Reevaluation of Large Neighborhood Search for MAPF:
Findings and Opportunities

Jiaqi Tan'*, Yudong Luo?**, Jiaoyang Li’, Hang Ma'
!'School of Computing Science, Simon Fraser University, Canada
2School of Computer Science, University of Waterloo, Canada
3Robotics Institute, Carnegie Mellon University, USA
{jiaqit, hangma} @sfu.ca, yudong.luo@uwaterloo.ca, jiaoyangli@cmu.edu

Abstract

Multi-Agent Path Finding (MAPF) aims to arrange collision-
free goal-reaching paths for a group of agents. Anytime MAPF
solvers based on large neighborhood search (LNS) have gained
prominence recently due to their flexibility and scalability,
leading to a surge of methods, especially those leveraging ma-
chine learning, to enhance neighborhood selection. However,
several pitfalls exist and hinder a comprehensive evaluation
of these new methods, which mainly include: 1) Lower than
actual or incorrect baseline performance; 2) Lack of a unified
evaluation setting and criterion; 3) Lack of a codebase or ex-
ecutable model for supervised learning methods. To address
these challenges, we introduce a unified evaluation frame-
work, implement prior methods, and conduct an extensive
comparison of prominent methods. Our evaluation reveals that
rule-based heuristics serve as strong baselines, while current
learning-based methods show no clear advantage on time effi-
ciency or improvement capacity. Our extensive analysis also
opens up new research opportunities for improving MAPF-
LNS, such as targeting high-delayed agents, applying contex-
tual algorithms, optimizing replan order and neighborhood
size, where machine learning can potentially be integrated.

1 Introduction

Multi-Agent Path Finding (MAPF) refers to the problem of
arranging collision-free paths for a group of agents (Stern
et al. 2019). Many real-world applications involving mul-
tiple agents are closely related to MAPF, e.g., warehouse
robots (Ma and Koenig 2017; Li et al. 2021c), aircraft-towing
vehicles (Morris et al. 2016; Fines, Sharpanskykh, and Vert
2020), and navigation in video games (Ma et al. 2017).
MAPF is NP-hard to solve optimally (Yu and LaValle
2013). In recent years, anytime MAPF solvers based on large
neighborhood search (LNS) (Li et al. 2021a) have gained
prominence since previous centralized solvers often suffer
from poor efficiency with low scalability despite their so-
lution optimality, e.g, conflict-based search (CBS) (Sharon
et al. 2015), or low solution quality despite their fast speed
and good scalability, e.g., prioritized planning (PP) (Erdmann
and Lozano-Perez 1987). Learning decentralized suboptimal
policies via reinforcement learning has also been explored,

“These authors contributed equally.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

but typically requires subtle environment design (Sartoretti
et al. 2019; Ma, Luo, and Ma 2021; Ma, Luo, and Pan 2021).
Among these approaches, MAPF-LNS has emerged as the
leading method for finding fast and near-optimal solutions
to large-scale MAPF problems within a time budget. It starts
from a fast initial solution, often obtained using a fast subop-
timal MAPF solver, e.g., PP, and incrementally improves the
solution quality to near-optimal over time. In LNS, a subset of
agents, called a neighborhood, is selected, and their paths are
iteratively destroyed and repaired. MAPF-LNS has consis-
tently ranked first in various competitions, including the 2023
Robot Runners (Jiang et al. 2024), AMLD 2021 Flatland 3
Challenge (Chen et al. 2023), and the 2020 NIPS Flatland
Challenge (Li et al. 2021b), demonstrating its excellence in
both speed and solution quality.

One key challenge of MAPF-LNS lies in selecting an
improving neighborhood to efficiently minimize total de-
lays. To address this, various strategies have been proposed,
which generally fall into two categories: rule-based and
learning-based methods. Rule-based strategies rely on pre-
defined heuristics to generate neighborhoods (Li et al. 2021a),
while learning-based strategies predict the optimal neighbor-
hood generated by rule-based strategies (Huang et al. 2022;
Yan and Wu 2024) or dynamically select one of the rule-
based strategies based on environmental conditions (Phan
et al. 2024). However, as an emerging research topic, no cur-
rent work systematically examines the efficiency of different
MAPF-LNS methods, especially the new advances using ma-
chine learning. Upon examination, we find several pitfalls in
their evaluation, which impede a reasonable comparison. This
includes: 1) Underreported or incorrect performance. We
observe that the final delays of rule-based methods reported
in Huang et al. (2022) are usually significantly higher than
those in Li et al. (2021a). Phan et al. (2024) directly import
these values from Huang et al. (2022). Additionally, Yan and
Wu (2024) adopts final delays from Li et al. (2021a) but uses
slightly different maps for evaluation, leading to inconsis-
tencies. For example, the result of map ‘random-32-32-20°
in Li et al. (2021a) has been incorrectly adopted as the re-
sult for ‘random-32-32-10" by Yan and Wu (2024). Such
discrepancies make it difficult to draw reliable conclusions
from current results. 2) Lack of a unified setting. Various
factors potentially influence the efficiency of MAPF-LNS,
such as the initial solution and path replan solver. Initial

solutions generally vary among different MAPF-LNS pa-
pers, and unsolved scenarios are usually discarded. While
PP serves as the default replan solver in most MAPF-LNS
methods, priority-based search (PBS) (Ma et al. 2019) is used
by Yan and Wu (2024). Different evaluation metrics are also
employed in different papers, such as area under the curve
(AUC) (Li et al. 2021a), win/loss (Huang et al. 2022), and
average gap (Yan and Wu 2024). This lack of a unified setting
makes direct comparison difficult. 3) Lack of a codebase
or executable model. The performance of supervised learn-
ing heavily depends on data quality and parameter tuning.
However, codebases, running instructions, or executable mod-
els are generally missing for supervised learning methods,
making it challenging to reproduce their results.

To address these issues, we propose a unified evaluation
setting under the same benchmark and hyperparameter config-
urations. We investigate and standardize several key aspects
in MAPF-LNS, including initial solutions, replan solvers,
and time-counting schemes during evaluation, which are not
fully studied, obscure, or incorrect in previous works. We
then implement and reevaluate prior methods in this uni-
fied framework. Our key finding is that rule-based heuristics
for neighborhood selection are still strong baselines com-
pared to learning-based methods in terms of time efficiency
and improvement capacity. Our analysis also leads to sev-
eral interesting future directions for improving MAPF-LNS,
which are less explored in the previous MAPF-LNS litera-
ture, e.g., targeting high-delayed agents, applying contextual
algorithms, optimizing replan order and neighborhood size,
where machine learning can potentially be integrated.

2 Preliminaries
2.1 Background: MAPF and MAPF-LNS

The MAPF variants are summarized by Stern et al. (2019).
In this work, we follow the common settings: 1) considering
vertex and swapping conflicts, i.e., agents can not occupy the
same vertex or traverse the same edge in opposite directions
simultaneously; 2) agents ‘stay at target’ instead of disappear-
ing; 3) minimizing the sum of individual costs, i.e., the total
time steps for all agents to reach their targets.

MAPF is formally defined as follows. The input is a graph
G = (V, E), where V is the set of vertices and E is the set of
edges, along with a set of N agents A = {aq,...,an}. Each
agent a; is assigned a start vertex s; € V' and a goal (target)
vertex g; € V (g; is accessible from s;). At each discrete time
step, an agent can either move to an adjacent vertex or wait at
its current vertex. Consequently, the path p; of a; consists of a
sequence of vertices that are adjacent or identical. A solution
is a set of collision-free paths, one for each agent from s; to g;.
Let d(s;, g;) denote the length of the shortest path between
s; and g;, and I(p;) denote the length of path p,. Then, the
delay of path p; is delay(p;) = l(p;) — d(s;, g;)- Note that
[(p;) counts the edges of both move and wait actions. The
task is to find a solution P = {p;} ; that minimizes the

sum of costs vazl 1(p;), which equals to minimize the sum
of delays Zfil delay(p;).

LNS is a type of improvement heuristic that iteratively
reoptimizes a solution by the destroy and repair operations

until some stopping condition is met (Pisinger and Ropke
2010). In the destroy operation, it breaks a part of the solu-
tions, named a neighborhood. In repair operation, it solves
the reduced problem by treating the remaining part as fixed.

MAPF-LNS framework operates as follows: given a
MAPF instance, an initial (non-optimal) solution P, is ob-
tained via a non-optimal solver. In each iteration k, a sub-
set of agents A C A is selected based on a criterion. A
is called a neighborhood. The paths of agents in A are
then removed from previous solution Pj_q, resulting in

P_, = {p; € Pi_1]a; ¢ A}. Subsequently, those paths

of A are replanned by an algorithm to avoid collisions with
each other and with the paths in P,_ . If the resulting solu-
tion has a smaller sum of delays than Pj_1, it is accepted as
Py, otherwise, P, remains as Pj,_.

2.2 Neighborhood Selection

Selecting the neighborhood is crucial to the success of MAPF-
LNS. In this section, we give an overview of the existing
selection strategies.

Rule-based strategies: There are four major rule-based
strategies in the literature: RandomWalk, Intersection, Ran-
dom, and Adaptive, proposed by Li et al. (2021a). Different
rule-based strategies improve the current solution from dif-
ferent perspectives. RandomWalk lets an unoptimized high-
delayed agent move towards a shorter path and collect collid-
ing agents and itself as a neighborhood. Intersection focuses
on improving solutions around intersection vertices (vertices
with a degree greater than two) by adding agents that visit
the same intersection to the neighborhood. Random strategy
selects agents uniformly at random from the set of agents,
ensuring a broad exploration of the solution space. Although
simple, this method introduces sufficient diversity, prevent-
ing the algorithm from getting stuck in local optima, and
is widely used in LNS (Demir, Bektas, and Laporte 2012;
Song et al. 2020). Adaptive dynamically switches between
RandomWalk, Intersection, and Random strategies, adjusting
their sampling probability weights based on relative success
in improving the current solution.

Learning-based methods: There are three prominent
learning-based strategies: SVM-LNS (Huang et al. 2022)
(denoted as SVM), Neural-LNS (Yan and Wu 2024) (de-
noted as NNS), and Bandit-LNS (Phan et al. 2024) (denoted
as Bandit). SVM and NNS are supervised learning methods,
where a ranking model is trained to predict the best neigh-
borhood over a set of neighborhood candidates generated
by rule-based strategies. Bandit incorporates a bandit algo-
rithm to select rule-based strategies and neighborhood size as
bi-level arms. The reward signal is the delay improvement.

2.3 Discussion on Selection Strategies

RandomWalk (Li et al. 2021a). The main idea of this heuris-
tic is to prioritize replanning for agents with high delays.
On investigating this method, we find some designs of its
algorithm may hinder re-optimizing high-delayed agents,
e.g., once a high-delayed agent is selected in one round, it
is added to a tracking list that will not be selected in next
round. Also, agents are randomly chosen if the neighborhood

size is not reached after one RandomWalk search. We make
two modifications to RandomWalk by removing the tracking
list and sampling agents according to their delays. We name
this modified heuristic as RandomWalkProb, and we find
these simple modifications lead to significant improvement
in several domains. (See Sec. 6.2 in Appendix on details of
RandomWalkProb.)

SVM (Huang et al. 2022) and NNS (Yan and Wu 2024).
Both two utilize supervised learning to rank neighborhood
candidates given the query information, i.e., some solution Py
in iteration k. This implies the queries { Py }1_, are treated as
independent and identically distributed (i.i.d.) during training.
However, they are non i.i.d. in practice since Py highly
depends on P, within the sequential optimization of LNS.
In the literature of learning to rank, several works suggest
explicitly capturing the temporal information among queries
to increase the robustness and generalization ability of rank
models (Yu et al. 2019; Li, Wang, and McAuley 2020).

Bandit (Phan et al. 2024). MAPF-LNS can be framed as a
contextual bandit problem, where optimal actions (e.g., strate-
gies and neighborhood sizes) should be determined based on
the context information (e.g., the map and the solution Py
at iteration k). Different contexts can be treated as distinct
states. However, Bandit-LNS employs non-contextual bandit
algorithms, which operate under the assumption of a single
state or no state at all, and thus select optimal actions without
considering contextual information. This creates a theoretical
inconsistency, as the problem setting (contextual) does not
align with the algorithm applied (non-contextual).

3 A Unified Setting for Evaluation

In this section, we elaborate our unified setting for MAPF-
LNS evaluation'. We investigate and standardize several key
aspects of MAPF-LNS before conducting a comprehensive
comparison among existing methods.

3.1 Environments

MAPF algorithms are generally evaluated on MAPF bench-
mark suite?, which provides 2D grid maps of different layouts
simulating various real-world environments, such as ware-
houses and empty rooms. Among many maps in the suite,
we choose six representative maps (i.e., commonly chosen
maps in the aforementioned papers and cover diverse lay-
outs) from each MAPF benchmark category: empty-32-32
of size 32 x 32 (denoted as empty), random-32-32-20 of
size 32 x 32 (denoted as random), warehouse-10-20-10-2-1
of size 161 x 63 (denoted as warehouse), 0st003d of size
194 x 194, den520d of size 256 x 257, and Paris_1_256 (de-
noted as Paris) of size 256 x 256. We utilize the *25 random
scenarios’ included in the suite, where each scenario offers
a distinct set of agent start and goal locations for a given
map and specified number of agents. For methods requiring
training data, e.g., SVM-LNS and Neural-LNS, we gener-
ate additional scenarios using the same map layouts with
new random start-goal pairs for model training, such that

'Code and data are available at:
https://github.com/ChristinaTan0704/mapf-Ins-unified
“https://movingai.com/benchmarks/mapf/index.html

all methods are evaluated on the same 25 scenarios in the
benchmark.

3.2 Initial Solution

As an anytime algorithm, we would expect MAPF-LNS to
quickly find an initial feasible solution and then improve its
quality to near-optimal as time progresses. Therefore, we set
the time limit for finding the initial solution to 10 seconds by
following Li et al. (2021a).

Three representative suboptimal MAPF solvers, discussed
by Li et al. (2021a), are considered as potential initial solvers:
Explicit Estimation CBS (EECBS) (Li, Ruml, and Koenig
2021), Prioritized Planning (PP) (Erdmann and Lozano-Perez
1987) with a random priority ordering, and Parallel Push and
Swap (PPS) (Sajid, Luna, and Bekris 2012). However, as
highlighted by Li et al. (2021a) (see Fig 3 of Li et al. (2021a)),
none of the three successfully solve all 25 scenarios across
varying numbers of agents within the time limit, yielding un-
solved scenes being discarded. To ensure that initial solutions
are available for all 25 scenarios within 10s, we adopt the
following two methods as initial solvers.

1) LNS2 (Li et al. 2022). It is an improved version of
PP. It repeatedly repairs the collisions met by PP until the
paths become collision-free. 2) LaACAM?2 (Okumura 2023).
It was recently proposed as a fast suboptimal MAPF method.
Though it is faster than LNS2, its solution quality is generally
worse than LNS2.

3.3 Replan Solver

The replan solver is invoked iteratively to update paths for the
neighborhood and refine the solution in real-time, making a
fast and efficient solver highly desirable. Except for Yan and

Initial Solver: LNS2; Time limit: 60s

| | FinalDelay Tter(xik) [| FinalDelay lter (xIK)
| | pp PBS | PP PBS| | | PP PBS | PP PBS
300| 431.7 436.9]8.98 044| [150| 350.1 3469 [7.39 0.63

350(1109.8 1081.8 |4.22 0.25 200| 959.6 8755 |2.88 0.19
2570.1 2238.2 1228 0.15 250|2423.8 2301.4 | 1.99 0.05
450 | 4873.5 4293.6 | 1.83 0.09 300(5309.6 4533.1 | 1.47 0.03

500|7817.6 6874.2 | 1.51 0.05 350(8966.9 8076.5 | 1.57 0.02

empty
=
(=}
S
random

150 122.1 128.3|6.59 0.57 200| 183.9 897.6|1.75 0.06
200| 266.8 310.2|2.65 0.27 300| 915.5 4630.9(0.92 0.02
250| 477.6 760.3|1.83 0.15 400 | 3230.7 8032.7|0.52 0.03
300| 832.7 1740.3|1.15 0.09 500 9335.316 709.3 | 0.21 0.01
350|1495.0 3237.5|0.73 0.06 60017 998.324 525.7 | 0.15 0.01

warehouse
ost003d

500| 899.6 6195.8|1.28 0.05 350 82.2 383.7|5.98 0.17
600 |1321.3 8485.5|1.72 0.06 450 | 136.5 2274.2|6.44 0.11
700 | 4436.516 642.9 | 0.78 0.02 550 | 219.3 4878.6 4.72 0.06
800 | 7342.821909.0|0.61 0.02 650 | 317.1 9304.6|4.49 0.04
90013 032.029 352.2 | 0.44 0.01 750 | 614.914707.1|3.07 0.03

den520d
Paris

Table 1: Final delay and total iteration of using PP and PBS
within 60s when initial solver is LNS2, neighborhood se-
lection strategy is RandomWalk, and neighborhood size is
25. Cases where PBS performs better are highlighted in red.
Note: ‘N’ denotes the number of agents.

Wu (2024), most methods typically select PP as the replan
solver due to its fast speed in completing a single iteration
(e.g., faster than CBS and EECBS (Li et al. 2021a)), allowing
for more iterations within the time limit. However, Yan and
Wu (2024) argues that while Priority-Based Search (PBS) is
more time-consuming per iteration, it can outperform PP in
certain scenarios due to its greater improvement in a single
iteration. To evaluate the efficiency of PP and PBS, we set
the neighborhood size to 25 and the time limit to 60s (neigh-
borhood size 25 is recommended in 3/5 cases by Yan and
Wu (2024), and 60s is used in their plots). The time-counting
criterion for evaluation is detailed in Sec. 3.5. The initial
solver used is LNS2, with RandomWalk as the heuristic.

The final delays in different maps with various amount of
agents by using PP and PBS are shown in Table 1. Though
our results coincide with Yan and Wu (2024) that PBS is
better in empty and random maps, it is significantly worse
than PP in larger maps with more agents. We also include
the number of iterations performed by PP and PBS in the
table. We see that PP runs notably faster than PBS and thus
can explore a substantially larger number of neighborhoods
within the time limit. Therefore, we choose PP as the replan
solver. (More comparison results between PP and PBS are
shown in Table 11 and Table 12 in Appendix, which include
cases where the initial solver is LaCAM2, and the time limit
is 300s. These results also suggest that PP is better than PBS
in most cases.)

3.4 Neighborhood Size and Number of Agents

Intuitively, a smaller neighborhood size accelerates each iter-
ation but may yield limited improvements, whereas a larger
neighborhood size slows down each iteration but has the po-
tential to deliver more significant improvements. To evaluate
those strategies, we test a variety of neighborhood sizes, i.e.,
{2,4,8, 16,32}, by following Li et al. (2021a).

The number of agents in a map affects the congestion level
of a MAPF problem. We select a broad spectrum of agent
amounts in each map to encompass the range of numbers
evaluated in previous papers. The number of agents evaluated
for each map is summarized in Table 6 in Appendix.

3.5 Evaluation Criterion

Given the time-sensitive nature of MAPF-LNS, we mainly
focus on the relationship between delay and time. Specifi-
cally, we report the final delay and area under the curve
(AUC) of the delay-versus-time curve within a specified time
limit. A common criterion is a time limit of 60s. However,
we observe that the delay may not converge within 60s. To
address this, we extend the time limit to 300s (we still report
the results when the time limit is 60s). To reduce the influence
of overhead from other operations, we only measure the time
spent on the core processes of each method, i.e., the time
used for destroying (remove agents) and repairing (replan
paths). Note that SVN-LNS and Neural-LNS require calling
the rule-based methods to propose neighborhood candidates
and calling the trained model to predict the top neighborhood.
This part of time is included in the time used by these two
methods. The model prediction of Neural-LNS is performed
on GPU to accelerate.

3.6 Implementation Details

We develop based on the codebase of Li et al. (2021a) to pro-
duce results for rule-based strategies, including RandomWalk,
Intersection, Random, Adaptive, and RandomWalkProb. We
use the codebase of Phan et al. (2024) to produce results for
Bandit, where Thompson Sampling is the underlying ban-
dit algorithm since it performs the best in our experiments.
No open-source codebase is available for SVM, and neither
executable models nor training data are provided for NNS.
As a result, we implement and train both methods. Note that
the original SVM and NNS use different initial solutions for
different maps and are not clearly specified. We fix the initial
solution to LNS2 (Li et al. 2022) when recovering their re-
sults. Please refer to Sec. 7 in Appendix for training details,
e.g., dataset construction and hyperparameter tuning.

To validate the reliability of our reproductions of SVM and
NNS, we first conduct the following sanity checks. 1) Match-
ing the reported statistics. We reproduce SVM and NNS by
training models using instructions and parameters provided
in their original papers. The time measurement scheme is
not clearly detailed in Huang et al. (2022); Yan and Wu
(2024). Thus, we compare the delay-versus-iteration of our
reproduced results with reported ones, which is independent
of hardware specifications and time-counting schemes. For
NNS, we compare the reduction in delays after 100 iterations,
starting from roughly the same initial delays in shared maps
(we use PBS as the replan solver in this comparison for con-
sistency with Yan and Wu (2024)). The results of our trained
NNS and reported performances are shown in the bottom
of Table 2. The maximum discrepancy in performance is
only 8.9 steps per agent in den520d, and our reproduced
model performs better in empty and warehouse, con-

Average Rank of SVM
| Rank / Total
Map ‘ N ‘ Reproduce Report
warehouse | 100 | 5.9/20 6.0/20
ostd003d | 100 | 6.2/20 5.4/20
den520d | 200 | 7.6/20 7.0/20
Pais | 250 | 77720 6.7/20

Reduction in delays of NNS

‘ Initial delays Delay elimination

|
Map ‘ N ‘ Reproduce Report ‘ Reproduce Report
empty | 300 | 31407 3200 | 2202 1850
warchouse | 100 | 5731.8 5500 | 4908 4700
ost003d | 100 | 8690.4 8600 | 4585.1 5000
den520d | 200 | 20510.2 20500 | 12721.3 14500

Table 2: Reproduced and reported metrics of SVM (top) and
NNS (bottom). Note: ‘N’ is the number of agents. ‘Reproduce’
is our reproduced results. ‘Report’ is reported values of
SVM (Huang et al. 2022) and NNS (Yan and Wu 2024).

firming the reliability of our reproduction. For SVM, delay-
versus-iteration statistics are not provided, so we compare the
“average ranking”. Average ranking defined by Huang et al.
(2022) is the average rank of the predicted top neighborhood
out of 20 candidates. The results, shown in the top of Table 2,
reveal that the discrepancy in average rank is no greater than
one, further validating our reproduction. 2) Generalization
ability. It is costly and impossible to train separate models
for different parameters, such as the number of agents or
neighborhood size. Instead, we wish to train models under
one parameter setting and evaluate their performance by gen-
eralizing to unseen configurations, a goal also emphasized
in their original papers. To assess generalization, we con-
duct experiments comparing the performance of two models
evaluated under the same setting but trained with one key
parameter altered. The key parameters include neighborhood
size, selection strategy, number of agents, and initial solver.
We observe that the final delays produced by the generalized
models (trained and tested under different configurations)
are generally comparable to those of the ungeneralized mod-
els (trained and tested under the same configuration). See
Table 10 in the appendix for detailed numerical results.

4 Findings and Future Directions

We perform evaluation for aforementioned approaches under
the unified framework outlined in Sec. 3, which reveals six
key insights that challenge existing research perspectives and
highlight four promising directions for future work.

The results are mainly presented as running curves and
value tables. For simplicity and clarity, we present represen-
tative results when the initial solver is LNS2, with a focus
on the highest number of agents in each map, since those are
the most congested and challenging cases. We also present
cases with a medium number of agents, which are used to
train SVM and NNS. Including the case of medium num-
ber makes it easier to access the performance of SVM and
NNS. The results in other settings reflect similar observations
and are deferred to Sec. 8.4 in Appendix. We also include
the results of the reproduced SVM and NNS when they are
trained according to their original papers. We add a prefix
‘Ori-’ (e.g., Ori-SVM, Ori-NNS) to distinguish with SVM
and NNS trained under our unified setting.

For rule-based methods, the results are obtained using the
best-performing neighborhood size. For evaluating SVM and
NNS, we select the optimal combination of heuristic and
neighborhood size for proposing neighborhood candidates.
For example, in empty map with 500 agents, RandomWalk
with neighborhood size 8 achieves the lowest delay within
300s. Consequently, we use RandomWalk to generate neigh-
borhood candidates for SVM and NNS, and employ neighbor-
hood size 8 during execution in that scenario. For evaluating
Ori-SVM, and Ori-NNS, we adhere to the heuristic and neigh-
borhood size specified in their original papers.

4.1 Key Insights and Analyses

1) Rule-based strategies are strong competitors to
learning-based strategies in terms of time efficiency. Note
that the final delays we report for rule-based strategies are

= Best Rule-Based . Bandit === SVM
empty+400

= NNS
warehouse+250

4.5

15 I

random+250

0 100 200 300 0o 100 200 300 90

=
=
X 0 100 200 300
z Paris+550
© 12 >
D ..
8
. <
0.5 - 0 N
0 100 200 300 0 100 200 300

Runtime (s)

Figure 1: Delay vs. Time in maps with a Medium num-
ber of agents. Error bars represent the variance of delay
across 25 different scenes. The best rule-based strategies are
Adaptive for empty and warehouse, RandomWalk for
random, and RandomWalkProb for ost003d, den520d,
and Paris.

generally lower than those in previous studies, as we only
measure the time spent on core processes. This same time
measurement scheme is applied to learning-based strategies,
ensuring a fair comparison. Table 4 presents the final delays
and AUCs of delay-versus-time curves when the time limits
are 300s and 60s (with the highest number of agents in each
domain). Rule-based strategies achieve the best final delays
in 83.3% (20/24) of the cases. To minimize the impact of
generalizing to untrained scenarios on the performance of
SVM and NNS, we also investigate their performance on
maps with a medium number of agents where training data
are collected. The delay-versus-time curves for these sce-
narios are shown in Figure 1. For clarity, only the curves of
the best-performing rule-based strategies are included. NNS
matches the efficiency of the best rule-based strategy only
in the 0st 003d map. In other domains, SVM and NNS are
generally slower.

Our findings contradict those of learning-based studies. For
example, Huang et al. (2022) claimed that SVM-based neigh-
borhood prediction outperforms rule-based methods in terms
of time efficiency. However, under our unified evaluation
framework, SVM shows no clear advantage over rule-based
ones. Additionally, Phan et al. (2024) directly adopted the
results from Huang et al. (2022) and suggested that Bandit
outperforms SVM. In our evaluation, however, Bandit is bet-
ter than SVM in some cases but worse in others. We also
notice that the final delays for rule-based methods reported in
Huang et al. (2022) are significantly higher than those in Li
et al. (2021a), and their time measurement schemes are not
clearly described. This raises the possibility that rule-based
strategies were under-reported or evaluated using inconsis-
tent time measurement schemes. Yan and Wu (2024) focused
solely on cases where PBS outperforms PP and aimed to
improve these cases using deep learning (though our evalua-
tion shows PP is generally better than PBS). Consequently,
their application scope is limited. When applied to diverse
scenarios in our evaluation, NNS does not demonstrate faster

performance than rule-based approaches.

2) SVM and NNS incur high overheads compared to PP
replanning. To understand the time inefficiency of SVM and
NNS, we analyze their additional overheads compared to rule-
based methods. In each iteration, SVM and NNS introduce
two main additional sources of overheads: /) Proposition,
which involves generating a set of neighborhood candidates
using rule-based strategies (20 candidates in SVM, and 100
in NNS); 2) Prediction, which predicts the best neighborhood
using trained ranking models. Table 3 summarizes the per-
centage of these overheads in total time used for maps with
the highest number of agents.

The proposition overhead in SVM is negligible due to the
small number of candidates (i.e., 20), but it increases greatly
in NNS due to a larger candidate pool (i.e., 100). The predic-
tion overhead is notably high for both SVM and NNS. This is
because PP replanning is super fast per iteration, making the
prediction speed of the machine learning models the bottle-
neck. We also report the overheads of Ori-NNS when PBS is
used for replanning. In this case, the proposition and predic-
tion overheads in NNS become relatively small because PBS
takes a longer time to execute. This observation supports Yan
and Wu (2024)’s approach of applying deep learning only
in cases where PBS performs better, as the neural network
overhead becomes acceptable with PBS replanning. However,
this further highlights the limited application scope of NNS.
3) The improvement capacity of supervised learning meth-
ods per iteration is limited. As discussed above, SVM and
NNS introduce high time overheads. Here, we investigate
their improvement capacity per iteration, which is indepen-
dent of the time overheads. We compare them with the best
rule-based strategies using the delay-versus-iteration crite-
rion in maps with medium number of agents. Note that the
best rule-based strategies in these scenarios are employed to
generate training data for SVM and NNS. The performance
curves are shown in Figure 2.

SVM and NNS aim to predict and select the best neigh-
borhood from the candidate pool for replanning in each it-
eration. However, as illustrated in Figure 2, only in empty
and den520d, SVM is able to predict a better neighborhood
than the one picked by rule-based methods. In other cases,
the improvement capacity of supervised learning models fails
to surpass that of rule-based strategies. Also, as indicated in
Table 2, the trained ranking models struggle to accurately
select the ground truth best neighborhood. This suggests that

empty random warehouse ost003d den520d Paris

Methods| +500 +350 +350 +600 +900 +750

‘Prop Pred Prop Pred Prop Pred Prop Pred Prop Pred Prop Pred

SVM 0.441.4 3.2382 04334 19335 1.745.0 1.535.1
NNS 7.5 53.2 11.3 46.8 16.7 47.6 7.6 13.1 16.3 27.8 34.8 29.3
Ori-NNS| 8.4 1.4 4.7 3.4 08 06 08 19 04 0.7 23 1.4

Table 3: Percentage of proposition and prediction overheads
in SVM and NNS. Initial solver is LNS2. Nofe: Numbers
are shown in percentage (%). "Prop’ represents proposition.
"Pred’ represents prediction.

= SVM
random+250

= NNS
warehouse+250

= Best Rule-Based
empty+400

4.5

3.5

3.5
2.5

25

1.5/

Delay (x 1k)

0.5 1.0
Iteration (x 1K)

15

Figure 2: Delay vs. Iteration in maps with a Medium num-
ber of agents. Error bars represent the variance of delay
across 25 different scenes. The best rule-based strategies are
Adaptive for empty and warehouse, RandomWalk for
random, and RandomWalkProb for ost003d, den520d,
and Paris.

achieving a clear advantage over rule-based strategies re-
quires a more powerful neighborhood ranking model with
higher prediction accuracy.

4) Under-performance of Bandit vs. Adaptive. Bandit is
another learning-based method, but it employs reinforcement
learning instead of supervised learning. As a result, it requires
no training data and dynamically identifies the best rule-based
strategies in each iteration during execution. This allows us
to view it as another variant of Adaptive, where bandit logits
serve as weights for selecting rule-based strategies.

When comparing Bandit and Adaptive in Table 4, Ban-
dit performs worse than Adaptive in 66.6% cases (16/24) in
terms of final delays. The performance gap between them is
particularly significant in map den520d. As discussed in
Sec. 2.3, Bandit uses a non-contextual algorithm, whereas a
contextual algorithm is more appropriate, which may explain
its under-performance. However, we also observe that with
a short time limit, i.e., 60s, Bandit achieves the lowest de-
lay and AUC in maps like random and warehouse. This
suggests that properly switching among rule-based strategies
and neighborhood sizes can accelerate MAPF-LNS.

5) RandomWalk (with its variant RandomWalkProb)
shows robust performance across diverse scenarios. The
complete results for final delays across various maps and
number of agents are provided in Sec. 8.4 in Appendix. In
the majority of cases, RandomWalk (with its variant Ran-
domWalkProb) achieves the best final delays. Even in sce-
narios where it does not rank first, its performance remains
close to the best. This observation slightly contrasts with the
findings of Li et al. (2021a), where Adaptive outperformed
RandomWalk in more than half of the cases. While the time
measurement scheme in Li et al. (2021a) is not clearly speci-
fied, under our unified evaluation framework, RandomWalk
and its variant exhibit a clear advantage over other methods.
6) Quality of the initial solution is not highly critical. In
our experiments, we study two initial solvers: LNS2 and La-
CAM2. LaCAM?2 is faster but generally produces low-quality

Highest Number of Agents; Time: 300s

Medium Number of Agents; Time: 300s

empty random warehouse ost003d den520d Paris empty random warehouse ost003d den520d Paris

Methods +500 +350 +350 +600 +900 +750 +400 +250 +250 +400 +700 +550

‘Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC‘ Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC
RW 145.4 4439.2 6069.5 318.3 2290.1 166.7 404.7 433.1 153 761.8 483 934.1 80.3 203.6
INT 4205.4 143.9 4609.3 155.5 1949.2 84.6 8824.9 404.8 6776.0 347.7 1680.8 110.9/1513.7 53.7 1582.6 53.2 695.2 32.8 2048.3 100.6 3415.0 175.9 540.8 38.3
RAND [4438.9 155.5 4635.2 167.8 1515.9 66.2 8424.3399.2 6447.9 345.6 1211.7 99.1{1703.2 59.6 1606.3 53.3 537.7 23.4 1668.8 86.3 2907.4 171.7 3454 33.7
ADP 4093.8 1073.0 44.1 6325.9323.0 2611.1 187.9 3969 33.7 1527.5 50.6 435.6 162 746.1 51.0 1049.8 88.0 1922 11.7
RWP 156.6 1134.9 44.7 1431.1 50.1 1534.4 50.9 4438 164
SVM 5053.2 167.1 4800.2 175.8 1107.4 65.7 10104.8 459.1 216.5 65.3|11588.3 64.51713.9 59.1 439.6 19.3 850.3 84.3 77.9 16.5
NNS 4803.2 179.7 5466.7 193.5 1871.1 77.1 294.6 1821.4 468.2 36.6/1928.5 70.0 1683.7 57.5 749.0 31.4 814.0 217.5 122
Bandit |4318.5 150.8 4564.1 155.8 6093.6 5343.4308.8 5769 70.6[1537.2 54.2 1276.3 75.2 22973 150.2 2053 20.7
Ori-SVM|4776.3 174.7 5105.2 186.3 1100.9 64.6 8604.1 457.2 6161.2420.2 483.2 126.6/1640.4 63.9 1662.8 58.3 441.0 21.1 1086.3 106.5 1880.1 200.1 196.5 37.6
Ori-NNS |5305.6 186.4 6004.1 206.3 1094.5 56.1 11426.4 517.9 13367.1 624.8 2409.4 243.5|1464.8 56.8 1528.0 54.8 17.7 1483.2 109.0 4228.7 286.7 721.5 67.7

Highest Number of Agents; Time: 60s Medium Number of Agents; Time: 60s

RW 37.7 13845.4 110.0 7159.6 12.5 1785.4 2583.3
INT 5117.5 35.9 5456.2 38.4 3346.2 26.9 16830.7 127.1 14664.4 127.0 4604.3 49.8/1900.5 14.3 1862.1 13.21333.8 11.7 3975.2 38.2 7100.6 68.3 1494.2 19.8
RAND [5376.6 36.2 5416.5 37.4 2420.4 23.5 16765.7 127.9 14546.4 124.7 4620.3 45.2|2105.9 15.2 1841.5 13.1 791.7 9.1 34822 34.5 7256.5 67.9 1485.0 18.7
ADP 5290.9 1463.4 15.4 14271.5108.2 8506.6 89.3 689.1 16.8/1768.8 13.3 1762.5 488.3 5.22013.8 253 3317.7 43.1 2364 52
RWP 5024.8 35.5 1455.6 14.3 17614 125 5346 5.1
SVM 6565.9 43.7 6543.7 46.4 3105.0 31.6 18765.4 130.6 10998.2 111.5 2267.7 50.0(2584.0 19.7 1990.0 14.8 600.5 8.04096.8 44.1 3562.8 46.6 243.5 11.8
NNS 6355.9 43.2 6877.1 46.4 2677.8 22.7 85.6 907.1 20.6/2461.4 18.12049.3 14.6 1018.5 9.4 38.8 2922 58
Bandit |5473.0 38.0 5540.1 38.5 13217.6 106.2 13552.1 115.6 32209 41.1{1916.4 14.3 3127.5 314 68219 63.3 6922 13.9
Ori-SVM|6566.5 44.6 7113.9 47.7 2971.2 30.5 20754.1 140.7 20674.6 153.4 7769.9 82.1|2416.5 18.9 2176.5 14.8 657.2 10.0 5713.4 53.8 11421.6 93.51628.3 29.6
Ori-NNS [6908.0 46.0 7514.5 48.9 2182.7 24.1 21677.9 144.8 26155.1 172.3 12831.9 97.3|2127.1 17.3 1973.9 14.6 531.7 7.0 5246.7 49.7 13704.0 102.6 3342.0 39.5

Table 4: Final delays and AUC across methods in maps with the highest and medium number of agents. Time limits are 300s and
60s, respectively. Initial solver is LNS2. Note: RW, INT, RAND, ADP, and RWP stand for RandomWalk, Intersection, Random,
Adaptive, and RandomWalkProb, respectively. The number of agents follows the name of a map, i.e., after “+”. Highlighted are

the results ranked the , and

solutions compared to LNS2 (see Table 5 for a comparison
of their initial delays in maps with the highest number of
agents). However, running various LNS methods starting
from LaCAM?2 initial solutions yields final delays similar to
those starting from LNS2 initial solutions. The discrepancies
in final delays for RandomWalkProb between LNS2 and La-
CAM?2 within 300s are consistently less than 350 across all
maps. Even under a 60s limit, the discrepancies remain below
770, except for map ost 003d. We also examine the final
delays when using EECBS as the initial solver. Although
EECBS provides higher-quality initial solutions than LNS2,
it fails to solve all instances within 10s. Nevertheless, the dif-
ferences in final delays for RandomWalkProb between LNS2
and EECBS within both 300s and 60s are consistently be-
low 400. These findings suggest that delays decrease rapidly
in the early stages of the LNS process. Consequently, fast

Solver empty random warehouse ost003d den520d Paris
+500 +350 +350 +600 +900 +750

LNS2 87242 93054 8020.1 26806.3 31463.2 20460.5

LaCAM2 | 13058.5 14969.3 22804.4 38632.1 512045 31249.1

Table 5: Delays of the initial solutions found by LNS2 and
LaCAM?2 in maps with the highest number of agent.

and scalable solvers like LaCAM2 and LNS2, which can
solve most MAPF instances with many agents, should be
preferred even if their initial solutions are of lower quality
(see Tables 17 and 18 in the appendix for numerical results
on LaCAM?2 and EECBS).

4.2 Outlooks on Improving MAPF-LNS

Our evaluation within the unified framework reveals that
current learning-based methods do not exhibit a clear advan-
tage over rule-based strategies in terms of time efficiency
or improvement capacity. This is primarily due to high time
overheads, inaccurate predictions, or the use of inappropriate
algorithms in these methods. Nevertheless, our comprehen-
sive analysis indicates several promising future directions for
improving MAPF-LNS.

1) Properly targeting high-delayed agents. The core idea
of RandomWalk is to optimize high-delayed agents in each
iteration. The superior performance of RandomWalk and
RandomWalkProb over others suggests that improving high-
delayed agents is an efficient empirical heuristic. Intuitively,
focusing on high-delayed agents aligns with the principles
of greedy algorithms, which are widely recognized as power-
ful tools in combinatorial optimization (Papadimitriou and
Steiglitz 1998). They provide efficient solutions to complex
problems by making locally optimal choices at each step and
strike a balance between solution quality and efficiency, espe-

PP — PBS
+ + +

05 random+350 29.0 0st003d+600 95 warehouse+350
] |
i
% 80 ‘ 235, 6.5
>
© |
Bes | 18.0 35
[a]

505 50 100 150 200 >0 25 50 75 100 "0 1000 2000

Iteration

Figure 3: Delay vs. Iteration when the replan solver is PBS
or PP. The neighborhood selection strategy is RandomWalk
with a neighborhood size of 25 in all cases.

cially for NP-hard problems. Different algorithm designs of
RandomWalk and RandomWalkProb result in marginally dif-
ferent performance in experiments, other viable approaches
for targeting high-delayed agents can be explored.

2) Contextual bandit for sequential decision-making. We
observe that the supervised learning methods, e.g., SVM and
NNS, incur high time overheads. In contrast, Bandit alter-
nates among rule-based strategies in each iteration as sequen-
tial decision-making with minimal computational overhead.
This makes Bandit particularly suitable for integration into
the MAPF-LNS framework. Although Bandit employs an
inappropriate non-contextual bandit algorithm, it performs
well in two domains under a 60s time limit. This suggests
that a well learned policy for selecting the best rule-based
strategies at each time step can significantly enhance MAPF-
LNS. Therefore, exploring contextual bandit algorithms is
a promising direction. Contextual bandits can address the
theoretical limitations of non-contextual approaches by in-
corporating contextual information into decision-making, po-
tentially leading to better and robust empirical results.

3) Learning the priority order of replan agents. We ob-
serve that PBS performs better than PP on a per-iteration
basis. This is illustrated by the delay-versus-iteration curves
shown in Figure 3 for various scenarios. In random and
o0std003d, the disparity in delay elimination between PBS
and PP is huge. In warehouse, although PP initially re-
duces delays quickly, it still requires significantly more it-
erations to achieve the same final delay as PBS. The better
per-iteration performance of PBS is due to its strategy of
searching for partial priorities among replan agents. In con-
trast, PP randomly assigns full priority to agents. However,
as discussed in Sec. 3.3, PBS struggles with time efficiency
when evaluated on a runtime basis, as searching for partial
priorities is computationally expensive. This highlights an
opportunity for improvement: if a fast learning model can
predict a reasonable priority order for replan agents, it can
enhance time efficiency while improving solution quality.
4) Identifying the suitable neighborhood size. Neighbor-
hood size is a critical factor for MAPF-LNS, but is underex-
plored in previous papers. Intuitively, a smaller neighborhood
size allows for faster iterations but may limit the improve-
ment in solution quality. Conversely, a larger neighborhood
size can lead to more improvement per iteration, but at the
cost of increased computational time. Thus, there is a trade-
off between runtime efficiency and the improvement quality.
To highlight the importance of neighborhood size, we com-

5 empty+400 105 random+250 warehouse+250
N32 N32 N32 N32 N32 N32 N32 nN32 N32 N32 N3z N&
6 7.0 2 b | |
Ng N4 N6 ng ng N4 N4 N6 N4 N8 N4 N4 N4
N16
3l 35 1/ a8 Ni6
=
= 0 0.0 0
X RW INT RANDADP RWP RW INT RANDADP RWP RW INT RANDADP RWP
g)
T 195 0st003d+400 255 den520d+700 105 Paris+550
[N4 N4 N4
a N32
13.0 32 N32 5y | 170 7.0
8 N16 N4 Na
6.5 N& Na | 85 N16 N32 35
e 32 g Ne NB2 Gad N4 g
| B I B R

0.

=)

0.0 22 -
RW INT RANDADP RWP RW INT RANDADP RWP

Rule-based Strategy

RW INT RANDADP RWP

Figure 4: Final Delays using the Best and Worst neighbor-
hood size within 300s. RW, INT, RAND, ADP, and RWP
stand for RandomWalk, Intersection, Random, Adaptive, and
RandomWalkProb. The blue and pink columns indicate the
highest and lowest delays. The neighborhood sizes are la-
beled at the top of each subfigure.

pare the final delays achieved by rule-based strategies using
the best and worst neighborhood sizes within a 300s time
limit, as shown in Fig. 4. Since a neighborhood size of 2 is
generally ineffective, we consider sizes from {4, 8, 16, 32}.
In most cases, using the best size reduces final delays by ap-
proximately 50% compared to the least favorable size. This
difference suggests the potential for performance gains by
learning to identify a suitable neighborhood size dynamically.

The only work that attempts to dynamically determine
neighborhood size is Bandit. However, as previously dis-
cussed, it employs a non-contextual algorithm, which is un-
suitable for this purpose. We observe that its performance
is similar to selecting neighborhood sizes uniformly at ran-
dom (we build a baseline, named Uni-Bandit, by modifying
the second arm in Bandit to randomly choose neighborhood
sizes, results in Table 9 in the appendix validate this simi-
larity). Therefore, a more sophisticated approach, such as a
contextual bandit or other advanced methods, is necessary
for effective neighborhood size selection.

5 Conclusion

In this work, we conducted a comprehensive reevaluation of
prominent MAPF-LNS methods, including recent advances
leveraging machine learning. We identified several pitfalls
in their evaluations and proposed a unified framework to
address these challenges. Our results demonstrate that cur-
rent learning-based methods fail to exhibit a clear advantage
over simple rule-based heuristics, while RandomWalk and its
variant RandomWalkProb, consistently deliver robust perfor-
mance across diverse scenarios. Furthermore, our evaluation
and extensive experiments highlight promising directions
for advancing MAPF-LNS, such as targeting high-delayed
agents, employing contextual algorithms for strategy selec-
tion, learning replanning agent orders, and dynamically iden-
tifying suitable neighborhood sizes. We believe this work will
encourage future research to adopt more rigorous experimen-
tal designs and inspire innovative approaches to enhancing
MAPF-LNS through machine learning.

References

Chen, Z.; Li, J.; Harabor, D.; and Stuckey, P. J. 2023. Scalable
Rail Planning and Replanning with Soft Deadlines. arXiv
preprint arXiv:2306.06455.

Demir, E.; Bektas, T.; and Laporte, G. 2012. An adaptive
large neighborhood search heuristic for the pollution-routing
problem. Eur. J. Oper. Res., 223(2): 346-359.

Erdmann, M.; and Lozano-Perez, T. 1987. On multiple mov-
ing objects. Algorithmica, 2: 477-521.

Fines, K.; Sharpanskykh, A.; and Vert, M. 2020. Agent-based
distributed planning and coordination for resilient airport
surface movement operations. Aerospace, 7(4): 48.

Huang, T.; Li, J.; Koenig, S.; and Dilkina, B. 2022. Any-
time multi-agent path finding via machine learning-guided
large neighborhood search. In Proc. AAAI Conf. Artif. Intell.
(AAAI), volume 36, 9368-9376.

Jiang, H.; Zhang, Y.; Veerapaneni, R.; and Li, J. 2024. Scal-
ing Lifelong Multi-Agent Path Finding to More Realistic
Settings: Research Challenges and Opportunities. In Proc.
Int. Symp. Combinatorial Search (SoCS), volume 17, 234—
242.

Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2021a. Anytime multi-agent path finding via large neighbor-
hood search. In Proc. Int. Joint Conf. Artif. Intell. (IJCAI),
4127-4135.

Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig,
S. 2022. MAPF-LNS2: Fast repairing for multi-agent path
finding via large neighborhood search. In Proc. AAAI Conf.
Artif. Intell. (AAAI), volume 36, 10256-10265.

Li, J.; Chen, Z.; Zheng, Y.; Chan, S.-H.; Harabor, D.; Stuckey,
P. J.; Ma, H.; and Koenig, S. 2021b. Scalable rail planning
and replanning: Winning the 2020 flatland challenge. In Proc.
Int. Conf. Automated Planning and Scheduling (ICAPS), vol-
ume 31, 477-485.

Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: A bounded-
suboptimal search for multi-agent path finding. In Proc. AAAI
Conf. Artif. Intell. (AAAI), volume 35, 12353-12362.

Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. S.;
and Koenig, S. 2021c. Lifelong multi-agent path finding in
large-scale warehouses. In Proc. AAAI Conf. Artif. Intell.
(AAAI), volume 35, 11272-11281.

Li, J.; Wang, Y.; and McAuley, J. 2020. Time interval aware
self-attention for sequential recommendation. In Proc. Int.
Conf. Web Search and Data Mining (WSDM), 322-330.

Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S. 2019.
Searching with consistent prioritization for multi-agent path
finding. In Proc. AAAI Conf. Artif. Intell. (AAAI), volume 33,
7643-7650.

Ma, H.; and Koenig, S. 2017. Al buzzwords explained: multi-
agent path finding (MAPF). AI Matters, 3(3): 15-19.

Ma, H.; Yang, J.; Cohen, L.; Kumar, T.; and Koenig, S. 2017.
Feasibility study: Moving non-homogeneous teams in con-
gested video game environments. In Proc. AAAI Conf. Artif.
Intell. Interactive Digital Entertainment (AIIDE), volume 13,
270-272.

Ma, Z.; Luo, Y.; and Ma, H. 2021. Distributed heuristic
multi-agent path finding with communication. In Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), 8699-8705. IEEE.

Ma, Z.; Luo, Y.; and Pan, J. 2021. Learning selective com-
munication for multi-agent path finding. IEEE Robot. Autom.
Lett., 7(2): 1455-1462.

Morris, R.; Pasareanu, C. S.; Luckow, K.; Malik, W.; Ma, H.;
Kumar, T. S.; and Koenig, S. 2016. Planning, scheduling and
monitoring for airport surface operations. In Workshops at
the Thirtieth AAAI Conf. Artif. Intell. (AAAI).

Okumura, K. 2023. Improving LACAM for Scalable Even-
tually Optimal Multi-Agent Pathfinding. In Proc. Int. Joint
Conf. Artif. Intell. (IJCAI), 243-251.

Papadimitriou, C. H.; and Steiglitz, K. 1998. Combinatorial
optimization: algorithms and complexity. Courier Corpora-
tion.

Phan, T.; Huang, T.; Dilkina, B.; and Koenig, S. 2024. Adap-
tive Anytime Multi-Agent Path Finding Using Bandit-Based
Large Neighborhood Search. In Proc. AAAI Conf. Artif. Intell.
(AAAI), volume 38, 17514-17522.

Pisinger, D.; and Ropke, S. 2010. Large neighborhood search.
Handbook of Metaheuristics, 399-419.

Sajid, Q.; Luna, R.; and Bekris, K. 2012. Multi-agent
pathfinding with simultaneous execution of single-agent prim-
itives. In Proc. Int. Symp. Combinatorial Search (SoCS),
volume 3, 88-96.

Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Kumar, T. S.;
Koenig, S.; and Choset, H. 2019. PRIMAL: Pathfinding
via reinforcement and imitation multi-agent learning. /IEEE
Robot. Autom. Lett., 4(3): 2378-2385.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artif. Intell., 219: 40-66.

Song, J.; Yue, Y.; Dilkina, B.; et al. 2020. A general large
neighborhood search framework for solving integer linear
programs. Adv. Neural Inf. Process. Syst. (NeurlPS), 33:
20012-20023.

Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In Proc. Int. Symp. Combinatorial Search
(SoCS), volume 10, 151-158.

Yan, Z.; and Wu, C. 2024. Neural Neighborhood Search
for Multi-agent Path Finding. In Proc. Int. Conf. Learn.
Represent. (ICLR).

Yu, J.; and LaValle, S. 2013. Structure and intractability of
optimal multi-robot path planning on graphs. In Proc. AAAI
Conf. Artif. Intell. (AAAI), volume 27, 1443—-1449.

Yu, L.; Zhang, C.; Liang, S.; and Zhang, X. 2019. Multi-
order attentive ranking model for sequential recommendation.
In Proc. AAAI Conf. Artif. Intell. (AAAI), volume 33, 5709—
5716.

APPENDIX

6 Summary of Unified Evaluation and
RandomWalkProb

We provide a summary of the unified evaluation framework,
including details on initial solutions, replan solvers, and the
number of agents in each map. Additionally, we clarify the
missing implementation details of RandomWalkProb, a mod-
ified variant of RandomWalk.

6.1 Unified Evaluation

The initial solutions, replan solvers, and neighborhood sizes
used for different methods, and the number of agents evalu-
ated in different maps are summarized in Table 6. All methods
are evaluated on a machine equipped with an Intel E5-2683
CPU with a memory limit of 2G. Specifically, the execution
of the neural network in Neural-LNS is performed on an
NVIDIA P100 GPU.

Method ‘ Initial Solution ‘Replan Solver‘ Neighborhood size
RandomWalk | LaCAM2, LNS2 PP {4,8,16,32}
Intersection | LaCAM2, LNS2 PP {4,8,16,32}
Random |LaCAM?2, LNS2 PP {4,8,16,32}
Adaptive | LaCAM2, LNS2 PP {4,8,16,32}
name LaCAM?2, LNS2 PP {4,8,16,32}

SVM LaCAM2, LNS2 PP {4,8,16,32}

NNS LaCAM2, LNS2 PP {4,8,16,32}

Bandit LaCAM?2, LNS2 PP {2,4, 8,16, 32} by second arm
Ori-SVM | PP, PPS, EECBS PP Uniformly select from 5 to 16
Ori-NNS PP, PPS PBS {10, 25, 50} for different maps
Ori-Bandit | PP, PPS, EECBS PP {2,4, 8,16, 32} by second arm

Map ‘ Number of agents

empty-32-32 (empty) 300, 350, 400, 450, 500
random-32-32-20 (random) 150, 200, 250, 300, 350
warehouse-10-20-10-2-1 (warehouse) | 150, 200, 250, 300, 350
0st003d 200, 300, 400, 500, 600

den520d 500, 600, 700, 800, 900

Paris_1_256 (Paris) 350, 450, 550, 650, 750

Table 6: Top: Initial solutions, replan solvers, neighborhood
sizes used for evaluating different methods. ’Ori-’ refers to
methods evaluated according to its original papers. Bottom:
number of agents evaluated in different maps.

6.2 Algorithm Design of RandomWalkProb

RandomWalkProb shares the same motivation as Ran-
domWalk, which focuses on improving the high-delayed
agents. However, the original algorithm of RandomWalk has
two potential limitations: 1) it uses a tracking set to record
previously selected high-delayed agents, preventing them
from being selected again for subsequent random_walk
searches even if they still have significant delays; 2) when
the neighborhood size is not reached after a random_walk
search, a random agent is chosen as the next starting agent,
which is less informative regarding the delays. Therefore, we
conduct two modifications on RandomWalk. First, we remove

the tracking set. Second, whenever to start a random_walk
search, the starting agent is sampled according to a probabil-

ity proportional to its delay, i.e. Pr(a;) = %.

Algo. 1 is the pseudo code comparing RandomWalk and
RandomWalkProb (gray lines only exist in RandomWalk, and
blue lines only exist in RandomWalkProb). RandomWalk
tracks previously selected starting agents into a tabuList
[Line 2 to Line 3], which is reset after all delayed agents
have been chosen as the starting agents [Line 4]. When the
neighborhood size is not reached after one search, a random
agent is chosen from A as the start agent [Line 9] to perform
another random_walk search. RandomWalkProb selects
the starting agent aj, by sampling according to a probability
proportional to delays [Line 1 and Line §].

After selecting the starting agent ag, both RandomWalk
and RandomWalkProb use the same random_walk ()
search function [Line 7; Line 10 to Line 18] to prioritize
moving the starting agent aj, towards a shorter path. The
random_walk () function first randomly selects a start
state = along agent ay’s path pg [Line 11]. It then collects
possible vertices v € N, where agent a;, at time step t+1 can
reach and move towards a shorter path to g;, while ignoring
other agents [Line 12]. Since any path passing through vertex
v at time step ¢ + 1 must be at least t + 1 4 d(v, g) in length,
the condition for selecting v is t + 1 + d(v, gi) < l(p). As
long as N, is not empty and collected agents are not enough
[Line 13], the agent moves to a random vertex y € N, [Line
14] and adds any agents who collide with action to A [Line
15] and updates the set N, [Line 17].

7 SVM/Neural-LNS Training Details

We outline the training details for SVM-LNS and Neural-
LNS, including replicating their reported performance by
adhering to the settings specified in their original papers, and
the reevaluation under our unified settings.

7.1 SVM-LNS

Training Data for original SVM-LNS according to Huang
et al. (2022). We use the suggested number of agents
in Huang et al. (2022) to train SVM if the map ex-
ists in the original paper (i.e. 100 for warehouse, 100
for ostd003d, 200 for den520d and 250 for Paris).
For maps not evaluated in Huang et al. (2022), we
use 300 agents for empty—-32-32 and 150 agents for
random-32-32-20. The neighborhood size is uniformly
selected between 5 and 16 (as denoted in Table 6). Follow-
ing the original paper, we run 16 scenes on each map and
switch between RandomWalk and Intersection with equal
probability to generated 20 neighborhood candidates. The
ground truth ranking information for these 20 candidates is
determined by the delay improvement if each neighborhood
is removed and replaced.

Training Data for SVM-LNS under our unified settings.
We use the best rule-based strategy with the best neighbor-
hood size for each map to collect training data. The maps
contain a medium number of agents. The used strategy with
the neighborhood size for collecting training data are the

Algorithm 1: RandomWalk / RandomWalkProb

Input: Graph G = (V, E), agents A = {a1, ..., an },
neighborhood size M, paths P = {p1,...,pn},
tabu List from previous LNS iteration,

number of delayed agents Ngejqy
del
1 ay ~ Pr(ay) = 7&3@%%)
2 aj < argmax,, e A\ mbuList 1d€lay (p;)}
3 tabuList < tabuList U {ay, }
4 if [tabuList| = Ngeiay then tabuList < ()
5 A<+ {ak}
6 while |A| < M do
7 A + random_walk(G, ay, P, A, M)
del .
| aw~Pr(an) = sty Jiﬁ’éﬁ'{;i)
9 aj < random agent in A
10 Function random_walk (G, a, P, fl, M):
1 (z,t) < (pk[t],t), where t is a random timestep
of py,

12 N, +{veV|(z,v) €
EU{(z,z)} At +1+d(v,gr) <l(px)}
13 | while |[N;| >0A|A| < M do

14 y < arandom vertex in IV,

15 A + AU { agents collide with action
‘moving to y° }

16 (z,t) « (y,t +1)

17 N, +{veV|(z,v) €

EU{(z,2)} At+1+d(v,gr) < l(pr)}

18 return A

same as training Neural-LNS under our unified setting, e.g.,
see the first three columns of the bottom part of Table 7.

Validation Data. We run SVM-LNS on 4 additional scenes
for each map with 100 iterations to collect validation data.
In each iteration, the best neighborhood is selected as the
ground truth.

Training. SVM-LNS trains its SVM model dynamically
during execution. The implementation of SVM is using
SVM" ™3 which is suggested by original authors. The
model is updated immediately after collecting new data and
is then used to gather additional data in the next iteration.
Training is conducted on 16 scenes per map, resulting in
16 new data points collected per LNS iteration. The model
undergoes training for 100 iterations, with the best model
selected based on its average rank on the validation set.

7.2 Neural-LNS

Training Data for original Neural-LNS according to Yan
and Wu (2024). We used the number of agents, rule-based
strategies and neighborhood size suggested by the authors to
collect data for the training set, which are summarized in the
top of Table 7. We run 25 to 50 iterations to collect data for
each map until there is no further decrease in delays.

3https://www.cs.cornell.edu/people/tj/svm_light/svm _rank.html

Ori-NNS Training Data Collection

Map Strategy ‘ NB ‘ Iteration ‘ Scene ‘ Data Amount

empty Random 50 50 5000 250000
random RandomWalk | 25 50 5000 250000
warehouse | RandomWalk | 25 25 5000 125000
ost003d | RandomWalk | 10 25 1000 25000
den520d | RandomWalk | 25 50 5000 250000
Paris RandomWalk | 25 50 4000 200000

NNS Training Data Collection

Map Strategy ‘ NB ‘ Iteration ‘ Scenes ‘ Data Amount
empty Adaptive 8 1400 300 420000
random RandomWalk 8 1000 100 100000
warehouse Adaptive 32 200 200 40000
ost003d | RandomWalkProb | 16 400 250 100000
den520d | RandomWalkProb | 16 500 200 100000

Paris RandomWalkProb | 32 200 350 70000

Table 7: Top: Training Data Collection Strategy of Ori-NNS.
Bottom: Training Data Collection Strategy of NNS trained
under our unified setting. ‘NB’ is the neighborhood size.

In each iteration, 100 neighborhood candidates are pro-
posed using the suggested rule-based strategy and neighbor-
hood size. The ground truth ranking of these 100 neighbor-
hood candidates is determined by the delay improvement.

Training Data for Neural-LNS under our unified settings.
We use the best rule-based strategy with the best neighbor-
hood size for each map to collect training data. The maps
contain a medium number of agents. The replan solver is
PP, which requires more iterations than PBS to converge. As
a result, we use fewer scenes per map to gather a compara-
ble amount of data. The exact number of iterations, scenes,
neighborhood sizes, and removal strategies for each map are
detailed in the bottom part of Table 7.

Validation Data. We run additional 25 scenes to gather
validation data for original NNS. We run additional 4 scenes
to collect validation data for NNS under our unified setting.
Similar to collecting training data, we use fewer scenes than
original NNS because we use PP as the replan solver, al-
lowing more iterations to generate more data from a single
scene.

Training. For each map, the model is trained on the cor-
responding training set. We stop the training when the loss
converges and the average ranking on the validation set no
longer improves for another 1,000 steps. We calculate the
average rank on the validation set to select the best model
checkpoint for inference. Here, *average ranking’ means the
mean ranking of the best neighborhood predicted by the
model appearing in the ground truth ranking over the valida-
tion dataset.

Hyperparameters. We search for the optimal learning
rate within {0.1,0.01, 0.001,0.0001,0.00001} and choose
0.00001. This is smaller than the 0.0001 learning rate used in
the original paper. We find that a smaller learning rate results

in a more stable reduction in loss on our training data. We use
a batch size of 16 and train the model for 10, 000 to 100, 000
steps until the loss and validation score no longer improve
for an additional 1, 000 steps. The entire training process is
completed in less than 24 hours.

Testing. We use an NVIDIA P100 GPU for neural net-
work inference. The average GPU inference overhead of is
summarized in Table 8.

Map ‘ N ‘ Overhead (s) ‘ Map ‘ N ‘ Overhead (s) ‘ Map ‘ N ‘ Overhead (s)

300 0.016 150 0.014 150 0.042
= |350 0.017 £ |200 0.015 % 200 0.043
g 400 0.019 '% 250 0.021 'ag 250 0.043

450 0.022 = 1300 0.024 z | 300 0.044

500 0.028 350 0.026 350 0.044

200 0.020 500 0.033 350 0.038
5 300 0.020 § 600 0.041 2 450 0.038
2 400 0.024 ‘2 | 700 0.041 &3 550 0.038
° 1500 0.024 S | 800 0.055 650 0.040

600 0.027 900 0.045 750 0.042

Table 8: Average Overhead of NNS inference on GPU.

8 Additional Results
8.1 Uni-Bandit vs. Bandit

The comparison between our baseline, Uni-Bandit (which
modifies the second arm in Bandit to randomly select neigh-
borhood sizes), and the original Bandit is summarized in
Table 9. The results validate that the performance of Bandit’s
second arm is similar to choose neighborhood sizes uniformly
at random.

| | Deay | Auc | | | Dey | AUC

| |Bandit Uni-B|Bandit Uni-B|

| Bandit Uni-B | Bandit Uni-B

300 3863 391.7| 133 13.6 150| 330.1 330.5| 103 103
350| 811.5 8124| 285 285 2001 779.1 778.7| 249 248
400(1537.2 1547.1| 542 547 250(1507.3 1525.7| 49.3 49.7
450(2753.7 2761.2| 96.5 96.0 300|2746.0 2760.5| 92.0 92.0
500(4318.5 4302.1| 150.8 149.5 350(4564.1 4565.1| 1559 155.1

empty
random

150| 107.9 111.8 3.6 3.7 200| 1582 163.8 8.3 8.3
200| 2394 2343 8.0 79 300| 532.8 484.3| 334 312
250| 4142 4140| 142 145 400(1276.3 1327.3| 752 750
300| 669.5 677.2| 238 24.1 500(3059.8 2873.5| 163.6 155.8
350|1047.7 1042.6| 382 39.1 600 6093.7 6430.8| 311.4 321.9

warehouse
ost003d

500| 607.8 593.6| 47.8 473 3501 719 740 4.6 5.0
600|1247.0 12342 89.2 879 450(130.8 120.8(11.0 10.1
70022974 2195.9| 1502 144.2 550 2053 212.5| 207 214
800|3330.3 3607.8| 209.4 221.5 650| 307.5 303.0| 37.0 369
900|5343.5 5421.0| 308.9 310.6 750| 577.0 523.6| 70.6 66.2

den520d
Paris

Table 9: Final delay of Bandit and Uni-Bandit. Time
limit is 300s. Note: ‘Uni-B’ represents the baseline Uni-
Bandit, which uniformly selects a neighborhood size from
2,4,8,16, 32 at random.

8.2 Generalization of SVM-LNS and NNS-LNS

Collecting training data and retraining SVM-LNS and NNS-
LNS for every agent number is costly and impractical. A
key strength of supervised learning models is their ability
to generalize. We evaluate this by varying one factor at a
time—agent number, removal strategy, neighborhood size,
or initial solution—while keeping the others fixed. Table 10
compares the final delays and AUC of generalized and un-
generalized models across these variations, showing compa-
rable performance and validating the generalization ability
of both models.

8.3 PP vs.PBS

PBS is claimed to be superior over PP in some cases by Yan
and Wu (2024) (e.g., see Table 1 of (Yan and Wu 2024)). We
investigate the efficiency of these two replan solvers in all 30
evaluation cases, i.e., 6 maps with 5 different agent amounts,
along with two initial solvers. We fix the neighborhood se-
lection heuristic as RandomWalk and the neighborhood size
as 25, which are suggested by Yan and Wu (2024) in most
cases. We report the total iterations, final delays, and AUC of
the delay-versus-time curves with time limits 60s and 300s
in Table 11 and Table 12. The results where PBS is better
than PP is highlighted in red. For final delays, PP is better
than PBS in 72.5% (87/120) cases. For AUC, PP is better
than PBS in 81.7% (98 / 120) cases. Even though PBS is
better than PP in random map, the final delays and AUC are
relatively close. In general, PP runs significantly faster than
PBS and thus can explore a substantially larger number of
neighborhoods within the time limit.

8.4 Full Results

The complete results are shown in Table 13 (time limit: 300s,
initial solver: LNS2), Table 14 (time limit: 60s, initial solver:
LNS2), Table 15 (time limit: 300s, initial solver: LaCAM?2),
and Table 16 (time limit: 60s, initial solver: LaCAM?2).

8.5 Different Initial Solvers

The comparison of LNS2 and LaCAM?2 initial delays in maps
with the highest number of agents is provided in Table 5.
The final delays when initial solver is LaCAM2 in maps
with medium and highest number of agents are shown in
Table 17. The final delays when initial solver is EECBS in
maps with a medium number of agents are shown in Table 18.

Neighborhood Size Generalization Selection Strategy Generalization
| NB | SVM | NNS | Removal Strategy | SVM | NNS
Map | Train | Test | Delay ~AUC | Delay AUC Map | Train | Test | Delay AUC | Delay AUC
random 8 16 1688.2 61.3 1829.5 61.9 random RW ADP 1576.1 56.6 | 1752.7 583
+250 16 1700.6 60.7 1912.3 64.8 +250 ADP 1566.2 55.3 1735.0 58.0
den520d 16 837.6 97.8 1485.7 76.8 den520d RWP ADP 1793.0 1683 | 2759.8 1269
+700 8 861.5 98.5 1150.0 624 +700 ADP 1662.9 164.3 1964.9 932
Number of Agents Generalization Initial Solver Generalization
‘ Agent Num ‘ SVM ‘ NNS ‘ Initial Solution ‘ SVM ‘ NNS

Map | Train | Test | Delay ~AUC | Delay AUC Map | Train Test | Delay AUC | Delay — AUC
250 4800.2 1758 | 5466.7 1935 random LNS2 1521.2 60.1 1747.1 63.6

random 350 LaCAM2
350 4806.8 177.7 | 5513.1 188.9 +250 LaCAM2 1517.5 61.4 1811.4 65.7
250 1713.9 59.1 1683.7 57.5 random LNS2 1443.6 50.0 | 1604.9 53.9

random 250 EECBS
350 1578.6 56.3 1738.5 60.4 +250 EECBS 1452.2 514 1591.6 53.7
700 1816.6 216.5 1821.4 168.1 den520d LNS2 660.7 138.1 816.6 85.9

den520d 900 LaCAM2
900 41714 3297 1426.5 87.6 +700 LaCAM2 7109 128.0 771.5 79.1
1. 134. . . Paris LNS2 113.4 . 125.2 4.1

dens20d 900 700 931.5 34.9 793.6 67.3 aris NS EECBS 3 3.6 5

700 665.2 71.9 814.0 68.2 +450 EECBS 115.7 3.6 131.9 42

Table 10: Generalization results on four key parameters of SVM and NNS. The time limit is 300s. Note: ‘NB’ is the neighborhood
size. RW, ADP, and RWP stand for RandomWalk, Adaptive, and RandomWalkProb. Every two rows in a block represent a set of
generalization experiments on one map.

‘ Run Time Limit: 60s ‘

| | | |lerxlk)| Finaldelays |AUCx10k)| | | |lter(xlk)| Finaldelays | AUC (x10K)|
In; n In; n
| || " |ep PBS| PP PBS | PP PBS| | | |PP PBS| PP PBS | PP PBS |
300|821 048| 4396 4245| 39 607 150(621 0.58| 3521 3431 25 36
£1350(4.13 022| 1127.6 1.286.8| 9.4 142| [S]200(301 020 9525 8749 73 7.6
$l400|224 012 2.663.1 29824| 202 27.1| |5[250|222 0.07| 24495 2443.6| 186 217
S[450(2.15 011 51107 52110 369 41.4 - 3300(2.03 0.04| 53182 56932| 39.6 44.9
2]]500|2.40 0.08| 8400.6 88153| 592 64.5|5| |350|2.61 0.00|14.729.1 14.630.2| 824 837
g £
“| |300[898 0.44| 4317 4369 35 48|F| [150]739 063| 3501 3469 23 28
«]350|422 025| 11098 1.081.8| 87 98| | (200|288 0.19| 9596 8755| 68 65
Z|400(2.28 0.5 25701 22382| 187 175 |Z]250(1.99 005| 24238 2301.4| 167 162
450(1.83 0.09| 48735 42036| 327 299 300|147 0.03| 5309.6 4.533.1| 337 304
500[1.51 0.05| 7.817.6 6.874.2| 49.3 452 350|157 0.02| 89669 8.076.5| 547 51.2
150(641 0.60| 1168 1331 14 66 200[1.73 0.09| 1985 10745 37 124
£1200|294 025 2598 3193 73 7.6 [S[300/093 007| 9888 3117.1| 139 356
Gl250|1.74 013| 4867 941.4| 186 21.7| |5[400(057 0.03| 32859 9.320.1| 373 816
5[3[300/1.06 0.07| 8452 2,987.7| 396 449| [3|500(0.19 0.01|12,1649 21,539.9| 986 1455
2| [350]065 0.03| 16258 79637| 824 837|S| |600]0.13 0.01]27.2903 35498.7|188.7 2212
L =
g| [150]6.59 057| 1221 1283 23 28|°| |200]1.75 0.06| 1839 897.6] 28 95
~]200(265 027| 2668 3102| 68 65| [[300/092 002| 9155 4.6309| 123 352
Z|250(1.83 015 4776 760.3| 167 162| |Z]400(0.52 003| 32307 80327| 324 623
300|115 0.09| 8327 1.7403| 337 304 500{0.21 0.01| 93353 16,709.3| 72.3 107.8
350|073 0.06| 14950 3237.5| 547 512 600(0.15 0.01|17,998.3 24,525.7|125.2 152.2
500(1.44 0.04| 8716 80824| 185 77.1 350|748 0.16| 998 817.8| 18 185
£1600|1.07 0.02| 2.266.5 17.753.3| 353 129.3| |S$[450|6.69 0.10| 1343 3032.1| 62 79.9
$1700|0.86 0.02| 43961 24.979.7| 579 1756| |$[550|537 005 2137 8.664.9| 106 119.2
|3 [800]0.53 0.01| 9.205.8 35921.6| 969 234.4| |3|650(4.58 0.03| 2980 15771.8| 185 1653
S| [900]0.49 0.01|12.900.4 45.686.7|124.4 291.1[-£] |750|3.57 0.02| 4836 24.171.6| 185 1653
b5 A
S| [500[1.28 0.05| 8996 61958] 159 529 350[5.98 0.17| 822 3837 1.0 84
600|172 0.06| 1.321.3 84855| 208 792| | (450|644 0.11| 1387 22742| 18 228
2700|078 0.02| 44365 166429| 49.1 1119| |Z|550|472 006 2193 4878.6| 4.1 460
800|061 0.02| 7.342.8 21.909.0| 732 142.2 650(4.49 0.04| 317.1 93046| 46 147
900 0.44 0.01]13,032.0 29,352.2|105.6 181.4 750(3.07 0.03| 6149 14707.1| 14.8 104.5

Table 11: Total iterations, final delays, and AUC in different evaluation cases within a time limit of 60s, using PP and PBS as
replan solvers. The neighborhood selection strategy is RandomWalk with a neighborhood size of 25. "In’ refers to the algorithm
used for finding initial solutions. For both final delays and AUC, lower values are better. The settings where PBS performs better
are highlighted in red, for all other settings, PP is superior.

‘ Run Time Limit: 300s ‘

| | | |ier(x10k)| Finaldelays | AUC(x10k) | | | |lter(x10k)| Finaldelays |AUC (x10K)|
In| n In| n

| || " |ep PBS| PP PBS | PP PBS | | | | PP PBS| PP PBS | PP PBS |

300[429 021 3679 3323| 133 146 150| 3.11 024| 3295 3214| 106 114
S(350|2.07 0.12| 8403 692.6| 31.7 339| |S|200| 1.58 0.10| 789.8 723.6| 27.3 258
51400[1.09 0.06 |1971.6 15443| 732 750| ||250| 1.24 0.03| 1857.1 16180 67.8 66.5
S1450(1.07 0.04 [3899.8 3259.0|140.4 1350| |3[300| 121 0.02| 41027 3603.0|147.9 145.2

22 500|1.28 0.03 |6615.2 6092.5|232.3 231.8 § 350| 1.06 0.01| 8553.1 7610.3|315.3 310.0

=1

%1 1300|464 019 3640 339.0] 126 135 5| |150] 378 023] 3339 3289 105 108
«|350(2.09 0.12] 853.1 695.7| 312 288| |« |200| 153 0.10| 8128 741.7| 274 252
%’400 1.10 0.071920.6 1400.2| 700 57.5 %250 121 0.03| 18412 1651.3| 654 612

450|1.00 0.04 [3749.9 3010.3|132.3 1127 300| 0.95 0.01| 42538 3527.6|146.1 123.1
500(0.98 0.02|6447.5 5352.5(216.7 186.7 350| 0.87 0.01| 82252 6477.2(260.5 221.7
150(3.01 0.19] 1134 1270| 41 97 200| 0.87 0.04| 1540 2788| 7.6 246
S{200|148 0.12| 2479 2625 94 16.1| |S[300] 050 0.03| 3820 1160.6| 268 828
é 2501093 0.08| 4355 4459 182 38.0 § 400| 0.37 0.02| 10094 4071.9| 76.5 207.7

5[3]300{055 0.05| 6787 741.9| 319 74.8|_[3|500| 0.13 0.01| 46189 9758.7|2759 483.5

g 350/0.35 00310829 1471.1] 611 1548|S| |600| 0.07 0.00|15629.5 26768.7|691.4 960.1

£ |150|2.11 019] 1179 1239| 37 64|8| |200]050 0.02| 1524 2734] 67 198
«|200]0.98 0.11] 247.5 2613| 83 1L.1| |« |300] 040 0.01| 3842 1976.4| 24.4 106.5
‘é’zso 070 0.07| 4317 4623| 153 219 %400 031 0.01| 1047.9 4422.1| 72.2 1923

300(0.55 0.05| 694.7 757.5| 264 415 500| 0.15 0.01| 3671.8 10219.3(204.6 417.5

350036 0.03|1042.3 1365.1| 434 752 600| 0.08 0.00|11334.0 19107.2|465.1 668.7

500|7.41 024 | 313.6 25458 28.7 1748 350[35.13 0.70| 993 983| 42 229
S1600|534 0.14| 6127 5572.8| 59.3 355.1| |S[450|31.77 048] 1304 2736| 63 653
51700452 0.12 11103 8460.1|1043 5257| ||550|25.61 033| 2040 1520.5| 112 168.1

S| 3[800|2.79 0.08 |2410.8 167843|198.8 832.8| |I[650(22.87 0.21| 2675 4650.5| 17.2 302.8

&| [900]|2.75 0.06 |3648.2 27560.2|274.3 1148.4 £| |750]1696 0.15| 3661 8294.7| 27.7 506.1

(=]

S| [500[6.64 024] 2066 2551.8] 260 1463| | [350]2020 071 804 1009| 30 116
«|600[5.23 0.16| 583.8 5301.9| 52.5 241.9| | |450|24.70 0.50| 1365 2167| 52 38.6
%’ 700(4.07 0.121196.9 8145.6| 97.4 38438 % 550|12.81 0.33| 2053 1159.8| 9.1 107.8

800|327 0.11 |2076.0 12242.9|159.8 535.8 650(20.25 0.23| 280.0 3658.0| 14.1 203.4

900(2.33 0.03|3979.5 23163.4(262.4 807.2 750| 9.60 0.17| 4142 6561.7| 25.5 323.9

Table 12: Total iterations, final delays, and AUC in different evaluation cases within a time limit of 300s, using PP and PBS as
replan solvers. The neighborhood selection strategy is RandomWalk with a neighborhood size of 25. 'In’ refers to the algorithm
used for finding initial solutions. For both final delays and AUC, lower values are better. The settings where PBS performs better
are highlighted in red, for all other settings, PP is superior.

g\ n\ RW INTC RAND ADP RWP SVM NNS Bandit Ori-SVM Ori-NNS
‘ ‘ Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC
300 4064 13.8 4351 152 369.0 12.6 3699 12.6 3815 154 7246 269 3863 133 3956 182

(350 814.6 28.6 9224 31.5 770.1 265 769.0 27.7 8007 329 12099 429 811.5 28.5 807.7 32.8

£1400 1513.7 53.7 17032 59.6 1431.1 50.1 1588.3 64.5 19285 70.0 1537.2 542 16404 63.9 14648 56.8

® 450 2695.0 95.4 2908.1 101.8 25853 91.1 2766.0 105.0 3136.3 112.2 2753.7 96.5 2936.5 109.9 2876.6 107.5
500 145.4 4205.4 143.9 44389 155.5 4093.8 5053.2 167.1 4803.2 179.7 4318.5 150.8 4776.3 174.7 5305.6 186.4
150| 332.6 10.5 352.6 114 3572 113 330.1 104 3374 108 3314 106 360.5 11.9 338.8 11.0

£|200 8112 262 8311 27.0 7713 25.6 7844 254 7865 27.3 9002 304 779.1 249 7908 26.3

2250 1582.6 53.2 1606.3 53.3 15275 50.6 1534.4 509 17139 59.1 1683.7 57.5 1662.8 583 1528.0 54.8

1300 2839.7 98.6 2885.9 100.1 27772 94.6 2885.9 104.9 30452 108.4 2746.0 92.0 3005.0 107.0 3207.8 115.5
350(4439.2 4609.3 155.5 4635.2 167.8 156.6 4800.2 175.8 5466.7 193.5 4564.1 155.8 5105.2 186.3 6004.1 206.3
150 1235 70 1226 48 1130 3.6 1141 4.6 2447 89 1079 1127 40 1647 55

%200 317.7 156 286.6 122 2428 84 2521 87 2453 97 469.6 17.7 2526 9.8 269.1 105

5|250| 433.1 6952 32.8 5377 234 4356 162 4438 164 439.6 193 749.0 314 4410 21.1 17.7

£1300 11615 53.7 950.3 42.0 683.7 29.1 7293 279 6813 343 15012 57.3 669.5 7032 36.8 31.1
350 19492 84.6 15159 662 1073.0 44.1 11349 447 11074 65.7 1871.1 77.1 11009 64.6 1094.5 56.1
200| 150.8 6.8 2907 144 1940 99 1492 63 1650 6.6 1582 83 1550 99 2454 120

2[300(3273 199 9295 456 6320 365 3376 213 3384 158 532.8 334 3382 343 5826 39.2

S1400| 761.8 48.3 2048.3 100.6 1668.8 86.3 746.1 51.0 850.3 843 12763 75.2 10863 106.5 1483.2 109.0

81500(2051.4 142.9 4460.2 223.1 3611.6 193.7 2094.8 141.0 2928.2 217.0 3059.8 163.6 3092.7 2234 4673.8 270.5
600|6069.5 318.3 8824.9 404.8 8424.3 399.2 6325.9 323.0 10104.8 459.1 294.6 6093.6 8604.1 457.2 11426.4 517.9
500| 293.5 22.8 14143 724 906.1 579 3062 26.1 3135 204 607.8 47.8 3943 60.7 7323 87.8

2|600| 5369 44.4 22932 116.0 1656.1 101.5 583.1 50.2 496.1 37.0 12470 892 972.6 117.2 1786.5 1734

2]700| 934.1 80.3 3415.0 175.9 2907.4 171.7 1049.8 88.0 77.9 814.0 2297.3 150.2 1880.1 200.1 4228.7 286.7

S[800(1476.1 123.0 4535.4 234.8 4639.0 258.2 1685.4 131.9 1102.0 99.7 3330.2 209.4 3876.9 312.9 7766.6 431.3
900(2290.1 166.7 6776.0 347.7 6447.9 345.6 2611.1 187.9 216.5 1821.4 5343.4 308.8 6161.2 420.2 13367.1 624.8
350| 80.0 1215 94 838 65 33 764 63 786 10.7 10665 4.6 817 74 1935 389

L|450] 127.4 273.6 222 1727 172 1249 66 122 1426 7. 737.1 110 1232 203 1308 42.9

Esso 203.6 540.8 383 3454 33.7 1922 117 165 217.5 122 2053 20.7 1965 37.6 7215 67.7
650| 278.1 14.0 963.6 66.7 6502 57.1 2702 17.7 313.1 18.7 1022.0 37.0 286.8 782 307.5 128.7
750| 404.7 1680.8 110.9 1211.7 99.1 396.9 33.7 4682 36.6 5769 70.6 4832 1266 2409.4 2435

Table 13: Final delays and AUC (divided by 10k) of different methods with best neighborhood size, evaluated on maps with
differing numbers of agents within 300s. Initial solver is LNS2. Highlighted are the results ranked ,and

g\ . | RW INTC RAND ADP RWP SVM NNS Bandit Ori-SVM Ori-NNS
‘ ‘ Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC
300 463.1 3.5 5222 40 424.7 4973 56 9726 74 4567 35 5845 7.6 4323 44
5350 989.7 7.6 1083.0 82 913.5 12872 11.0 15409 113 9947 7.7 11630 109 10314 9.2
400 19005 14.3 21059 152 1768.8 134 25840 197 24615 182 19164 143 24165 189 2127.1 173
© las0 3359.8 239 36400 24.9 3248.1 232 40943 284 41704 29.0 34553 24.8 4148.1 29.6 40953 29.4
500 5117.5 359 53766 362 5024.8 355 65659 43.7 63559 432 5473.0 38.0 6566.5 44.6 6908.0 46.0
150| 3548 24 3740 25 3794 25 354.9 3558 2.5 4082 29 361.1 2.6 3498 25
£[200] 8464 897.1 62 9272 64 850.0 868.6 59 9637 73 10659 7.6 894.1 6.5 6.1
2250 125 1862.1 132 18415 13.1 1762.5 17614 125 1990.0 14.8 20494 14.6 21765 14.8 19739 14.6
=1300 3307.9 23.0 33514 229 32167 3235.6 22.6 4001.1 28.1 3978.8 27.9 226 40432 275 42984 294
350 377 54562 384 54165 374 52909 6543.7 464 6877.1 464 5540.1 38.5 71139 47.7 75145 489
150 1219 2397 27 1394 14 118.7 1190 1.8 3233 27 1265 12 1784 15
%200 6208 60 3752 40 2652 24 2851 24 2755 3.7 6388 55 2909 35 3162 38
5250 13338 117 7917 9.1 4883 52 5346 5.1 6005 8.0 10186 94 657.2 100 5317 7.0
£1300 21883 184 15101 155 8392 88 8886 83 12524 16.1 2149.1 18.0 12659 182 10245 13.4
350 33462 269 24204 235 14634 154 14556 14.3 31050 31.6 2677.8 22.7 29712 305 21827 24.1
200 26 5220 56 3316 44 1761 25 2004 2.8 2056 2740 40 2210 59 3597 54
=(300| 5179 83 1761.0 17.5 13975 156 6363 93 8713 138 13094 153 15430 20.6 15209 20.2
Sl400| 17854 243 39752 382 34822 345 20138 253 4096.8 44.1 3127.5 314 57134 538 52467 49.7
l500| 5433.1 558 88475 759 82258 735 60741 584 105802 82.1 6941.8 622 108764 90.5 123734 94.0
600|13845.4 110.0 16830.7 127.1 16765.7 127.9 14271.6 108.2 18765.4 130.6 13217.6 106.2 20754.1 140.7 21677.9 144.8
500| 578.3 28242 28.6 2318.1 263 7400 13.1 760.6 20.5 11.6 19477 242 32393 385 4594.9 463
Z|600| 1330.7 225 44799 452 42466 442 16834 259 13247 3338 3808.8 41.3 63404 632 9197.9 747
©|700| 25833 384 71006 68.3 72565 67.9 3317.7 43.1 3562.8 46.6 6821.9 63.3 11421.6 93.5 13704.0 102.6
S[800| 4658.6 60.1 9677.4 90.0 111360 97.0 5919.9 66.9 7819.7 83.1 9650.5 85.3 16086.6 125.6 19454.3 136.2
900| 7159.6 14664.4 127.0 14546.4 124.7 8506.7 89.4 109982 111.5 85.6 13552.1 115.6 20674.6 153.4 26155.1 172.3
350] 823 3321 51 1764 40 L5 955 43 3055 52 825 29 841 54 12327 122
L|450 1338 8574 120 6805 10.1 2.7 1669 9.2 1869 34 2532 74 4365 170 14250 21.6
§550 14942 19.8 14850 18.7 2364 52 2435 118 2923 58 6922 139 16283 29.6 33420 39.5
650 2671.8 32.3 25010 289 3563 9.0 1081.9 27.6 4478 104 15089 23.8 39402 59.4 7253.6 65.1
750 46043 49.8 46203 452 689.1 16.8 2267.7 500 907.1 20.6 3220.9 41.1 7769.9 82.1 12831.9 97.3

Table 14: Final delays and AUC (divided by 10k) of different methods with best neighborhood size, evaluated on maps with
differing numbers of agents within 60s. Initial solver is LNS2. Highlighted are the results ranked , and

g‘ n RW INTC RAND ADP RWP SVM NNS Bandit Ori-SVM Ori-NNS
‘ ‘ Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC
300 402.1 14.0 4419 158 369.0 13.0 3748 164 7905 30.7 389.3 139 397.0 25.0 371.0 189
(350 8242 29.1 9302 32.8 759.4 27.0 823.0 405 1296.4 487 8444 302 8802 52.6 8264 404
E‘ 400 1593.4 583 17562 61.4 1484.4 539 16924 83.4 2094.8 81.6 1579.0 57.6 1857.5 97.6 16143 744
1450 2779.5 100.9 3040.7 108.2 2684.1 98.4 3020.0 140.3 3598.3 138.1 2828.1 103.1 3506.0 166.1 3318.3 143.9
500 4448.5 162.9 4828.2 171.8 4374.5 159.8 5194.9 223.5 5808.0 221.1 4772.6 173.8 5793.6 244.0 6085.3 242.9
150| 327.4 104 3443 114 3484 112 331.0 10.7 3329 11.7 361.7 12.1 337.6 123 3302 119
gZOO 805.8 264 836.8 27.5 770.6 252 767.8 26.1 780.8 329 8874 312 7775 305 770.6 309
2(250 15372 53.6 1613.5 54.3 1506.7 51.0 1494.1 50.6 1521.2 60.1 1747.1 63.6 1604.8 674 1698.5 70.9
1300 2769.2 99.7 2811.8 100.1 2663.6 953 2800.1 119.8 3171.0 122.6 2674.4 92.3 3084.9 138.8 34359 147.2
350 4622.2 184.6 4683.9 186.6 4406.5 163.8 5162.7 241.2 5886.5 241.8 4598.5 169.3 5983.6 262.9 7438.8 312.2
150| 1140 43 1276 7.6 1213 55 42 11238 112.0 89 183.7 102 1148 8.0 2065 228
%200 2475 9.2 309.6 19.1 281.0 14.0 102 249.1 10.1 2488 16.1 420.8 21.6 250.6 184 3755 57.7
—§ 250| 430.0 18.1 6985 480 5624 29.8 446.7 20.1 4446 41.1 782.1 38.3 4451 363 9615 1272
£1300| 680.6 343 12643 863 973.9 56.0 703.5 36.9 69.7 14239 789 6959 7162 70.5 22487 214.7
350 2011.0 158.7 1509.0 93.0 1055.0 63.1 1130.8 67.0 100.4 1907.0 101.4 1067.6 1097.6 112.2 5255.1 361.6
200| 155.6 7.5 2994 157 1833 103 1533 6.8 8.8 1623 170.1 9.5 1547 150 496.8 4438
2(300| 3338 18.8 868.4 434 611.8 359 3334 19.6 27.6 3393 496.5 335 359.8 522 16989 143.1
% 400| 7147 493 1849.6 97.5 14882 91.6 8052 55.2 762.5 96.4 12533 78.4 1083.7 123.7 52774 3102
é 500(2341.8 191.4 4338.9 2432 3900.2 231.6 4386.8 314.1 2379.1 171.6 3023.9 176.6 3719.0 312.9 12525.6 573.9
600|7514.0 450.6 10394.8 529.4 12466.1 613.5 8216.9 469.6 13066.6 618.0 8469.1 465.0 10153.9 625.0 25804.5 963.0
500| 311.1 27.6 1433.0 729 9727 62.8 311.5 29.1 334 3226 764.6 64.4 440.5 102.5 34379 272.1
§ 600| 546.3 523 2289.3 1189 1649.3 109.2 5974 55.6 759 5134 50.2 12354 959 1353.4 2282 8231.3 469.5
‘21700| 933.1 87.0 3163.0 169.0 2782.7 176.2 1075.2 91.3 660.7 138.1 816.6 2439.2 165.8 2259.0 327.1 15529.0 726.0
S[800(1548.6 128.4 4437.5 245.0 4337.2 266.4 1574.1 132.9 200.9 1323.8 147.8 3671.6 244.9 4906.7 499.1 21966.5 952.2
900 (2486.1 6426.0 351.1 6923.5 396.9 2819.9 225.6 2058.6 335.4 2067.1 217.6 5595.4 346.7 15199.0 723.9 31694.0 1247.0
350(874 130.6 10.4 844 83 44 79.0 213 181.7 142 83.6 6.7 80.0 20.0 12853 78.7
»|450| 1325 2749 228 1746 19.0 1233 79 16.0 1444 95 1334 150 133.0 46.6 1483.0 1345
E 550| 198.0 776.5 582 4669 48.6 1948 153 33.0 2289 17.1 2102 28.7 200.6 1053 2643.7 2614
650 276.7 960.1 74.0 7585 723 2754 20.7 70.0 319.2 284 3374 50.1 319.8 1457 7697.9 4593
750| 373.2 1821.2 123.2 1362.6 115.0 385.8 39.4 108.0 498.8 47.8 6273 87.1 616.3 261.5 13831.5 656.4

Table 15: Final delays and AUC (divided by 10k) of different methods with best neighborhood size, evaluated on maps with
differing numbers of agents within 300s. Initial solver is LaCAM?2. Highlighted are the results ranked

, and

g‘ n ‘ RW INTC RAND ADP RWP SVM NNS Bandit Ori-SVM Ori-NNS
‘ ‘ Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC
300 4619 39 5298 43 4215 5139 6.7 1111.1 92 4654 4.0 10658 132 5843 8.7
(350 9945 82 11157 89 7.6 919.0 1814.8 16.6 17413 14.1 10413 84 2497.8 23.1 1449.0 16.8
E‘ 400 152 2030.1 16.6 2130.5 164 1877.7 3679.9 30.5 2981.6 24.6 2027.8 16.1 4503.6 34.8 29428 279
1450 27.3 35814 282 38273 29.1 35132 5998.8 45.5 51854 39.6 3679.1 289 73182 51.7 5961.3 46.3
500 438 58953 45.6 6076.0 5790.6 447 8973.6 63.7 84754 60.3 62945 48.1 9866.2 67.5 9953.8 68.3
150 3673 2.6 3736 26 3484 3551 2.6 3572 35 4095 3.1 3752 40 3862 3.6
g 200 8858 6.5 9306 6.6 8433 846.5 6.2 10859 12.7 10934 84 996.5 10.7 1045.8 10.7
2(250 132 1830.5 14.5 18322 14.0 17335 1711.6 2274.6 199 22463 18.2 2587.1 23.6 26745 233
1300 32549 25.6 3323.0 24.6 31759 259 4683.8 40.2 4521.7 36.6 3149.7 24.7 5975.6 47.1 59674 462
350 46.4 6027.2 50.6 57649 46.7 5544.0 10463.7 754 9710.6 71.7 5944.0 499 10815.6 76.9 12978.2 83.9
150 1215 2382 39 1478 23 1.5 1249 6.1 3491 42 1187 15 1248 52 869.0 155
% 200 6352 9.7 3680 6.1 39 2882 42 3017 99 7221 89 2708 2984 12.1 33493 339
—§ 250 17314 249 8132 143 4854 87 537.1 88 11441 288 12019 16.1 873.0 244 74245 60.5
£1300 3361.8 42.1 1631.3 287 864.6 17.3 9355 18.6 2498.1 48.7 2821.1 33.7 3117.9 46.5 11665.5 85.4
350 7091.6 727 27644 49.8 1577.1 335 15144 342 44508 63.3 3366.5 45.0 5331.1 71.1 17479.6 119.6
200 32 5561 6.7 3369 50 1800 29 1743 52 2040 3020 47 269.6 109 21765 23.8
2(300| 547.6 9.7 1577.8 174 13082 16.0 6044 102 991.2 18.1 1305.7 16.2 20782 35.1 7563.8 58.8
% 400(1717.2 27.2 3618.8 41.1 3750.1 41.2 2023.8 29.1 5073.1 52.7 31184 352 6332.8 69.6 14720.5 102.2
é 500(7329.4 78.1 103862 96.3 9934.0 93.0 76.0 14676.1 117.5 7609.4 78.6 7467.7 15632.3 125.7 24107.7 156.0
600(20549.4 163.0 21653.0 171.5 22508.1 173.3 20281.3 160.2 26121.5 188.0 20302.9 162.1 29866.4 204.3 36312.5 224.6
500 659.4 26924 30.3 24106 300 885.1 17.5 6259 264 17.1 27927 33.0 55183 71.4 138344 993
§ 600| 1483.9 44857 49.8 4631.4 508 1630.7 29.2 33019 57.7 337 3979.6 47.5 14197.2 119.0 21399.6 141.3
‘21700 62547 71.3 7336.5 76.6 3418.0 51.8 6070.3 97.5 29340 56.2 7198.2 75.1 19781.8 158.8 30196.8 191.7
3800 9333.7 101.2 11107.2 110.0 5110.1 10157.1 128.7 5846.9 92.4 10615.0 106.9 26036.7 198.6 38304.4 241.5
900 13091.0 138.6 16636.2 154.7 9786.3 114.8 18143.9 185.3 9199.7 126.9 14398.9 144.2 30208.9 191.0 47864.2 297.4
350 93.3 318.1 6.1 2275 56 1.9 2285 192 407.7 82 111.1 46 171.8 18.0 38264 36.5
»|450] 136.5 842.0 129 664.6 12.4 3.6 1809 13.0 2109 56 3563 11.1 15757 413 75414 625
E 550 22694 27.1 2110.1 27.1 2364 74 545.6 279 3503 109 960.8 20.8 73139 78.0 13938.8 99.1
650 28919 37.3 3069.1 382 380.5 13.8 24747 589 5499 19.3 2019.2 33.8 9380.0 103.1 20920.9 137.6
750 4794.1 57.7 5078.5 557 681.7 223 5088.3 85.1 1080.6 32.8 3743.0 53.0 18276.6 146.3 27245.0 175.1

Table 16: Final delays and AUC (divided by 10k) of different methods with best neighborhood size, evaluated on maps with
differing numbers of agents within 60s. Initial solver is LaCAM?2. Highlighted are the results ranked , and

Highest Number of Agents; Time: 300s

‘ Medium Number of Agents; Time: 300s

empty random warehouse 0st003d den520d Paris empty random warehouse ost003d den520d Paris

Methods| +500 +350 +350 +600 +900 +750 +400 +250 +250 +400 +700 +550

‘Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC‘ Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC
RW 169.1 7514.0450.6 2486.1 201.9 3732 27.5 430.0 430.0 933.1 87.0 198.0
INT 4448.5162.9 4622.2 184.6 2011.0 158.710394.8529.4 6426.0 351.1 1821.2123.2|1593.4 58.31537.2 53.6 698.5 48.0 1849.6 97.5 3163.0169.0 776.5 582
RAND [4828.2171.8 4683.9 186.6 1509.0 93.0 12466.1613.5 6923.5 396.9 1362.6115.0|/1756.2 61.41613.5 54.3 562.4 29.8 1488.2 91.6 2782.7176.2 466.9 48.6
ADP 4374.5156.5 1055.0 63.1 8216.9469.6 2819.9 225.6 385.8 1506.7 51.0 19.3 8052 55.2 10752 91.3 194.8 153
RWP 159.8 4367.5 1130.8 67.0 1484.4 53.91494.1 50.6 446.7 20.1
SVM 5194.9223.5 5162.7 241.2 100.4 13066.6618.0 3354 108.0{1692.4 83.41521.2 60.1 444.6 41.1 762.5 96.4 138.1 33.0
NNS 5808.0221.1 5886.5 241.8 1907.0 101.4 465.0 2067.1 498.8 47.8[2094.8 81.61747.1 63.6 782.1 38.3 816.6 2289 17.1
Bandit |4772.6173.8 4598.5 169.3 5595.4 346.7 627.3 87.1{1579.0 57.6 1253.3 78.4 2439.2165.8 2102 28.7
Ori-SVM|5793.6244.0 5983.6 262.9 1097.6 112.210153.9625.015199.0 723.9 616.3261.5|/1857.5 97.61604.8 67.4 445.1 36.3 1083.7123.7 2259.0327.1 200.6105.3
Ori-NNS [6085.3242.9 7438.8 312.2 5255.1 361.625804.5963.031694.0 1247.013831.5656.4|1614.3 74.41698.5 70.9 961.5127.2 5277.4310.215529.0726.0 2643.7261.4

Highest Number of Agents; Time: 60s Medium Number of Agents; Time: 60s

RW 43.8 46.4 1421.0 20549.4163.0 4714 152 15.2 13.2 1717.2 272
INT 5895.3 45.6 6027.2 50.7 7091.6 72.7 21653.0171.513091.0 138.6 2030.1 16.6]2030.1 16.71830.5 14.51731.4 249 3618.8 41.1 6254.7 71.3 2269.4 27.1
RAND (6076.0 5764.9 46.7 2764.4 49.8 22508.1173.316636.2 154.7 2130.4 16.42130.5 16.41832.2 14.0 813.2 14.3 3750.1 41.2 7336.5 76.6 2110.1 27.1
ADP 5544.0 1577.1 33.5 20281.3160.2 9786.3 114.8 1861.7 17335 4854 8.7 2023.8 29.1 3418.0 51.8 2364 74
RWP 5790.5 44.6 342 1877.6 1711.6 13.1 537.1 8.8
SVM 8973.6 63.7 10463.7 75.4 4450.8 63.3 26121.5188.018143.9 185.4 5088.3 85.1{3679.9 30.52274.6 19.91144.1 28.8 5073.1 52.7 6070.3 97.5 545.6 27.9
NNS 8475.4 60.3 9710.6 71.7 3366.5 45.0 162.1 9199.7 126.9 32.8[2981.6 24.62246.3 18.21201.9 16.1 2934.0 56.2 350.3 10.9
Bandit [6294.5 48.2 5944.0 49.9 14398.9 144.2 3743.0 52.9[2027.9 16.1 31184 353 71982 75.1 960.8 20.8
Ori-SVM(9866.2 67.5 10815.6 76.9 5331.1 71.1 29866.4204.330208.9 191.018276.6146.3/4503.6 34.82587.1 23.6 873.0 24.4 6332.8 69.619781.8158.8 7314.0 78.0
Ori-NNS [9953.8 68.3 12978.2 83.9 17479.6119.636312.5224.647864.2 297.427245.0175.1|2942.8 27.92674.5 23.37424.5 60.514720.5102.230196.8 191.713938.8 99.1

Table 17: Final delays and AUC across methods in maps with the highest and medium number of agents. Time limits are 300s and
60s, respectively. Initial solver is LaCAM2. Note: RW, INT, RAND, ADP, and RWP stand for RandomWalk, Intersection, Random,
Adaptive, and RandomWalkProb, respectively. The number of agents follows the name of a map, i.e., after “+”. Highlighted are
the results ranked the , and

‘ Medium Number of Agents; Time: 300s ‘ Medium Number of Agents; Time: 60s

empty random warehouse 0st003d den520d Paris ‘ empty random warehouse 0st003d den520d Paris

Methods +400 +250 +250 +400 +700 +550 +400 +250 +250 +400 +700 +550
‘ Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC‘ Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC Delay AUC

RW - - - - - - - - - - - - - - - -
INT 12282 41.1 - - 4704 156 - - - - - - 14124 101 - - 5497 37 - - - - - -
RAND |1311.3 435 - - 4404 141 - - - - - - 114388 9.9 - - 4745 32 - - - - - -
ADP - - 4088 131 - - - - - - - - 4466 3.1 - - - - - -
RWP 1202.1 399 - - 4305 142 - - - - - - 113694 9.7 - - 4884 33 - - - - - -
SVM 12524 478 - - 4081 132 - - - - - - 118267 146 - - 4510 3.1 - - - - - -
NNS 1506.5 51.7 - - 5240 173 - - - - - - | 18235 131 - - 5999 41 - - - - - -
Bandit |1250.0 423 - - - - - - - - 14740 106 - - - - - - - -
Ori-SVM | 1313.6 51.8 - - 4172 137 - - - - - - |1968.9 157 - - 4558 35 - - - - - -
Ori-NNS | 1409.7 535 - - 4971 183 - - - - - - 19467 158 - - 6945 47 - - - - - -

Table 18: Final delays and AUC across methods for in maps with the medium number of agent. Time limits are 300s and 60s,
respectively. Initial solver is EECBS. Note: RW, INT, RAND, ADP, and RWP stand for RandomWalk, Intersection, Random,
Adaptive, and RandomWalkProb, respectively. The agent numbers are shown after the name of a map. Highlighted are the results
ranked , and

