
A Competitive Analysis of Online Multi-Agent Path Finding*

Hang Ma
Simon Fraser University

hangma@sfu.ca

Abstract

We study online Multi-Agent Path Finding (MAPF), where
new agents are constantly revealed over time and all agents
must find collision-free paths to their given goal locations. We
generalize existing complexity results of (offline) MAPF to
online MAPF. We classify online MAPF algorithms into dif-
ferent categories based on (1) controllability (the set of agents
that they can plan paths for at each time) and (2) rationality
(the quality of paths they plan) and study the relationships be-
tween them. We perform a competitive analysis for each cat-
egory of online MAPF algorithms with respect to commonly-
used objective functions. We show that a naive algorithm
that routes newly-revealed agents one at a time in sequence
achieves a competitive ratio that is asymptotically bounded
from both below and above by the number of agents with
respect to flowtime and makespan. We then show a counter-
intuitive result that, if rerouting of previously-revealed agents
is not allowed, any rational online MAPF algorithms, includ-
ing ones that plan optimal paths for all newly-revealed agents,
have the same asymptotic competitive ratio as the naive algo-
rithm, even on 2D 4-neighbor grids. We also derive constant
lower bounds on the competitive ratio of any rational online
MAPF algorithms that allow rerouting. The results thus pro-
vide theoretical insights into the effectiveness of using MAPF
algorithms in an online setting for the first time.

1 Introduction
Online Multi-Agent Path Finding (MAPF) (Švancara et al.
2019) models the problem of finding collision-free paths for
a stream of incoming agents in a given region. Its applica-
tions include autonomous intersection management (Dres-
ner and Stone 2008), UAV traffic management (Ho et al.
2019), video games (Ma et al. 2017b), and automated ware-
house systems (Wurman, D’Andrea, and Mountz 2008). For
example, Figure 1 shows the typical grid layout of part of
a modern automated warehouse, where warehouse robots
(orange squares) need to move inventory pods between
their storage locations (green cells) and inventory stations

*This work was supported by the Natural Sciences and Engi-
neering Research Council (NSERC) under grant number RGPIN-
2020-06540.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The 2D grid layout of part of an Amazon
Robotics automated warehouse, reproduced from Wurman,
D’Andrea, and Mountz (2008).

(squares in purple and pink). The narrow corridors in the
storage region are single-direction lanes where traffic is con-
trolled by a traffic-rule-based system. However, paths are
not known and must be planned for warehouse robots in the
intersection region (red rectangle) that is often highly con-
gested. Warehouse robots constantly enter this region at their
given start cells and must plan collision-free paths to and exit
at their given goal cells (along an edge of the rectangle). The
problem in such applications is online because each agent is
known only when it is about to enter such a region and the
future arrivals of agents are not known ahead of time.

Existing research has conducted empirical evaluations
of several online MAPF algorithms (Švancara et al. 2019)
based on recent techniques for (offline) MAPF (Stern et al.
2019). However, there is still a lack of theoretical under-
standing of online MAPF and its algorithms. In this paper,
we thus perform a theoretical analysis from the points of
view of competitive analysis and complexity theory.

1.1 Related Work
Offline MAPF: Online MAPF is an extension of the well-
studied problem of (offline) MAPF (Ma and Koenig 2017;
Stern et al. 2019), where all agents are known and start
routing at the same time. MAPF is NP-hard to solve opti-
mally for flowtime (the sum of the arrival times of all agents
at their goal locations) minimization and to approximate
within any constant factor less than 4/3 for makespan (the
maximum of the arrival times of all agents at their goal loca-
tions) minimization (Surynek 2010; Yu and LaValle 2013b;
Ma et al. 2016). It is NP-hard to solve optimally even on
planar graphs (Yu 2015) and 2D 4-neighbor grids (Banfi,

This version of the paper is intended to update the version published in the Proceedings of the Thirty-First
International Conference on Automated Planning and Scheduling (ICASP 2021). The definition of makespan (Section

2) has been corrected from maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri) to maxai∈A t

(g)
imaxai∈A t
(g)
imaxai∈A t
(g)
i . Other parts of the paper are not affected.

Basilico, and Amigoni 2017). MAPF algorithms include re-
ductions to other combinatorial problems (Yu and LaValle
2013a; Erdem et al. 2013; Surynek et al. 2016) and special-
ized algorithms (Luna and Bekris 2011; Wang and Botea
2011; Sharon et al. 2013, 2015; Boyarski et al. 2015; Cohen
et al. 2018; Ma et al. 2019a; Li et al. 2019a,b; Lam et al.
2019; Gange, Harabor, and Stuckey 2019; Li et al. 2020).
Online Problems: Ma et al. (2017a) and Ma et al. (2019b)
have considered an online version of MAPF where a given
set of agents must attend to a stream of tasks, consisting of
(sub-)goal locations to be assigned to the agents, that appear
at unknown times. This version considers the entire environ-
ment instead of a region of a system and thus does not con-
sider the appearance and disappearance of agents. Švancara
et al. (2019) and Ho et al. (2019) have considered another
online version of MAPF, similar to the setting of this pa-
per, where a stream of agents with preassigned goal loca-
tion appear at unknown times. Algorithms for solving such
online problems reduce each problem to a sequence of (of-
fline) MAPF sub-problems that are solved by a MAPF algo-
rithm. The effectiveness of these algorithms is characterized
by objective functions that measure how soon the tasks are
finished or the agents are routed to their goal locations. Ex-
isting study on online versions of MAPF has been empiri-
cal only. For example, both Ma et al. (2017a) and Švancara
et al. (2019) have experimentally shown that algorithms that
allow agents (that have paths already) to replan their paths
and reroute tend to be more effective than those that do not.
However, there is still a lack of theoretical understanding of
solving MAPF in an online setting.

1.2 Assumptions and Contributions
We follow most of the notations of Švancara et al. (2019)
and consider the setting where new agents can wait infinitely
long before entering a given region and agents disappear
upon exiting from the region because (1) existing online
MAPF algorithms have been designed and tested only for
this setting (Ho et al. 2019; Švancara et al. 2019), although
other settings concerning what happens before agents en-
ter the region and after agents leave the region have (only)
been mentioned (briefly) by Stern et al. (2019); Švancara
et al. (2019) and (2) queuing at entrances and exits of
such an intersection region is handled by a task-level plan-
ner/scheduler with reserved queuing spaces (for example,
queues in inventory stations and along the single-lane cor-
ridors in the storage region) in automated warehouses (Wur-
man, D’Andrea, and Mountz 2008; Kou et al. 2020) and
many other real-world systems. We view the problem from
the point of view of competitive analysis and thus assume
that the algorithms have no knowledge of future arrivals of
agents, as in the case of all existing online MAPF algorithms
(Ho et al. 2019; Švancara et al. 2019), although such knowl-
edge might be learned in practice.

As our first contribution, we formalize online MAPF as an
extension of (offline) MAPF and demonstrate how to gener-
alize existing NP-hardness and inapproximability results for
MAPF to online MAPF.

As our second contribution, we classify online MAPF al-

PLAN-ALL

PLAN-NEW

PLAN-NEW-
SINGLE

Rational

Optimally Rational.

SEQUENCE

Figure 2: Relationships between online MAPF algorithms.

gorithms based on (1) different controllability assumptions,
namely at what time the system can plan paths for which
sets of agents, into three categories: PLAN-NEW-SINGLE
that plans only a path for one newly-revealed agent at a
time, PLAN-NEW that plans paths only for newly-revealed
agents, and PLAN-ALL that plans paths for all known
agents and thus allows rerouting and (2) different rational-
ity, namely how effective the planned paths are: optimally-
rational algorithms that plan optimal paths for the given set
of agents and rational algorithms (which are, in our opinion,
the only algorithms worth considering, assuming no knowl-
edge of future arrivals of agents) that plan paths at least
asymptotically as effective as the naive baseline algorithm
SEQUENCE that routes newly-revealed agents one at a time
in sequence. These classifications cover all existing online
MAPF algorithms in Švancara et al. (2019) and different
settings, for example, where rerouting of robots is always
allowed (Ma et al. 2017a) or disallowed (Ho et al. 2019), in
real-world systems. The relationships between these algo-
rithms are summarized in Figure 2.

As our third contribution, we study online MAPF algo-
rithms under the competitive analysis framework. Specif-
ically, we demonstrate how an arbitrary online MAPF al-
gorithm can be rationalized and show that the competitive
ratios of all rational online MAPF algorithms with respect
to flowtime and makespan are both bounded from above by
O(m) for an input sequence of m agents. We then show
that (1) the bounds are tight for all rational algorithms in
PLAN-NEW-SINGLE and PLAN-NEW, (2) the competitive
ratio is at least 4/3 with respect to flowtime and 3/2 with re-
spect to makespan for all rational algorithms in PLAN-ALL,
and (3) the competitive ratio is infinite with respect to la-
tency for all rational algorithms. The results hold even for
optimally-rational algorithms and on 4-neighbor 2D grids.
Therefore, for the first time, we provide theoretical insights
into the effectiveness of using MAPF algorithms in an on-
line setting (Salzman and Stern 2020) and address some of
the long-standing open questions such as whether planning
for multiple agents is more effective than planning for only
one agent at a time in an online setting, whether algorithms
that allow rerouting are more effective than those that dis-
allow, and whether acting optimally rationally can improve
the effectiveness. The results are summarized in Table 1.

This version of the paper is intended to update the version published in the Proceedings of the Thirty-First
International Conference on Automated Planning and Scheduling (ICASP 2021). The definition of makespan (Section

2) has been corrected from maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri) to maxai∈A t

(g)
imaxai∈A t
(g)
imaxai∈A t
(g)
i . Other parts of the paper are not affected.

Controllability PLAN-NEW-SINGLE PLAN-NEW PLAN-ALL
O

bj
ec

tiv
e

Fu
nc

tio
n

C
om

pe
tit

iv
e

R
at

io
B

ou
nd

s

SE
Q

U
E

N
C

E

R
at

io
na

l
O

pt
im

al
ly

R
at

io
na

l

R
at

io
na

l

O
pt

im
al

ly
R

at
io

na
l

R
at

io
na

l

O
pt

im
al

ly
R

at
io

na
l

flo
w

tim
e upper O(m) [Thm. 7] O(m) [Thm. 11]

lower (even
on 2D grids) Ω(m) [Thm. 13] 4/3 [Thm. 18]

m
ak

es
pa

n upper O(m) [Thm. 8) O(m) [Thm. 12]
lower (even
on 2D grids) Ω(m) [Thm. 14] 3/2 [Thm. 19]

la
te

nc
y (even on

2D grids) ∞ [Obs. 20]

Table 1: Summary of main competitiveness results.

2 Online Multi-Agent Path Finding
In an online MAPF instance, we are given a connected undi-
rected graph G = (V,E), whose vertices V represent lo-
cations and whose edges E represent connections between
locations that the agents can traverse. We consider a finite
input sequence of m agents a1, a2, . . . , am. Each agent ai is
characterized by a start vertex si ∈ V , a goal vertex gi ∈ V
that is different from the start vertex, and a non-negative
integer release time ri, at which the agent is revealed (ap-
pears and is added to the system) and available for routing.
Release times are not known to online MAPF algorithms.
Without loss of generality, we assume that the agents are
given in non-decreasing order of its release time, that is,
r1 ≤ r2 ≤ . . . ≤ rm. Each agent ai can choose to start
at any integer starting time t(s)i ≥ ri, where it is added to
graph G at its start vertex. At each discrete time step, each
agent ai either moves to an adjacent vertex or waits at the
same vertex when it is in graph G. When the agent arrives at
its goal vertex at arrival time t(g)i , it is removed from graph
G (upon its arrival at time step t(g)i).

Let πi(t) ∈ V denote the vertex of agent ai at time step t.
A path πi = 〈πi(t(s)i), πi(t

(s)
i + 1), . . . , πi(t

(g))〉 for agent
ai satisfies the following condition: (1) The agent starts at its
start vertex at the starting time t(s)i , that is, πi(t

(s)
i) = si. (2)

The agent ends at its goal vertex at the arrival time t(g)i , that
is, πi(t

(g)
i) = gi (but is removed from the graph upon its ar-

rival and does not collide with other agents at time step t(g)i).
(3) The agent always either moves to an adjacent vertex or
waits at the same vertex between two consecutive time steps
when in graph G, that is, for all time steps t = t(s), . . . , t

(g)
i ,

(πi(t), πi(t+1)) ∈ E or πi(t+1) = πi(t). Path π is implic-
itly augmented with a null vertex ⊥ /∈ V for all time steps
t ∈ [0,∞) \ [t(s)i , t

(g)
i]. Every two agents should avoid col-

lisions with each other (only) when they are both in graph
G: A vertex collision occurs if two agents occupy the same
vertex (except for their goal vertices) at time step t. An edge
collision occurs if two agents traverse the same edge in op-
posite directions between time steps t and t+ 1.

A plan for a setA of agents consists of a path πi assigned
to each agent ai ∈ A. Let dist i denote the length of the
shortest path (optimal path cost) from vertex si to vertex gi

in graph G. The service time t(g)i − ri of agent ai is the
number of time steps for the agent to arrive at its goal ver-
tex since it is revealed. We consider three common objective
functions:

1. The flowtime
∑

ai∈A(t
(g)
i − ri) is the sum of the service

times t(g)i − ri of all agents in A.
2. The makespan maxai∈A t

(g)
i is the maximum of the ar-

rival times of all agents in A.1

3. The latency
∑

ai∈A(t
(g)
i − ri − dist i) is the sum of the

differences between the service times t(g)i − ri and the
distances dist i of all agents in A.2

Trivially, an online MAPF plan minimizes the flowtime if
and only if it minimizes the latency, which can be rewritten
as

∑
ai∈A(t

(g)
i − ri)−

∑
ai∈A dist i.

An online MAPF solution is a plan for all agents
a1, . . . , am whose paths are collision-free.

2.1 Computational Complexity
We show that online MAPF is NP-hard to solve (bounded-
sub)optimally in general even with offline algorithms that
know all agents a priori. Similar to Ma et al. (2016, 2018),
we use a reduction from an NP-complete version of the
Boolean satifiability problem, called ≤3,=3-SAT (Tovey
1984). A ≤3,=3-SAT instance consists of N Boolean vari-
ables and M disjunctive clauses where each variable ap-
pears in exactly three clauses, uncomplemented at least once
and complemented at least once, and each clause contains at
most three literals. Its decision question asks whether there
exists a satisfying assignment.
Theorem 1. For any ε > 0, it is NP-hard to find a 4/3− ε-
approximate solution to online MAPF for makespan mini-
mization, even if all agents are known a priori.

The complete proof is given in the appendix. In the proof
of Theorem 1, the online MAPF instance reduced from the
given ≤3,=3-SAT instance has the property that the length
of every path from the start vertex to the goal vertex of
every agent is at least three. Therefore, if the makespan
is three, then every agent arrives at its goal vertex in ex-
actly three time steps and the flowtime is 3m. Moreover, if
the makespan exceeds three, then the flowtime exceeds 3m,
yielding the following corollary.
Corollary 2. It is NP-hard to find an optimal solution to
online MAPF for flowtime minimization, even if all agents
are known a priori.

In the proof of Theorem 1, the constructed online MAPF
instance has a solution with zero latency if and only if the

1Švancara et al. (2019) claims that the makespan measure is
problematic (probably because an infinite sequence of agents was
considered there) and does not consider it. However, it is regarded
as an important measure in the literature (Surynek 2010; Yu and
LaValle 2013a), which corresponds to the earliest time when all
(finitely many) transportation requests are served in practice.

2The latency measure has been used in the multi-vehicle trans-
portation research, for example, in the context of online ride and
delivery services (Das et al. 2018), and was first proposed by
Švancara et al. (2019) for online MAPF.

This version of the paper is intended to update the version published in the Proceedings of the Thirty-First
International Conference on Automated Planning and Scheduling (ICASP 2021). The definition of makespan (Section

2) has been corrected from maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri) to maxai∈A t

(g)
imaxai∈A t
(g)
imaxai∈A t
(g)
i . Other parts of the paper are not affected.

given ≤3,=3-SAT instance is satisfiable. Any algorithm for
online MAPF with any constant approximation ratio c thus
computes a solution with zero latency whenever the given
≤3,=3-SAT instance is satisfiable and thus solves ≤3,=3-
SAT, yielding the following corollary.
Corollary 3. For any c > 0, it is NP-hard to find a c-
approximate solution to online MAPF for latency minimiza-
tion, even if all agents are known a priori.

3 Online MAPF Algorithms
Online MAPF algorithms use the following assumption: For
any given MAPF instance, the agents are partitioned into
K disjoint sets A1, . . . ,AK based on their release times (a
total of K different values), where agents in each set Ak

have the same release time rAk
for all k ∈ [K] (where

[K] = {1, . . . ,K}) and the sets Ak are indexed in increas-
ing order of rAk

. Let A≤k =
⋃

k′∈[k]Ak′ denote the set
of all revealed agents by release time rAk

, for all k ∈ [K],
andA<k =

⋃
k′∈[k−1]Ak′ the set of all previously-revealed

agents at each release time rAk
, for all k ∈ [2,K]. At each

rAk
, an online MAPF algorithm calls an offline path-finding

algorithm to plan paths so that all revealed agents have paths.

3.1 Controllability
We categorize online MAPF algorithms based on different
controllability assumptions about for which controllable set
AC of agents they can plan paths at each time when they
call an offline path-finding algorithm. Algorithm 1 shows
the pseudo-code of a template of online MAPF algorithms.
At each release time rAk

, an online MAPF algorithm con-
siders each controllable set of agents [Line 1]. It then treats
all agents that have an already planned path and are not in
the controllable set as dynamic obstacles that follow their
already planned paths [Line 2] and computes a plan for all
agents in the controllable set [Line 3]. We highlight the fol-
lowing three controllability categories.

1. [AC = {ai}, ∀ai ∈ Ak] Algorithms in PLAN-NEW-
SINGLE call an offline single-agent path-finding algo-
rithm to plan a path for one (newly-revealed) agent ai
in Ak at a time in increasing order of the indices of the
agents and treat all agents aj with j < i as dynamic ob-
stacles, until all agents in Ak have paths.

2. [AC = Ak] Algorithms in PLAN-NEW call an offline
MAPF algorithm to plan paths for all newly-revealed
agents, namely agents in Ak, and treat all previously-
revealed agents as dynamic obstacles.

3. [AC = A≤k] Algorithms in PLAN-ALL call an offline
MAPF algorithm to plan paths for all revealed agents
from time step rAk

on, thus allowing previously-revealed
agents to change their paths from time step rAk

on.
Therefore, online MAPF algorithms in the same category
differ from each other only in the offline single/multi-
agent path-finding algorithm they used to solve each
single/multi-agent path-finding problem. Trivially, PLAN-
NEW-SINGLE is a subset of PLAN-NEW, which, in turn, is
a subset of PLAN-ALL, since any online MAPF algorithm
in PLAN-NEW-SINGLE can be viewed as a special case of
PLAN-NEW that plans a path for each newly-revealed agent

Algorithm 1: Online MAPF Algorithm Template
Input: online MAPF instance
/* system executes at release time rAk */

1 foreach controllable set AC do
2 Ā ← {ai|ai has a path and ai /∈ AC};
3 Compute a plan for AC that treats Ā as dynamic

obstacles;

/* system advances to the next release time */

in sequence and any online MAPF algorithm in PLAN-
NEW can be viewed as a special case of PLAN-ALL that
always plans the same paths as the already planned ones for
all previously-revealed agents.

In practice, different controllability assumptions corre-
spond to different types of real-world systems: Algorithms
in PLAN-NEW-SINGLE can easily be adapted to most real-
time distributed systems since agents make decisions indi-
vidually and require less communication with each other.
PLAN-NEW corresponds to centralized systems where
agents cannot be rerouted easily, for example, automated
parcel sortation centers with agents moving at high speeds
(Kou et al. 2020). PLAN-ALL corresponds to centralized
systems that allow frequent rerouting, for example, a re-
cent proposal of automated train (re-)scheduling systems by
the Swiss Federal Railways (Mohanty et al. 2020; Li et al.
2021). Controllability often depends on specific applications
and might also be viewed as part of the problem definition.

3.2 Optimal Rationality
We now discuss one category of online MAPF algorithms
based on the quality of paths the algorithms plan for the
controllable set of agents at each time. This categorization
is orthogonal to the controllability assumptions and more al-
gorithmic than application-specific.

Recent research (Švancara et al. 2019) has shown that
“snapshot-optimal” online MAPF algorithms in PLAN-ALL
that (use an optimal offline MAPF algorithm to) compute
a plan for all revealed agents with the smallest flowtime at
each release time tend to result in an online MAPF solution
with small flowtime. We generalize this notion of optimality
to algorithms in all the above three controllability categories.

Definition 4 (Optimal Rationality). A plan for a given con-
trollable setAC of agents at a given release time is optimally-
rational if and only if it results in a plan for all planned
agents (agents that have paths) with the smallest cost with re-
spect to a given objective function (under a given controlla-
bility assumption). An online MAPF algorithm is optimally-
rational if and only if it computes an optimally-rational plan
for the controllable set of agents at each time when it calls
an offline path-finding algorithm.

Trivially, an online MAPF algorithm is optimally-rational
with respect to flowtime if and only if it is optimally-
rational with respect to latency. We now give examples of
offline path-finding algorithms that can be used in optimally-
rational online MAPF algorithms under different controlla-
bility assumptions with respect to flowtime and makespan.

This version of the paper is intended to update the version published in the Proceedings of the Thirty-First
International Conference on Automated Planning and Scheduling (ICASP 2021). The definition of makespan (Section

2) has been corrected from maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri) to maxai∈A t

(g)
imaxai∈A t
(g)
imaxai∈A t
(g)
i . Other parts of the paper are not affected.

Examples of Optimally-Rational Algorithms: Optimally-
rational algorithms in PLAN-NEW-SINGLE with respect to
flowtime and makespan can both call Space-Time A* (Sil-
ver 2005) or Safe Interval Path Planning (SIPP) (Phillips and
Likhachev 2011) at release time rAk

to find a path for each
agent ai ∈ Ak with the smallest arrival time t(g)i , which are
similar in essence to prioritized offline MAPF algorithms
(for example, Cooperative A*(Silver 2005)). Optimally-
rational algorithms in PLAN-NEW (respectively, PLAN-
ALL) with respect to flowtime can call any optimal offline
MAPF algorithm at release time rAk

to find a plan for all
agents inAk (respectively,A≤k) with the smallest flowtime.
Optimally-rational algorithms in PLAN-NEW (respectively,
PLAN-ALL) with respect to makespan can call any optimal
offline MAPF algorithm at release time rAk

to find a plan
for all agents in Ak (respectively, A≤k) with the smallest
makespan. Note that, unlike the above examples, optimally-
rational algorithms with respect to makespan can alterna-
tively find a plan for agents in AC that does not necessar-
ily have the smallest makespan but still results in a plan for
all planned agents with the smallest makespan (and is thus
optimally-rational).

4 Feasibility and SEQUENCE
We now show that, unlike (offline) MAPF (in which agents
are not removed upon arrival at goal vertices), all online
MAPF instances are solvable. We prove the statement by
describing the following naive online MAPF algorithm SE-
QUENCE that routes agents one after another in sequence.

SEQUENCE plans a path for one agent at a time in in-
creasing order of the indices of the agents (thus also non-
decreasing order of the release times of the agents). Specifi-
cally, it first plans a path π1 for agent a1 at time step r1, when
the agent is revealed, such that the agent starts from vertex
s1 at time step t(s)1 = r1, moves along the shortest path from
vertex s1 to vertex g1 in graph G, and arrives at vertex g1 at
time step t(g)1 = t

(s)
1 + dist1. Then, for each i = 2, . . . ,m,

it plans a path πi for agent ai at time step ri such that the
agent starts at time step t(s)i = max(ri, t

(g)
i−1), moves along

the shortest path from vertex si to vertex gi in graph G, and
arrives at vertex gi at time step t(g)i = t

(s)
i + dist i. In other

words, each such agent starts routing only when the previous
agent has finished routing and been removed.
Observation 5. All online MAPF instances are solvable,
and SEQUENCE solves them.
Reason. The shortest path computation of paths πi for all
i ∈ [m] succeeds because graph G is connected. Each agent
thus arrives at its goal vertex at a finite time step. Also, the
resulting paths are collision-free since no two agents are in
graph G at the same time step.

4.1 Competitive Ratio Upper Bounds
We follow the standard definition of competitive ratio
(Borodin and El-Yaniv 2005). Let the cost of online algo-
rithm ALG for an input sequence σ (in our case, the sequence
of agents) be CALG(σ) with respective to a given objective
function and the cost of an optimal offline algorithm OPT

that knows the entire input sequence σ a priori (in our case,
has full controllability at time step 0 of all agents a1, . . . , am
that might be revealed in the future) be COPT(σ).

Definition 6 (Competitive Ratio). An online algorithm ALG
is α-competitive or has a competitive ratio of α if, for
all input sequence σ and some constant δ, CALG(σ) ≤
αCOPT(σ) + δ.

We now derive upper bounds on the competitive ratio for
SEQUENCE with respect to flowtime and makespan in the
following theorems, respectively.

Theorem 7. SEQUENCE achieves a competitive ratio of
O(m) with respect to flowtime.
Proof. We first show by induction on i that the service time
t
(g)
i − ri of each agent ai is no larger than

∑
j∈[i] distj . The

statement holds trivially for agent a1. Assume that its holds
for agent ai−1. The service time of agent ai is thus

t
(g)
i − ri = t

(s)
i + dist i − ri

= max(ri, t
(g)
i−1) + dist i − ri

= max(0, t
(g)
i−1 − ri) + dist i

definition
≤ max(0, t

(g)
i−1 − ri−1) + dist i

= t
(g)
i−1 − ri−1 + dist i

induction
≤

∑
j∈[i−1]

distj + dist i =
∑
j∈[i]

distj . (1)

The statement thus holds also for agent ai. The flow-
time of the plan for all agents is thus no larger than∑

i∈[m]

∑
j∈[i] distj ≤ m

∑
j∈[m] distj . Since the optimal

flowtime is no smaller than
∑

j∈[m] distj , the theorem fol-
lows.

Theorem 8. SEQUENCE achieves a competitive ratio of
O(m) with respect to makespan.
Proof. Let rnK

be the latest release time with rnK
>

r1 +
∑

j∈[nK−1] distj or rnK
= r1 if there is no such re-

lease time. According to Equation (1), SEQUENCE com-
putes a solution with makespan no larger than rnK

+∑
j∈[nK ,m] distj ≤ rnK

+mmaxj∈[nK ,m] distj . Since the
optimal makespan is no smaller than maxj∈[nK ,m](rnK

+
distj), the theorem follows.

We show in Section 6.4 that the competitive ratio for SE-
QUENCE is infinite with respect to latency.

5 Rationality and Competitive Ratio Upper
Bounds

The O(m) upper bounds on the competitive ratio for the
naive algorithm SEQUENCE shown in Theorems 7 and 8
set a baseline for all online MAPF algorithms about what
behavior (quality of the plans returned by the algorithms)
is rational. This analysis also inspires the characterization
of rational algorithms that are guaranteed to result in a so-
lution quality (asymptotically) no worse than SEQUENCE,
which extends the notion of optimally-rational algorithms.
Note that our definition of rationality is significantly differ-
ent from that in the optimization and economics literature.

This version of the paper is intended to update the version published in the Proceedings of the Thirty-First
International Conference on Automated Planning and Scheduling (ICASP 2021). The definition of makespan (Section

2) has been corrected from maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri) to maxai∈A t

(g)
imaxai∈A t
(g)
imaxai∈A t
(g)
i . Other parts of the paper are not affected.

Definition 9 (Rationality). An online MAPF algorithm is
rational if and only if, at each release time rAk

, ∀k ∈ [K],
the plan for all revealed agents (agents inA≤k) has flowtime
no larger than |A≤k|

∑
ai∈A≤k

dist i and makespan no larger
than rnk

+
∑

i∈[nk,mk]
dist i where mk = argmaxi ai ∈

A≤k and rnk
≤ rAk

is the latest release time of agent ank

with rnk
> r1 +

∑
i∈[nk−1] dist i or rnk

= r1 if there is no
such release time.

The main idea behind Definition 9 is to set upper bounds
that quantify how badly an online MAPF algorithm could
perform at each release time rAk

with respect to both flow-
time and makespan so that it still results in a solution quality
that is asymptotically no worse than SEQUENCE. Trivially,
SEQUENCE is rational by using a similar argument as in the
proofs of Theorems 7 and 8 for each release time rAk

. The
flowtime term in Definition 9 can be rewritten with respect
to latency. However, we show in Section 6.4 that the com-
petitive ratio for all rational algorithms is (at least) infinite
with respect to latency and thus do not study its upper bound
in this section.

5.1 Rationalization
Not all online MAPF algorithms are rational. However, one
can rationalize any online MAPF algorithm in PLAN-NEW
and PLAN-ALL by adding a simple subroutine to it as fol-
lows: At each release time rAk

, ∀k ∈ [K], the online MAPF
algorithm calls the subroutine at the end of its computa-
tion that checks whether the resulting plan for all agents in
Ak respects the upper bounds set by Definition 9. If so, it
changes the plan so that the agents move to their goal ver-
tices one after another in increasing order of their indices,
as in SEQUENCE, starting at time step t(s)Ak

that is the max-
imum of rAk

and the makespan of the (old) computed plan
at the previous release time rAk−1

for k > 1 and time step
t
(s)
Ak

= r1 for k = 1. The key idea is that, after each com-
putation, it checks whether the resulting plan (for the set
of agents that have paths) respects the upper bounds set by
Definition 9 and, if not, switches to the same behavior as
that of SEQUENCE to guarantee that the plan is asymptot-
ically no worse than the plan (for the same set of agents)
in SEQUENCE. We have omitted the discussion of ratio-
nalization for PLAN-NEW-SINGLE above, which can be
achieved by adding a similar subroutine after each single-
agent path-finding computation that compares the flowtime
and makespan of the resulting plan to those in SEQUENCE.

5.2 Rationality of Optimally-Rational Algorithms
Intuitively, online MAPF algorithms that look reasonable,
for example, ones that are optimally-rational, are rational
(without rationalization). We prove the following theorem,
even though the name “optimal rationality” has already sug-
gested it.
Theorem 10. Optimally-rational online MAPF algorithms
under any given controllability assumption with respect to
either flowtime or makespan are rational.
Proof. We consider an arbitrary optimally-rational online
MAPF algorithm in PLAN-NEW-SINGLE with respect to

either flowtime or makespan. We show that, at each re-
lease time rAk

, ∀k ∈ [K], the plan for all revealed
agents has flowtime no larger than |A≤k|

∑
ai∈A≤k

dist i
and makespan no larger than rnk

+
∑

i∈[nk,mk]
dist i and

the algorithm is thus rational (Definition 9). We first show
by induction on i that the service time t(g)i −ri of each agent
ai is no larger than

∑
j∈[i] distj . The statement holds triv-

ially for agent a1 for such an algorithm. Assume that it holds
for agents a2, . . . , ai−1. The service time of agent ai is thus

t
(g)
i − ri = t

(s)
i + dist i − ri

opt. rat.
≤ max(ri, max

j∈[i−1]
t
(g)
j) + dist i − ri

≤ max(0, max
j∈[i−1]

(t
(g)
j − ri)) + dist i

definition
≤ max(0, max

j∈[i−1]
(t

(g)
j − rj)) + dist i

induction
≤ max(0, max

j∈[i−1]

∑
j′∈[j]

distj′) + dist i

=
∑

j∈[i−1]

distj + dist i =
∑
j∈[i]

distj

for any optimally-rational online MAPF algorithm in
PLAN-NEW-SINGLE with respect to either flowtime or
makespan. The statement thus holds also for agent ai. The
plan for all revealed agents at any release time rAk

thus
has flowtime Fk no larger than

∑
i∈A≤k

∑
j∈[i] distj ≤

|A≤k|
∑

j∈A≤k
distj and makespan Mk no larger than

rnk
+

∑
j∈[nk,mk]

distj . For any optimally-rational online
MAPF algorithm in PLAN-NEW or PLAN-ALL with re-
spect to either flowtime or makespan, the plan for all re-
vealed agents at each release time rAk

has flowtime no
larger than Fk and makespan no larger than Mk (or it is not
optimally-rational otherwise). Rationality is thus maintained
at each release time rAk

.

5.3 Competitive Ratio Upper Bounds
We show that all rational online MAPF algorithms perform
asymptotically no worse than SEQUENCE with respect to
both flowtime and makespan.

Theorem 11. All rational online MAPF algorithms achieve
a competitive ratio of O(m) with respect to flowtime.
Proof. According to Definition 9, the plan computed by
any rational online MAPF algorithm at the latest re-
lease time rAK

= rm has flowtime no larger than
|A≤K |

∑
ai∈A≤K

dist i = m
∑

i∈[m] dist i. Since the opti-
mal flowtime is no smaller than

∑
i∈[m] dist i, the theorem

follows.

Theorem 12. All rational online MAPF algorithms achieve
a competitive ratio of O(m) with respect to makespan.
Proof. According to Definition 9, the plan computed by
any rational online MAPF algorithm at the latest release
time rAK

= rm has makespan no larger than rnK
+∑

i∈[nK ,m] dist i ≤ rnK
+ mmaxi∈[nK ,m] dist i. Since the

optimal makespan is no smaller than maxi∈[nK ,m](rnK
+

dist i), the theorem follows.

This version of the paper is intended to update the version published in the Proceedings of the Thirty-First
International Conference on Automated Planning and Scheduling (ICASP 2021). The definition of makespan (Section

2) has been corrected from maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri) to maxai∈A t

(g)
imaxai∈A t
(g)
imaxai∈A t
(g)
i . Other parts of the paper are not affected.

6 Competitive Ratio Lower Bounds
We show that all rational online MAPF algorithms in PLAN-
NEW achieve a competitive ratio of at least Ω(m) with re-
spect to both flowtime and makespan by constructing an on-
line MAPF instance on a 4-neighbor 2D grid. Therefore,
the O(m) upper bounds on the competitive ratio of ratio-
nal online MAPF algorithms in PLAN-NEW that we de-
rived in Theorems 11 and 12 are (asymptotically) tight even
for online MAPF instances on 4-neighbor 2D grids. Conse-
quently, we show that rational algorithms do not necessarily
outperform irrational ones. We also derive lower bounds on
the competitive ratio of rational online MAPF algorithms in
PLAN-ALL with respect to flowtime and makespan. Finally,
we show that all rational online MAPF algorithms have infi-
nite competitive ratio with respect to latency.

6.1 Rational Algorithms in PLAN-NEW
The following theorems show that the competitive ratio of
all rational online MAPF algorithms in PLAN-NEW, in-
cluding optimally-rational ones, is at least Ω(m) even on
4-neighbor 2D grids (and even lines) with respect to both
flowtime and makespan.
Theorem 13. There exists an online MAPF instance on a 4-
neighbor 2D grid for which any rational online MAPF algo-
rithm in PLAN-NEW achieves a competitive ratio of Ω(m)
with respect to flowtime.
Proof. Consider an online MAPF instance on the 4-
neighbor 2D grid shown in Figure 3(a) where an even num-
ber m of agents are given and agent ai has release time
ri = i − 1, for all i ∈ [m]. Agent ai has start vertex
si = v0 and goal vertex gi = vm if i is odd and start vertex
si = vm and goal vertex gi = v0 if i is even. Consider an ar-
bitrary rational online MAPF algorithm in PLAN-NEW. At
time step 0, the algorithm computes the only possible path
for agent a1 where it starts at time step 0, moves without
waiting, and arrives at g1 = vm at time step m since other
paths violate the makespan upper bound in Definition 9. At
time step 1, the algorithm computes the only possible path
for agent a2 where it starts at time step m when agent a1
has arrived at g1 (or it collides with agent a1 otherwise),
moves without waiting, and arrives at g2 = v0 at time step
2m since other paths violate the makespan upper bound in
Definition 9 (rn2 = r1). We apply the argument to each
agent ai, i ∈ [3,m], that it has to start after agent ai−1 has
arrived at gi−1 (since the paths for all previously-revealed
agents do not change for algorithms in PLAN-NEW) and
moves to its goal vertex without waiting at any vertex to
maintain rationality (Definition 9 with rnk

= r1 for release
time rAk

,∀k ∈ [K],K = m). The resulting flowtime is
m+(2m−1)+(3m−2)+. . .+(m2−m+1) = 1

2m
3+ 1

2m.
The optimal plan lets agents ai start at their release times ri
if i is odd and at time steps 2m−3+ i

2 if i is even (from time
step 2m− 2 on when the last agent am−1 with an odd index
has arrived at its goal vertex). All agents move to their goal
vertices without waiting once they start, resulting in service
time m for all odd numbers i and 3m − 2 − i

2 for all even
numbers i. The optimal flowtime is thus 15

8 m
2 − 5

4m. The
theorem thus follows.

v0 v1 v2 ... vm

(a) Theorem 13.

v1 v2

v3 v4

(b) Theorem 18.

Figure 3: Online MAPF instances used for theorems.

Theorem 14. There exists an online MAPF instance on a 4-
neighbor 2D grid for which any rational online MAPF algo-
rithm in PLAN-NEW achieves a competitive ratio of Ω(m)
with respect to makespan.
Proof. Using the same online MAPF instance and argument
as in the proof of Theorem 13, any rational online MAPF
algorithm in PLAN-NEW results in makespan m2. The op-
timal plan (with respect to both flowtime and makespan) has
makespan 7

2m− 3. The theorem thus follows.

Theorems 13 and 14 thus show that the upper bounds
that we derived in Theorems 11 and 12 for flowtime and
makespan, respectively, are asymptotically tight for all ra-
tional online MAPF algorithms in PLAN-NEW, yielding the
following corollaries.

Corollary 15. All rational online MAPF algorithms in
PLAN-NEW are Θ(m)-competitive with respect to flowtime
even on 4-neighbor 2D grids.

Corollary 16. All rational online MAPF algorithms
in PLAN-NEW are Θ(m)-competitive with respect to
makespan even on 4-neighbor 2D grids.

6.2 Irrational Algorithms
A counter-intuitive insight we obtain from the above theo-
rems is that rational online MAPF algorithms do not nec-
essarily outperform the irrational ones and rationalization
could harm the solution quality.

Observation 17. There exists an online MAPF instance on
a 4-neighbor 2D grid for which an irrational online MAPF
algorithm in PLAN-NEW-SINGLE outperforms any rational
and thus rationalized online MAPF algorithms in PLAN-
NEW with respect to both flowtime and makespan.
Reason. For the online MAPF instance used in the proofs of
Theorems 13 and 14, a dummy online MAPF algorithm that
imitates the optimal offline algorithm, which can be viewed
as in PLAN-NEW-SINGLE, is irrational and outperforms
any rational online MAPF algorithm in PLAN-NEW.

However, it is “irrational” and impossible for one to de-
sign such a perfect irrational online MAPF algorithm, for ex-
ample, one that delays agent a2 bym time steps in the above
example, that imitates the behavior of the optimal offline al-
gorithm in practice without any knowledge of future arrival
of agents. Also note that the above reasoning does not carry
over to rational online MAPF algorithms in PLAN-ALL.

6.3 Rational Algorithms in PLAN-ALL
We now construct an online MAPF instance on a 4-neighbor
2D grid for which all rational algorithms in PLAN-ALL
achieve a constant competitive ratio.

This version of the paper is intended to update the version published in the Proceedings of the Thirty-First
International Conference on Automated Planning and Scheduling (ICASP 2021). The definition of makespan (Section

2) has been corrected from maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri) to maxai∈A t

(g)
imaxai∈A t
(g)
imaxai∈A t
(g)
i . Other parts of the paper are not affected.

Theorem 18. There exists an online MAPF instance on a
4-neighbor 2D grid for which any rational online MAPF
algorithm achieves a competitive ratio of at least 4/3 with
respect to flowtime.
Proof. Consider an online MAPF instance on the 4-
neighbor 2D grid shown in Figure 3(b) where two agents a1
and a2 are given. Agent a1 has start vertex v1, goal vertex
v4, and release time 0. Consider an arbitrary rational online
MAPF algorithm. At time step 0, the algorithm computes
one of the two possible paths for agent a1 where the agent
starts at time step 0, moves without waiting, and arrives at
g1 = v4 at time step 2 according to Definition 9. If agent a1
chooses to go through vertex v2, we construct agent a2 with
start vertex v2, goal vertex v1, and release time 1. Otherwise
(agent a1 chooses to go through vertex v3), we construct
agent a2 with start vertex v3, goal vertex v1, and release time
1. In either case, agent a2 starts at time step 2. The resulting
flowtime is 4. The optimal plan has flowtime 3. The theorem
thus follows.

Theorem 19. There exists an online MAPF instance on a
4-neighbor 2D grid for which any rational online MAPF
algorithm achieves a competitive ratio of at least 3/2 with
respect to makespan .
Proof. Using the same online MAPF instance and argu-
ment as in the proof of Theorem 18, any rational online
MAPF algorithm results in makespan 3. The optimal plan
has makespan 2. The theorem thus follows.

6.4 Infinite Competitive Ratio for Latency
We have not performed any analysis for latency so far since
we have the following observation from the above example.
Observation 20. All rational online MAPF algorithms have
infinite competitive ratio with respect to latency even on 4-
neighbor 2D grids.
Reason. Using the same online MAPF instance and argu-
ment as in the proof of Theorem 18, any rational online
MAPF algorithm results in latency 1. The optimal plan has
latency 0. Therefore, the competitive ratio of any rational
online MAPF algorithm is (at least) infinite with respect to
latency even on 4-neighbor 2D grids.

7 Conclusions
We conducted a theoretical study of online MAPF for the
first time. Our results suggest that, if rerouting is disallowed,
then planning for multiple agents is asymptotically (only)
as effective as planning for one agent at a time and acting
optimally rationally is asymptotically (only) as effective as
acting rationally, which is also asymptotically (only) as ef-
fective as following the naive algorithm SEQUENCE. How-
ever, allowing rerouting can potentially result in high effec-
tiveness, as indicated by the gap between the competitive
ratio upper and lower bounds.

Future work includes (1) developing a rational online
MAPF algorithm in PLAN-ALL that achieves the current
competitive ratio lower bound (thus proving that the bound
is tight for it) or tightening the bounds further and (2) ana-
lyzing the online MAPF variant where probabilistic models
of future arrivals of agents are given.

Appendix: Proof of Theorem 1
Proof. Similar to the proof of Theorem 3 in Ma et al. (2016),
we construct an online MAPF instance that has a solution
with makespan three if and only if a given ≤3,=3-SAT in-
stance is satisfiable. For each variable Xi in the≤3,=3-SAT
instance, we construct two “literal” agents, aiT and aiF ,
with start vertices siT and siF and goal vertices tiT and
tiF , respectively. All literal agents have release time zero.
For each literal agent, we construct two paths to get to its
goal vertex in three time steps: a “shared” path, namely
〈siT , uiT , vi, tiT 〉 for aiT and 〈siF , uiF , vi, tiF 〉 for aiF ,
and a “private” path, namely 〈siT , wiT , xiT , tiT 〉 for aiT and
〈siF , wiF , xiF , tiF 〉 for aiF . The shared paths for aiT and
aiF intersect at vertex vi. Only one of the two paths can thus
be used if a makespan of three is to be achieved. Sending
literal agent aiT (or aiF) along the shared path corresponds
to assigning True (or False) to Xi in the ≤3,=3-SAT in-
stance. For each clause Cj in the ≤3,=3-SAT instance, we
construct a “clause” agent aj with start vertex cj , goal ver-
tex dj , and release time zero. It has multiple (but at most
three) “clause” paths to get to its goal vertex in three time
steps, which have a one-to-one correspondence to the liter-
als in Cj . Every literal Xi (or Xi) can appear in at most
two clauses. If Cj is the first clause that it appears in, then
the clause path is 〈cj , wiT , bj , dj〉 (or 〈cj , wiF , bj , dj〉). If
Cj is the second clause that it appears in, a vertex αj is in-
troduced and the clause path is instead 〈cj , αj , xiT , dj〉 (or
〈cj , αj , xiF , dj〉). The clause path of each Cj with respect
to any literal in that clause and the private path of the literal
intersect. Only one of the two paths can thus be used if a
makespan of three is to be achieved. A visualized example
of the reduction can be found in Ma et al. (2016). Suppose
that a satisfying assignment to the ≤3,=3-SAT instance ex-
ists. Then, a solution with makespan three is obtained by
sending literal agents of true literals along their shared paths,
the other literal agents along their private paths, and clause
agents along the clause paths corresponding to one of the
true literals in those clauses. Conversely, suppose that a so-
lution with makespan three exists. Then, each clause agent
traverses the clause path corresponding to one of the literals
in that clause, and the corresponding literal agent traverses
its shared path. Since the agents of a literal and its comple-
ment cannot both use their shared path if a makespan of three
is to be achieved, we can assign True to every literal whose
agent uses its shared path without assigning True to both the
uncomplemented and complemented literals. If the agents
of both literals use their private paths, we can assign True
to any one of the literals and False to the other one. A solu-
tion to the online MAPF instance with makespan three thus
yields a satisfying assignment to the ≤3,=3-SAT instance.

To summarize, the online MAPF instance has a solution
with makespan three if and only if the ≤3,=3-SAT instance
is satisfiable. Also, the online MAPF instance cannot have
a solution with makespan smaller than three and always has
a solution with makespan four, even if the ≤3,=3-SAT in-
stance is unsatisfiable. For any ε > 0, any approximation al-
gorithm for online MAPF with ratio 4/3 − ε thus computes
a solution with makespan three whenever the ≤3,=3-SAT
instance is satisfiable and therefore solves ≤3,=3-SAT.

This version of the paper is intended to update the version published in the Proceedings of the Thirty-First
International Conference on Automated Planning and Scheduling (ICASP 2021). The definition of makespan (Section

2) has been corrected from maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri) to maxai∈A t

(g)
imaxai∈A t
(g)
imaxai∈A t
(g)
i . Other parts of the paper are not affected.

References
Banfi, J.; Basilico, N.; and Amigoni, F. 2017. Intractability of time-
optimal multirobot path planning on 2d grid graphs with holes.
IEEE Robotics and Automation Letters 2(4): 1941–1947.

Borodin, A.; and El-Yaniv, R. 2005. Online Computation and Com-
petitive Analysis. Cambridge University Press.

Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.; Betza-
lel, O.; and Shimony, S. E. 2015. ICBS: Improved Conflict-Based
Search Algorithm for Multi-Agent Pathfinding. In IJCAI, 740–746.

Cohen, L.; Greco, M.; Ma, H.; Hernandez, C.; Felner, A.; Kumar,
T. K. S.; and Koenig, S. 2018. Anytime Focal Search with Appli-
cations. In IJCAI, 1434–1441.

Das, A.; Gollapudi, S.; Kim, A.; Panigrahi, D.; and Swamy, C.
2018. Minimizing latency in online ride and delivery services. In
WWW, 379–388.

Dresner, K.; and Stone, P. 2008. A Multiagent Approach to Au-
tonomous Intersection Management. Journal of Artificial Intelli-
gence Research 31: 591–656.

Erdem, E.; Kisa, D. G.; Oztok, U.; and Schueller, P. 2013. A Gen-
eral Formal Framework for Pathfinding Problems with Multiple
Agents. In AAAI, 290–296.

Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS: Im-
plicit Conflict-Based Search Using Lazy Clause Generation. In
ICAPS, 155–162.

Ho, F.; Salta, A.; Geraldes, R.; Goncalves, A.; Cavazza, M.; and
Prendinger, H. 2019. Multi-agent Path Finding for UAV Traffic
Management. In AAMAS, 131–139.

Kou, N. M.; Peng, C.; Ma, H.; Kumar, T. S.; and Koenig, S. 2020.
Idle time optimization for target assignment and path finding in
sortation centers. In AAAI, volume 34, 9925–9932.

Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J. 2019. Branch-
and-Cut-and-Price for Multi-Agent Pathfinding. In IJCAI, 1289–
1296.

Li, J.; Chen, Z.; Zheng, Y.; Chan, S.-H.; Harabor, D.; Stuckey, P. J.;
Ma, H.; and Koenig, S. 2021. Scalable Rail Planning and Replan-
ning: Winning the 2020 Flatland Challenge. In ICAPS.

Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S. 2019a.
Improved Heuristics for Multi-Agent Path Finding with Conflict-
Based Search. In IJCAI, 442–449.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig,
S. 2020. New Techniques for Pairwise Symmetry Breaking in
Multi-Agent Path Finding. In ICAPS, 193–201.

Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and Koenig,
S. 2019b. Disjoint Splitting for Conflict-Based Search for Multi-
Agent Path Finding. In ICAPS, 279–283.

Luna, R.; and Bekris, K. E. 2011. Push and Swap: Fast Cooperative
Path-finding with Completeness Guarantees. In IJCAI, 294–300.

Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S. 2019a.
Searching with Consistent Prioritization for Multi-Agent Path
Finding. In AAAI, 7643–7650.

Ma, H.; Hönig, W.; Kumar, T. K. S.; Ayanian, N.; and Koenig,
S. 2019b. Lifelong Path Planning with Kinematic Constraints for
Multi-Agent Pickup and Delivery. In AAAI, 7651–7658.

Ma, H.; and Koenig, S. 2017. AI Buzzwords Explained: Multi-
Agent Path Finding (MAPF). AI Matters 3(3): 15–19.

Ma, H.; Li, J.; Kumar, T. K. S.; and Koenig, S. 2017a. Lifelong
Multi-Agent Path Finding for Online Pickup and Delivery Tasks.
In AAMAS, 837–845.

Ma, H.; Tovey, C.; Sharon, G.; Kumar, T. K. S.; and Koenig, S.
2016. Multi-Agent Path Finding with Payload Transfers and the
Package-Exchange Robot-Routing Problem. In AAAI, 3166–3173.

Ma, H.; Wagner, G.; Felner, A.; Li, J.; Kumar, T. K. S.; and Koenig,
S. 2018. Multi-Agent Path Finding with Deadlines: Preliminary
Results. In AAMAS, 2004–2006.

Ma, H.; Yang, J.; Cohen, L.; Kumar, T. K. S.; and Koenig, S. 2017b.
Feasibility Study: Moving Non-Homogeneous Teams in Congested
Video Game Environments. In AIIDE, 270–272.

Mohanty, S.; Nygren, E.; Eichenberger, C.; Baumberger, C.; Egli,
A.; Spigler, G.; Watson, J.; Laurent, F.; Scheller, C.; Bhattacharya,
N.; Sartoretti, G.; Sturm, I.; and Koenig, S. 2020. FLATLAND
NeurIPS 2020 Competition: Multi-Agent Reinforcement Learning
on Trains. Online.

Phillips, M.; and Likhachev, M. 2011. SIPP: Safe Interval Path
Planning for Dynamic Environments. In ICRA, 5628–5635.

Salzman, O.; and Stern, R. 2020. Research Challenges and Oppor-
tunities in Multi-Agent Path Finding and Multi-Agent Pickup and
Delivery Problems. In AAMAS, 1711–1715.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2015. Conflict-
based search for optimal multi-agent pathfinding. Artificial Intelli-
gence 219: 40–66.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013. The
increasing cost tree search for optimal multi-agent pathfinding. Ar-
tificial Intelligence 195: 470–495.

Silver, D. 2005. Cooperative Pathfinding. In AIIDE, 117–122.

Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.; Walker, T.;
Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.; Boyarski, E.; and
Bartak, R. 2019. Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks. In SoCS, 151–159.

Surynek, P. 2010. An optimization variant of multi-robot path plan-
ning is intractable. In AAAI, 1261–1263.

Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016. Effi-
cient SAT Approach to Multi-Agent Path Finding Under the Sum
of Costs Objective. In ECAI, 810–818.

Švancara, J.; Vlk, M.; Stern, R.; Atzmon, D.; and Barták, R. 2019.
Online Multi-Agent Pathfinding. In AAAI, 7732–7739.

Tovey, C. A. 1984. A Simplified NP-Complete Satisfiability Prob-
lem. Discrete Applied Mathematics 8: 85–90.

Wang, K.; and Botea, A. 2011. MAPP: A Scalable Multi-Agent
Path Planning Algorithm with Tractability and Completeness Guar-
antees. Journal of Artificial Intelligence Research 42: 55–90.

Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Warehouses. AI
Magazine 29(1): 9–20.

Yu, J. 2015. Intractability of optimal multirobot path planning on
planar graphs. IEEE Robotics and Automation Letters 1(1): 33–40.

Yu, J.; and LaValle, S. M. 2013a. Planning Optimal Paths for Mul-
tiple Robots on Graphs. In ICRA, 3612–3617.

Yu, J.; and LaValle, S. M. 2013b. Structure and Intractability of
Optimal Multi-robot Path Planning on Graphs. In AAAI, 1444–
1449.

This version of the paper is intended to update the version published in the Proceedings of the Thirty-First
International Conference on Automated Planning and Scheduling (ICASP 2021). The definition of makespan (Section

2) has been corrected from maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri)maxai∈A(t
(g)
i − ri) to maxai∈A t

(g)
imaxai∈A t
(g)
imaxai∈A t
(g)
i . Other parts of the paper are not affected.

