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Multi-Agent Path Finding (MAPF)

* Multi-agent path finding (MAPF)
* Given: a number of agents (each with a start and goal location) and a known
environment
« Task: find collision-free paths for the agents from their start to their goal
locations that minimize some objective

* Objectives
* Makespan: latest arrival time of an agent at its goal location
* Flowtime: sum of the arrival times of all agents at their goal locations
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Multi-Agent Path Finding (MAPF)
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Multi-Agent Path Finding (MAPF)

4-neighbor grid
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Multi-Agent Path Finding (MAPF)

* Application: Amazon fulfillment centers
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Multi-Agent Path Finding (MAPF)

* Application: autonomous tug robots (joint work with NASA Ames)

* Reduce pollution
* Reduce energy consumption
* Reduce human danger

* Reduce human workload

* Reduce airport size ElzE]
[ERENEN)
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Multi-Agent Path Finding (MAPF)

* Application: automated ports
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Multi-Agent Path Finding (MAPF)

Robot Agent

 Simplifying assumptions
* Point robots
* No kinematic constraints
* Discretized environment

« we use grids here but most techniques
work on planar graphs in general
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Multi-Agent Path Finding (MAPF)

* Each agent moves N, E, Sor W
into an adjacent unblocked cell

* Not allowed (“vertex collision”) X Y z

* Agent 1 moves from X to Y m

* Agent 2 moves fromZtoY

« Not allowed (“edge collision”) LI
* Agent 1 moves from X to Y @
* Agent 2 moves from Y to X
* Allowed 3E)
[20)
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Multi-Agent Path Finding (MAPF)

* Optimal MAPF algorithms
« Theorem [Yu and LaValle]: MAPF is NP-hard
to solve optimally for makespan or flowtime
minimization
* Bounded-suboptimal MAPF algorithms
* Theorem: MAPF is NP-hard to approximate
within any factor less than 4/3 for makespan
minimization on graphs in general

www.random-ideas.net]
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Multi-Agent Path Finding (MAPF)

« Reduction from (<3, =3)-SAT: It is NP-complete to determine whether
a given (<3, =3)-SAT instance is satisfiable

* Each clause contains at most 3 literals

 Each variable appears in exactly 3 clauses

* Each variable appears uncomplemented at least once
 Each variable appears complemented at least once

* Example: (X; V X,V X3) A (X1 VX,V X3) A (X VX, V X3)
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Multi-Agent Path Finding (MAPF)
« Example: (X; VX,V X3) A (X1 VX,V X)) A (X, VX,V X3)
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Multi-Agent Path Finding (MAPF)
* Makespan is 3 if and only if (<3, =3)-SAT instance is satisfiable
* Makespan is 4 if and only if (<3, =3)-SAT instance is unsatisfiable

* Any MAPF approximation algorithm with ratio 4/3 — € thus computes
a MAPF plan with makespan 3 whenever the (<3, =3)-SAT instance is
satisfiable and therefore solves it
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Conflict-Based Search with Highways

« Conflict-based search [Sharon, Stern, Felner and Sturtevant]:
Bounded-suboptimal MAPF solver that plans for each agent

independently / \
& IL the red and green agents

B | collide in the green cell at time 2

- o .
Add constraint: T N 7 Add constraint:
the red agent is not allowed 1 L] the blue agent is not allowed
| to be in cell X at time 2

to be in cell X at time 2

TC=8 .,
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4-neighbor grid

Conflict-Based Search with Highways

* Experience graphs [Phillips, Cohen, Chitta and Likhachev]: Bounded-
suboptimal single-agent path planner so that the resulting path uses
edges in a given subgraph (the experience graph) as much as possible
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Conflict-Based Search with Highways

optimal suboptimality bound 4
regular highways #1 highways #2
(no highways) (experience graphs)

* Graph for an A* search

1)

||
! [ s g s [ s g

. all costs are 1 all costs are 4 except all costs are 1

for the ones shown
« Graph relaxation for calculating the heuristics of an A* search

3_2 1 3 2 1 6 15 14
| 1
2[ 1] o 2l 1] o 714 o
I g [4 g 4
3l 2f 1 £ 11| 8 4
all costs are 1 all costs are 1 all costs are 4 except

for the ones shown
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Conflict-Based Search with Highways

« Conflict-based search with highways (ECBS+HWY): Bounded
suboptimal MAPF solver
« Conflict-based search

« Experience graphs create lanes (called highways) for the agents to avoid head-
to-head collisions, which decreases the computation time of conflict-based
search

T

—_—
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Conflict-Based Search with Highways

« Conflict-based search with highways (ECBS+HWY)
* Highways provide consistency and thus predictability of agent movement,
which might be important for human co- workers
* Highways do not make MAPF instances unsolvable because they are only used
as advice rather than hard constraints
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Conflict-Based Search with Highways
« Conflict-based search with highways (ECBS+HWY)
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Conflict-Based Search with Highways

* Learning highways with graphical models
* Plan a shortest path for each agent independently

« Direction vector of a cell: Average of entry and exit directions
of each path for the given cell
* Features
« Collision?
« Direction of direction vector (N, E, S, W)
* Magnitude of direction vector
*>0.5?
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Conflict-Based Search with Highways

* Learning highways with graphical models
* Plan a shortest path for each agent independently

« Direction vector of a cell: Average of entry and exit directions
of each path for the given cell
* Features
« Collision?
« Direction of direction vector (N, E, S, W)
* Magnitude of direction vector
*«>0.5?
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Conflict-Based Search with Highways

* Graphical models basically encode probabilistic knowledge

« If agents collide in a cell, make it more likely that there is a highway in that
cell

« If most agents move northward in a cell, make it more likely that a highway in
that cell, if any, is a northward one

« If a northward highway is in a cell, make it more likely that highways in its
northern and southern neighbors, if any, are also northward ones (to form a
longer lane)

« If a northward highway is in a cell, make it more likely

« that highways in its western and eastern neighbors, if any, are southward
ones (to form adjacent lanes in opposite directions)
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Conflict-Based Search with Highways
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Conflict-Based Search with Highways

2004 ;] S

Time [sec]

- -4 - - ECBS(2)
W - - ECBSQ)+HUMAN()

T T T
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Number of Agents
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Conflict-Based Search with Highways
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Conflict-Based Search with Highways

« Rapid random restarts help to solve more multi-agent path finding
problems within a given runtime limit.

* Here: We randomize the ordering in which the agents plan their paths
in the high-level root node.

1 300sec 100.00% 0.00% 76.00%
3 100sec 97.65% 96.87% 97.60%
5 60sec 98.57% 98.81% 98.70%
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Target Assignment and Path Finding (TAPF)

non-anonymous MAPF

anonymous MAPF

NP-hard polynomial-time solvable for
makespan minimization

solved with flow approaches
e.g. max-flow algorithm

solved with A* approaches
e.g. conflict-based search or M*
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(Non-)Anonymous MAPF

(Non-anonymous) MAPF

« Given: a number of agents (each
with a start and goal location)
and a known environment

« Task: find collision-free paths for
the agents from their start to
their goal locations that
minimize makespan or flowtime

Anonymous MAPF

* Given: a number of agents (each
with a start location), an equal
number of goal locations, and a
known environment

* Task: assign a different goal
location to each agent and then
find collision-free paths for the
agents from their start to their
goal locations that minimize
makespan or flowtime
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Anonymous MAPF

* Theorem [Yu and Lavalle]: An anonymous MAPF instance admits a
MAPF plan with makespan at most T if and only if the time-expanded
network with T periods admits a max flow of the number of agents.
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Anonymous MAPF

* Each agent moves N, E, Sor W
into an adjacent unblocked cell

* Not allowed (“vertex collision”)

* Agent 1 moves from Xto Y
* Agent 2 moves fromZto Y

* Not allowed (“edge collision”)

* Agent 1 moves from Xto Y
* Agent 2 moves from Y to X

all edges have
capacity one

X Yy z

t
X Y 4 Y
X Y

X vy t
t+1 I /l
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Anonymous MAPF
U \ X Y z
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Target Assignment and Path Finding (TAPF)

non-anonymous MAPF

NP-hard
solved with A* approaches
e.g. conflict-based search or M*

anonymous MAPF

polynomial-time solvable for
makespan minimization

solved with flow approaches
e.g. max-flow algorithm
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Target Assignment and Path Finding (TAPF)

TAPF = mix of non-anonymous and anonymous MAPF
TAPF with k teams (here: k = 3), also called types or groups
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Target Assignment and Path Finding (TAPF)
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[Wurman, DAndrea and Mountz]

Team 0: Agents that move from the packing stations to the storage locations

Team 1: Agents that move from the storage locations to Packing Station 1
Team 2: Agents that move from the storage locations to Packing Station 2
Team 3: Agents that move from the storage locations to Packing Station 3
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Target Assignment and Path Finding (TAPF)
* Theorem: TAPF (with k>1 teams) is NP-hard to solve optimally for
makespan or flowtime minimization

* Theorem: TAPF (with k>1 teams) is NP-hard to approximate within
any factor less than 4/3 for makespan minimization on graphs in
general
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Target Assignment and Path Finding (TAPF)
* Reduction from 2/2/3-SAT: It is NP-complete to determine whether a
given 2/2/3-SAT instance is satisfiable

 Each variable appears in exactly 3 clauses

* Each variable appears uncomplemented in a clause of size two
 Each variable appears complemented in a clause of size two
 Each variable appears in a clause of size three

 Example: (X; VX)) A XL VX)) A X VX)) A (X VX, VES)
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Target Assignment and Path Finding (TAPF)
 Example: (X; VX)) A XL VX)) A X VX)) A (X VX, VES)
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Target Assignment and Path Finding (TAPF)

« Task: find the target assignments and collision-free paths that
minimize the makespan.

* How to solve? Ideas from:
« Conflict-based search for solving non-anonymous MAPF (NP-hard)
* Max-flow algorithm for solving anonymous MAPF (P)

* = Qur algorithm:

* Conflict-Based Min-Cost Flow (CBM) = Conflict-Based Search (CBS) + (min-
cost) max flow
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Target Assignment and Path Finding (TAPF)

* CBS for Non-Anonymous MAPF

* CBS:

1. Find paths for each single agent separately

2. Look for collisions in paths

3. If there is a collision between a, and a,:
Option 1 or Option 2 to avoid collision
« Collision: <Agent a, Agent a, Location x, Time t>
+ Constraint: <Agent, Location, Time>

Option 1: g, cannot stay in x at time t.

Option 2: a, cannot stay in x at time t.
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Target Assignment and Path Finding (TAPF)

* CBM: considers each team to be a meta-agent / a best-search on a
search tree

« For every tree node:
1. Find paths for a single group separately
2. Look for collisions in paths
3. If there is a collision between team1 and team2:
Option 1 or Option 2 to avoid collision
+ Collision: <Team team1, Team team2, Location x, Time t>
+ Constraint: <Team, Location, Time>
Option 1: agents in team1 cannot stay in x at time t.
Option 2: agents in team2 cannot stay in x at time t.
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Target Assignment and Path Finding (TAPF)

* An example
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Target Assignment and Path Finding (TAPF)

* Finding paths for single te

)

s

S separaﬁﬁly

{ede}

team2
{ab,d}
{bd.f

teaml team2
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Target Assignment and Path Finding (TAPF)

« Store paths and key
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Target Assignment and Path Finding (TAPF)

teaml
{ede}

team2
{ab,d}
[LXN

teaml team2
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Target Assignment and Path Finding (TAPF)

« Store colliding teams

- Root
key =2
Colliding Teams
“ (team1, team2)
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Target Assignment and Path Finding (TAPF)

* Pop a tree node

s

Root
key=2
Colliding Teams
(team, team?2)
Earliest Collision
team1, team2, d,1
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Target Assignment and Path Finding (TAPF)

* Two options

Root
key=2
Colliding Teams
(team1, team2)
Earliest Collision
teaml, team2, d,

(team1, d,1) (team2, d,1)
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Target Assignment and Path Finding (TAPF)

« Option 1: find new paths;£gr team, o
f teaml Constraints
' feede}  (teamldl)
()
{b.d.f}

Target Assignment and Path Finding (TAPF)

« Store paths and key

Colliding Teams
(team1, team2)
Earliest Collision
team1, team2, d,

(teaml, d,1) (team2, d,1)

Target Assignment and Path Finding (TAPF)

« Look for collisions in path

e
teaml Constraints

{eede}  (teamld,l)
team2
{abyd}
[LXA
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Target Assignment and Path Finding (TAPF)

« Store colliding teams

Root
key =2
Colliding Teams
(team1, team2)
Earliest Collision
(eaml, team2, .1

(team1, d,1) (team2, d,1)

Colliding Teams
(team1, team2)
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Target Assignment and Path Finding (TAPF)

teaml

team1 Constraints
fede}  (team2,d,1)

team2
{a.abd}
{b.b.d,f}
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Target Assignment and Path Finding (TAPF)

* Store paths and key

Root
key=2
Colliding Teams
(team1, team2)
Earliest Collision
eam1, team2, d,

(teaml, d,1) (team2, d,1)

teaml

key=3
Colliding Teams
(team1, team2)
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Target Assignment and Path Finding (TAPF)

« Look for collisions in path

teaml

Constraints
(team2,d.1)

team2
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Target Assignment and Path Finding (TAPF)

« Store colliding teams

Colliding Teams
(team1, team2)
Earliest Collision
team1, team2, d,

(teaml, d,1) (team2, d,1)

team2
key=3

team1
key=3

Colliding Teams
(team1, team2)

Colliding Teams
None
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Target Assignment and Path Finding (TAPF)

* Pop a tree node
Ties are broken to favor nodes
with fewest colliding pairs

(team1, d,1)

Colliding Teams
(teaml, team2)

Colliding Teams
(teaml, team2)
Earliest Collision
teaml, team2, d,]

(team2,d,1)

team2

key=3
Colliding Teams
None

BINGO!
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Target Assignment and Path Finding (TAPF)

* Edge weights — reducing possible collisions
« Idea: choose paths that have fewest collisions with other teams,
when finding paths for a single team
 Take into account the paths of other teams

* Bias the search using a min-cost max-flow algorithm that finds a max flow
with minimal total edge weights
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Target Assignment and Path Finding (TAPF)

« Edge Weights are Crucial
Setups:

30x 30 4-neighbor grids with 10% randomly blocked cells.

5 agents per team.
5-minute time limits.

CBM
agents | time | success

10 0.34 1

15 0.57 1

20 0.78 1

25 1.07 1

30 1.71 1

35 1.92 1

40 295 1

45 3.66 1

50 5.32 1
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Target Assignment and Path Finding (TAPF)

* Theorem: CBM is complete and optimal for minimizing makespan
for TAPF instances
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Target Assignment and Path Finding (TAPF)

* Comparisons
* Setups:
30% 30 4-neighbor grids with 10% randomly blocked cells.
5-minute time limits.
CBM: specialized solver

Versus
ILP (Integer Linear Program): useful tool and easy to model
cBW ™
agents |time | success | time (over solved instances) | success
U 03T 828 T
15 0.57 1 35.44 1
20 [o78 | 1 6285 094
2 (107 | 1 88.55 082
30 171 1 108.75 0.66
3 (192 | 1 121.99 046
40 [2905 | 1 152.98 014
45 (366 | 1 161.52 014
50 |532 1 161.95 004
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Target Assignment and Path Finding (TAPF)

¢ Spectrum: Anonymous«<—Non-Anonymous
Fixed 100 agents in total, 2 to 50 teams

s 1
w0 2
35

10
30

25 i

g £

20 F

E] 6
15

s
10 —#—Makespan
s —=Time
0 o
5 10 20
2 4 Numbe 12, Teams 2 50

[2 teams, 50 agents per team] «— [50 teams, 2 agents per team]
Anonymous «— Non-Anonymous
P «— NP-hard
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Target Assignment and Path Finding (TAPF)

* Scalability: simulated warehouse system
Each instance has 420 agents: 210 “incoming” and 210 “outgoing”
CBM solves 40 out of the 50 Kiva instances within a time limit of 5 minutes each
Average running time over solved instances is 91.61 seconds

Hang Ma (hangma@usc.edu) 7
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Package Exchange Robot Routing (PERR)

* The package exchange robot routing problem (PERR)

 Each agent carries exactly one package
* Each package needs to be delivered to a given goal location
« Two agents in adjacent locations can exchange packages

%_.
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Package Exchange Robot Routing (PERR)

PERR

MAPF
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Package Exchange Robot Routing (PERR)

K-type package-exchange robot routing (K-PERR)

TAPE

KR

o ¢ W

w9 -

KPERR (K= 3)

Pre a&eseff
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Package Exchange Robot Routing (PERR)

« Theorem: All (K-)PERR instances are solvable (as long as all goal
locations are different and all agents are in the same connected

components as their goal locations)

* Theorem: Plans with polynomial makespans and flowtimes can be
found in polynomial time
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Package Exchange Robot Routing (PERR)

* Theorem: PERR (with k>1 groups) is NP-hard to solve optimally for
makespan or flowtime minimization

* Theorem: PERR (with k>1 groups) is NP-hard to approximate within
any factor less than 4/3 for makespan minimization on graphs in
general

* Reductions from <3,=3-SAT or 2/2/3-SAT as before (because transfers
do not help for our constructions)
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Package Exchange Robot Routing (PERR)

* Each agent moves N, E, Sor W
into an adjacent unblocked cell

* Not allowed (“vertex collision”)

* Agent 1 moves from X to Y ‘E\

* Agent 2 moves fromZto Y
owed (“edge collision”)

e Agent 1 move
ves from Y to X

* PERR instances can be solved with versions of conflict-based search

Hang Ma (hangma@usc.edu)
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Execution of MAPF Plans

* Planning uses models that are not completely accurate
* Robots are not completely synchronized
* Robots do not move exactly at the nominal speed
* Robots have unmodeled kinematic constraints

* Plan execution will therefore likely deviate from the plan

* Replanning whenever plan execution deviates from the plan is
intractable since it is NP-hard to find good plans

=@0
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Execution of MAPF Plans

* MAPF-POST makes use of a simple temporal network to post-process
the output of a multi-agent path finding solver in polynomial time to
allow for plan execution on robots

« Takes into account edge lengths

* Takes into account velocity limits (for both robots and edges)
« Guarantees a safety distance among robots

* Avoids replanning in many cases
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Execution of MAPF Plans

n ‘E Agentl1 AB—>C—>D—>E
L Agent2 B—>C— F—>C—D

Precedence Graph
vertex = event that an agent arrives at a location
A ;095 BU0—0+(G Q0D -a—0~(El
/
Xs / / \ \
Ses /s N , ”

- f \ \ .
trhd—oafd—o+{Rlo—bf{co—b-{D

X
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4-neighbor grid

Execution of MAPF Plans

y E Agentl1 AB—>C—>D—>E
= = Agent2 B>C—> F—>C—>D

Precedence Graph
Type 1 edge = order in which the same agent arrives at locations

Ab t ; D5 £

. 4 4 A A
P s \

Xs /

/ .
B o = % i
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4-neighbor grid

Execution of MAPF Plans

) ‘E Agentl1 A>B—>C—>D—>E
2l Agent2B—>C—> F>C—oD

Precedence Graph
Type 2 edge = order in which two different agents arrive at the same location

AL 00— BE O——0-{ O} 0 D} e—— 0 B}

N

(rrd—o={cr 3 fo ) NGU. SO

~

Xs

N
AN
|
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4-neighbor grid

Execution of MAPF Plans

\ E Agentl1 A>B—>C—>D—>E
- = Agent2 B>C—> F—>C—>D

5/,
| Simple Temporal Network [Dechter, Meiri and Pearl]

v

[1,=] [2,=] [1,=]
(001, A 0 B 0—0r+(Ch a0~ Dh - a—0~(El) (g,
Xs

\

0,017 1

[2,=] [4,<] [2,=]

4-neighbor grid

Xp

Py
et oo D2 10~]
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Execution of MAPF Plans

* Minimize makespan and flowtime
« Schedule each arrival in a location as early as allowed by the constraints

Minimize S2% | #(x

such that ¢(Xs) =0

and, for all ¢ (v,v') € & X
t(v') — t(v) > LB(e) /9/,,-
t(v') — t(v) < UB(e) e
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Execution of MAPF Plans

* Maximize safety distance

« Assume that each agent moves with a constant velocity of at least v, along
every Type 1 edge
* Then, the safety distance is 26Vin/Vimax

Pr—
Maximize v*
such thatf{Xs) =0

o,
and, forall ¢ = (v.v') € &', /J’f)o X
/') — #(v) > LB(e) 07/8/[/.
t(v) < UB(e) e
t(v) < 1(e)(vmin ifeisaType | L-d‘._-t-\
ang Vi (hangma@usc ) 5

Execution of MAPF Plans

* Main loop
* Run Conflict-Based Search with Highways to find a MAPF plan (slow)
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Execution of MAPF Plans

* Main loop
* Run Conflict-Based Search with Highways to find a MAPF plan (slow)
* Construct a simple temporal network for the MAPF plan
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Execution of MAPF Plans

* Main loop
* Run Conflict-Based Search with Highways to find a MAPF plan (slow)
« Construct a simple temporal network for the MAPF plan
* Determine the earliest arrival times in the nodes
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Execution of MAPF Plans

* Main loop
* Run Conflict-Based Search with Highways to find a MAPF plan (slow)
« Construct a simple temporal network for the MAPF plan
* Determine the earliest arrival times in the nodes

* Calculate speeds for the robots from the earliest arrival times

Hang Ma (hangma@usc.edu) %0
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Execution of MAPF Plans

* Main loop
* Run Conflict-Based Search with Highways to find a MAPF plan (slow)
« Construct a simple temporal network for the MAPF plan
* Determine the earliest arrival times in the nodes

« Calculate speeds for the robots from the earliest arrival times
* Move robots along their paths in the MAPF plan with these speeds
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Execution of MAPF Plans

* Main loop
* Run Conflict-Based Search with Highways to find a MAPF plan (slow)
* Construct a simple temporal network for the MAPF plan +——
* Determine the earliest arrival times in the nodes

+ Calculate speeds for the robots from the earliest arrival times
* Move robots along their paths in the MAPF plan with these speeds
« If plan execution deviates from the plan, then
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Execution of MAPF Plans

* Main loop
* Run Conflict-Based Search with Highways to find a MAPF plan (slow)
* Construct a simple temporal network for the MAPF plan +———
« Determine the earliest arrival times in the nodes

« Calculate speeds for the robots from the earliest arrival times
* Move robots along their paths in the MAPF plan with these speeds
« If plan execution deviates from the plan, then
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Execution of MAPF Plans

* Main loop
* Run Conflict-Based Search with Highways to find a MAPF plan (slow)
 Construct a simple temporal network for the MAPF plan +———
* Determine the earliest arrival times in the nodes
« If they do not exist, then
« Calculate speeds for the robots from the earliest arrival times
* Move robots along their paths in the MAPF plan with these speeds
« If plan execution deviates from the plan, then
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Execution of MAPF Plans

* MAPF solver: ECBS+HWY

* MAPF-POST: C++, boost graph library, Gurobi LP solver
* PC:i7-4600U 2.1 GHz, 12 GB RAM

« Terrain: 4x3 gridworld with 1m2 cells and § = 0.4m

* Architecture: ROS with decentralized execution
* Robot controller with state [x,y,0] (attempts to meet deadline)
* PID controller (corrects for heading error and drift)

* Robot simulator: V-REP
* Robots: iRobot Create2 robots
 Test environment: VICON MX Motion Capture System

Hang Ma (hangma@usc.edu) %
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Execution of MAPF Plans

4-neighbor grid

Hang Ma (hangma@usc.edu)

Execution of MAPF Plans
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MAPF with Delay Probability

* Idea: addressing delays with planning rather than execution
monitoring
* Formulation: Multi-Agent Path Finding with Delay Probabilities
(MAPF-DP):
« A generalization of multi-agent path finding (MAPF)
* Takes into account the uncertainty of delay during execution

« Every agent suffers from a delay probability:
« it stays in its current location with the probability when executing a move action

Hang Ma (hangma@usc.edu)

MAPF with Delay Probability

* Tasks of MAPF-DP:
* Planning: compute plans — one path for each agent
* Execution: use execution policies — GO or STOP commands to control how
the agents proceed along their paths
« Objective: find a combination of a plan and an execution policy with small
average makespan during plan execution
* Our Approach:
* Valid plans and robustness => deadlock-free and collision-free execution
« Two classes of decentralized robust plan-execution policies
* A 2-level hierarchical algorithm for generating valid plans

Hang Ma (hangma@usc.edu)

Multi-Agent Pickup and Delivery (MAPD)

« Existing research on MAPF — a “one-shot” version:

* One pre-determined task for each agent — navigates to its goal location
* MAPD — a “lifelong” version of MAPF:

 Atask can enter the system at any time

* Agents have to constantly attend to a stream of new tasks

Hang Ma (hangma@usc.edu) 101

Multi-Agent Pickup and Delivery (MAPD)

* MAPD Algorithms
1. Decoupled Task Assignment and Path Finding
« Token Passing (TP): greedy task assignment and no task reassignment
« Token Passing with Task Swaps (TPTS): local task reassignment between two
agents

2. Centralized Task Assignment and Path Finding CENTRAL

* Roughly:
* Effectiveness: TP < TPTS < CENTRAL
« Efficiency: CENTRAL < TPTS < TP

Hang Ma (hangma@usc.edu) 102
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Multi-Agent Pickup and Delivery (MADP)

* Tasks
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Multi-Agent Pickup and Delivery (MAPD)

« In order to execute a task, the agent has to move from its current
location via the pickup location to the delivery location:
1. When the agent reaches the pickup location, it starts to execute the task
2. When it reaches the delivery location, it finishes the task

Hang Ma (hangma@usc.edu) 104

MAPD: Executing Task

« In order to execute a task, the agent has to move from its current
location via the pickup location to the delivery location:
1. When the agent reaches the pickup location, it starts to execute the task.
2. When it reaches the delivery location, it finishes the task.

te—
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MAPD: Free Agents
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MAPD: Occupied Agents
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MAPD: Assignment of Agents to Tasks

« A free agent can be assianed to any unexecuted task

e

« An occupied agent has to finish executing its current task.
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MAPD: Objective

* Finish executing each task as quickly as possible.

Hang Ma (hangma@usc.edu)

MAPD: Effectiveness of a MAPD algorithm

« Service time: the average number of timesteps needed to finish
executing each task after it enters the system.

* An algorithm solves a MAPD instance <= Service time of all tasks is
bounded.

Hang Ma (han
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MAPD: Service time is 7JZ'—7=7

‘Nl

MAPD: Solvability

 Not every MAPD instance is solvable

5 @O s
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MAPD: Well-Formed MAPD Instances

* Being well-formed (based on [M. Cép, Vokrinek and Kleiner]): a
sufficient condition that makes MAPD instances solvable

* Intuition: agents should only be allowed to rest (that is, stay

forever) in locations, called parking locations, where they cannot
block other agents

Hang Ma (hangma@usc.edu)

MAPD: Parking Locations

: all pickup and delivery locations of tasks
(storage locations, inventory stations, etc.)

« Allinitial locations of agents
« Additional designated parking locations

(@)
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MAPD: Well-Formed MAPD Instances
1. #tasks is finite;
2. # > # agents;

3. For any two parking locations, there exists a path between them
that traverses no other parking locations.

Hang Ma (hangma@usc.edu) 15

MAPD: MAPD Algorithms

We present
1. Two Decoupled Algorithms: complete for well-formed MAPD
instances (solve all well-formed instances)
Token Passing (TP)
Token Passing with Task Swaps (TPTS)
2. One Centralized Algorithm:
CENTRAL

Hang Ma (hangma@usc.edu) 116

MAPD: A Running Example
Unexecuted Tasks: taski, task;.
Agent a1 and agent a; are resting

is assigned to taski and on the way to the pickup location s1

O

O,
é
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MAPD: Token Passing (TP)

Based on an idea similar to Cooperative A* [Silver]:
* Token: a synchronized shared block of memory that contains the current paths of all
agents, set of unexecuted task, and agent assignments
* Only one agent has access to the token at each time
« Each agent assigns itself a task, plan its path, and passes the token to the next agent

Key idea of TP:
* Atask can only be assigned once

* Once an agent is assigned to a task, it cannot be assigned to other tasks until it
finishes the task

Hang Ma (hangma@usc.edu) 118

MAPD: TP: Running Example

Task Available for Assignment: task,
Agent a1 and agent o, request for token

oEE
é
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MAPD: TP: Agent a1’s Turn

Agent a1 Has Token

1. it cannot assign itself to any task because agent o rests in g, the only task
available to it

2. ithasto restin a parking location that will not create any deadlock
3. it can continue to rest in its current location

@ |
o
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MAPD: TP: Agent a2’s Turn

Agent a, Has Token
1. it assigns itself to task,

2. taskz is no longer available to other agents
3. it plans a cost-minimal collision-free path to execute task

~

O

pa 1

Hang Ma (hangma@usc.edu)

MAPD: TP: Animation
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MAPD: TP: Animation

MAPD: TP: Animation
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MAPD: TP: Animation
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MAPD: TP: Animation
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MAPD: TP: Animation
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MAPD: TP: Animation
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MAPD: TP: Completeness

* Theorem: All well-formed MAPD instances are solvable, and TP solves

them

Hang Ma (hangma@usc.edu)

MAPD: Improving the Effectiveness of TP

* TP is simple but can be made more effective: A task with an assigned
agent can be assigned a new agent (as long as the task has not been

executed)

Hang Ma (hangma@usc.edu)
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MAPD: Token Passing with Task Swaps (TPTS)

* TPTS: An agent is allowed to grab a task from another agent if it can
finish the task earlier

Hang Ma (hangma@usc.edu)

MAPD: TPTS: Running Example

Tasks Available for Assignment: task., task,
Agent a1 and agent o, request for token

O,
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MAPD: TPTS: Agent a1’s Turn

Agent a1 has token
Agent a1 grabs task; from

(’;
(%)
i

L
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MAPD: TPTS: Agent a3 Making Decisions

has token
moves to a parking location that will not create any deadlock in

the future
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MAPD: TPTS: Agent az’s Turn

Agent a; has token
Agent a; grabs task: from agent ay

@) ,
o

Hang Ma (hangma@usc.edu)

MAPD: TPTS: Agent a1 Making Decisions

Agent a; has token
Agent a; assigns itself to task;

o
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MAPD: TPTS: Completeness

* Theorem: TPTS solves all well-formed MAPD instances

Hang Ma (hangma@usc.edu) 139

MAPD: Centralized MAPD Algorithm

« CENTRAL assigns agents to tasks in a centralized way:
1. assigns parking locations to all free agents using Hungarian method

2. plans paths for all of them from their current locations to their assigned
parking locations by solving the resulting “one-shot” multi-agent path-
finding problem
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MAPD: CENTRAL: Running Example

« Tasks available for assignment: task, task,

é
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MAPD: CENTRAL: Candidate Parking Locations

« Pickup locations s; and s; + three additional “good” parking locations,
one for each agent:

5 Y
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MAPD: CENTRAL: Assignment

* CENTRAL uses Hungarian method to find a cost-minimal assignment
from parking locations to agents (pickup locations have priority over
other parking locations):
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MAPD: CENTRAL: Path Finding
« CENTRAL plans collision-free paths for all agents from their current
locations to their assigned parking locations

* CENTRAL plans paths to delivery locations only when agents reach
pickup locations

Y
L] @

St
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MAPD: Comparisons of Three Algorithms

Hang Ma (hangma@usc.edu) 135

MAPD: Experiments Setup

* Small Simulated Warehouse Environment: 21 X 35 4-neighbor grid with
50 agents
Gray cells are inventory stations and storage locations
Colored circles are the initial locations of agents

I NN NN
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MAPD: Experimental Results

* 500 Random Tasks, 10 to 50 Agents

* Effectiveness:
1. Service Time:
CENTRAL< TPTS< TP
2. Throughput — # tasks executed per 100 timesteps:
TP < TPTS < CENTRAL
3. Makespan — timestep when all tasks are finished:
CENTRAL< TPTS< TP
* Runtime per Timestep:
TP < 10 milliseconds
TPTS < 200 milliseconds
CENTRAL < 4,000 milliseconds
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MAPD: Experiments Setup

« Large Simulated Warehouse Environment: 81 x 81 4-neighbor grid
with 500 agents
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MAPD: Experimental Results

* Results for TP: 1000 Random Tasks, 100 to 500 Agents
* 100 agents: ~ 0.09 seconds per timestep

* 500 agents: ~ 6 seconds per timestep

| agens [ 00 | a0 | 3o | 40 | s ]

463.25 330.19 301.97 289.08 284.24

runtime (milliseconds) 90.83 538.22 1,854.44 3,881.11 6,121.06
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MAPD: Takeaways

* MAPD: A “lifelong” version of multi-agent path finding

* Three Algorithms:
Decoupled and complete for well-formed MAPD instances: TP, TPTS
Centralized: CENTRAL

« Task Assignment Effort: TP < TPTS < CENTRAL

* Effectiveness: TP < TPTS < CENTRAL

« Efficiency: CENTRAL < TPTS < TP

Hang Ma (hangma@usc.edu) 150
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MAPD in Continuous Time

* In submission to ICAPS-18
« Take kinematic constraints of robots into account directly during
planning

* Compute kinematically feasible paths that
1. Work on non-holonomic robots
2. Take their maximum translational and rotational velocities into account
3. Provide a guaranteed safety distance between them
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MAPD in Continuous Time
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MAPD in Continuous Time

4-neighbor grid

Hang Ma (hangma@usc.edu) 153

MAPD in Continuous Time

4-neighbor grid
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Conclusions

* This research is joint work with N. Ayanian, L. Cohen, W. Honig, S.
Koenig, S. Kumar, J. Li, G. Sharon, C. Tovey, T. Uras and H. Xu

« Thank you for listening!
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The views and conclusions contained in this document are those of the authors and should not
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* For more information,
see www-scf.usc.edu/~hangma

or send me an email: hangma@usc.edu
* Our lab: idm-lab.org
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