - - 417.2 13.7 - - - - - - 1968.9 15.7 - - 455.8 3.5 - - - - - -
Ori-NNS 1409.7 53.5 - - 497.1 18.3 - - - - - - 1946.7 15.8 - - 694.5 4.7 - - - - - -

Table 18: Final delays and AUC across methods for in maps with the medium number of agent. Time limits are 300s and 60s,
respectively. Initial solver is EECBS. Note: RW, INT, RAND, ADP, and RWP stand for RandomWalk, Intersection, Random,
Adaptive, and RandomWalkProb, respectively. The agent numbers are shown after the name of a map. Highlighted are the results
ranked first, and second.


