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This article summarizes the New Faculty Highlights talk with the same title at
AAAI 2021.
Intelligent agents such as different types of robots will soon become an
integral part of our daily lives. In real-world multi-agent systems, the most
fundamental challenges are assigning tasks to multiple agents (task-level
coordination problems) and planning collision-free paths for the agents to task
locations (motion-level coordination problems). This article surveys four
directions of our research on using intelligent planning techniques for the
above multi-agent coordination problems.

Self-driving cars, autonomous drones, autonomous aircraft towing vehicles,
automated warehouse robots, automated-guided port vehicles, home and office
service robots, and other intelligent agents will become an integral part of our daily
lives. For example, in the coming years, hundreds of autonomous aircraft towing
vehicles will tow their assigned aircraft between runways and terminal gates
(Morris et al., 2016). Today, hundreds of warehouse robots already navigate fully
autonomously in automated fulfillment and sortation centers to deliver inventory
shelves and express parcels to fulfill online orders (Wurman, D’Andrea, and
Mountz, 2008; Kou et al., 2020). For these real-world applications of large-scale
multi-agent systems, the basic building blocks include assigning tasks to agents
and planning paths for the agents to reach task locations. Agents must avoid
collisions in a congested environment while reaching their task locations as
promptly as possible and completing a large number of tasks as quickly as possible.
The resulting task- and motion-level coordination problems, which model the
task-assignment and path-planning operations of the agents, are fundamental for
these multi-agent systems but, at the same time, computationally challenging since
there are typically many agents in such a system and the operating time of the
system is long.

In the artificial intelligence (AI) community, much attention has been placed on a
simplified one-short version of the path-planning problem in the above multi-agent
systems, known as Multi-Agent Path Finding (MAPF) (Ma and Koenig, 2017; Stern et
al., 2019; Ma, 2022). The problem of MAPF is to move multiple agents from their
start vertices to their target vertices in discrete time steps on a given graph that
models the environment and let the agents wait in their target vertices. During
each time step, each agent can wait in its current vertex or move to an adjacent
vertex. Agents are not allowed to collide. Two agents collide if and only if, during
the same time step, they move to the same vertex or traverse the same edge in
opposite directions. A MAPF solution consists of a set of collision-free paths, one
for each agent that specifies the vertex occupies by the agent at each time step. The
objective is to minimize the flowtime (also known as the sum-of-costs (Felner et al.,
2017)), that is, the sum of the numbers of time steps for the agents to reach their
target vertices, or the makespan, that is, the earliest time step when all agents are at
their target vertices. MAPF is NP-hard to solve optimally for makespan (Surynek,
2010) or flowtime (Yu and LaValle, 2013c) minimization. MAPF algorithms include
reductions to Boolean Satisfiability (Surynek et al., 2016), Integer Linear
Programming (Yu and LaValle, 2013b), and Answer Set Programming (Erdem et
al., 2013) and specialized combinatorial search algorithms (Standley and Korf, 2011;
Sharon et al., 2013; Wagner and Choset, 2015; Sharon et al., 2015).

Nevertheless, the following concerns should be addressed when we generalize
MAPF to the above real-world applications of large-scale multi-agent systems (Ma
et al., 2016a): 1. MAPF algorithms need to be made more efficient, namely they
need to compute a solution faster for the same number of agents or scale to a larger
number of agents in the same amount of time. 2. New variants and extensions of
MAPF need to be studied to tackle problems arising in practice, such as executing
MAPF solutions with unmodeled motion delays and robot constraints, combining
target assignment and path finding, and long-term and online planning.

This article surveys our research on intelligent planning for large-scale
multi-agent systems in four research directions that addresses the above concerns:

• Improved MAPF algorithms: We propose several improvements to



state-of-the-art optimal MAPF algorithms based on heuristic search techniques
and leveraging insights from solvers of other combinatorial problems. The
resulting improved MAPF algorithms are several orders of magnitude faster. We
develop bounded-suboptimal and suboptimal MAPF algorithms that produce
close-to-optimal MAPF solutions for hundreds of agents in seconds of
computation time. Furthermore, we demonstrate the benefits of our algorithms
by applying them to the navigation of drones and video characters.

• Safe execution of MAPF solutions: We study the problem of handling motion
delays when robots execute MAPF solutions. We propose to use execution
policies to guarantee safe execution of MAPF solutions. These execution policies
determine the correct timing for robots to follow each step of a given MAPF
solution. We showcase how we have combined insights from this study and
MAPF techniques to win a railway scheduling competition that was held at a
top-tier machine learning conference. We also develop a hierarchical framework
for generating and executing MAPF solutions for real-world multi-robot systems.
This framework makes use of an efficient procedure that accounts for kinematic
constraints of robots to transform a MAPF solution to a continuous-time
plan-execution schedule that is safe for robots to execute. We demonstrate our
framework using different types of simulated and real robots.

• Combined target assignment and path finding: We formalize and study a
variant of MAPF, called Combined Target-Assignment and Path Finding (TAPF) (Ma
and Koenig, 2016), that models the joint problem of (1) which locations the
robots go to next and (2) how the robots go to the locations. The problem of
TAPF is to assign target vertices to multiple agents and move the agents from
their start vertices to their target vertices on a given graph without collisions. We
develop an optimal TAPF algorithm that computes solutions for hundreds of
agents in minutes of computation time. We apply our TAPF algorithm to solving
the formation control problem with teams of real robots.

• Long-term task and path planning: We formalize and study an extension to
MAPF and TAPF, called Multi-Agent Pickup and Delivery (MAPD) (Ma et al.,
2017b). MAPD models a long-term problem where a system needs to repeatedly
assign incoming tasks to a set of agents and plan paths for the agents to the
targets of their assigned tasks. We develop complete and deadlock-free MAPD
algorithms for both online and offline settings and techniques to account for
kinematic constraints of robots when solving MAPD. These algorithms made
decisions for hundreds of agents and thousands of tasks in seconds of
computation time. We applies our techniques for solving MAPD to automated
parcel sorting with warehouse robots and demonstrate the benefits of our
techniques on an industrial simulator with real-world data.

Improved MAPF Algorithms
Modern large-scale real-world multi-agent systems such as the automated
fulfillment and sortation centers constructed by Amazon (Wurman, D’Andrea, and
Mountz, 2008) and Alibaba (Kou et al., 2020) require solving MAPF efficiently,
namly planning high-quality paths for hundreds of agents in a short computation
time. However, it is NP-hard to solve MAPF optimally (Surynek, 2010; Yu and
LaValle, 2013c). In our theoretical study (Ma et al., 2016b), we further prove that
MAPF is NP-hard to approximate within any constant factor less than 4/3 for
makespan minimization by a reduction from a specialized NP-complete version
(Tovey, 1984) of the Boolean satisfiability problem.

Nevertheless, a state-of-the-art MAPF algorithm, called Conflict-Based Search
(CBS) (Sharon et al., 2015) can compute optimal MAPF solutions for dozens of
agents in a few minutes of computation time. CBS is a two-level combinatorial
search algorithm. It first finds individually optimal paths for all agents (ignoring
collisions). On the high level, CBS performs a best-first search to resolve each
collision of the computed paths by imposing constraints on both the agents
involved in the collision. The constraints forbid the agents from occupying a vertex
or traversing an edge at a given time step. On the low level, CBS uses an A* search



in both the space and the time dimensions to find a path for an agent that obeys its
constraints. The high-level search of CBS branches on which collision to resolve.

We have explored three directions to make CBS more efficient. First, we have
developed admissible heuristics for the high-level best-first search of CBS to
significantly reduce the size of the search tree (Felner et al., 2018; Li et al., 2019a).
Experimental results show that the resulting algorithm CBSH (Li et al., 2019a) is up
to 50 times faster than CBS and can thus compute solutions for up to 3 times more
agents than CBS within one minute of computation time. Second, we have
proposed a high-level branching rule for CBS called Disjoint Splitting (Li et al.,
2019b). Disjoint Splitting guarantees that CBS solution spaces explored under the
child nodes resulting from each node expansion are disjoint, thereby reducing
duplicate search effort. Experimental results show that CBS with Disjoint Splitting
is up to 2 orders of magnitude faster than CBS. Third, we have developed several
techniques (Li et al., 2019c, 2020a, 2021b) to tackle ‘‘pairwise path symmetry’’,
which occurs when two agents each has multiple paths of the same cost but any
paths of the two agents are pairwise incompatible since they result in collisions.
Our recent work (Li et al., 2021b) experimentally demonstrates that the
combination of several of the above directions result in an improved version of CBS
that is up to 4 orders of magnitude faster than CBS and can thus compute solutions
for up to 30 times more agents than CBS within one minute of computation time.

We have also explored five directions to make MAPF algorithms more suitable
for practical applications of large-scale multi-agent systems. First, we have
developed an anytime bounded-suboptimal version of CBS (Cohen et al., 2018) that
can be stopped at any time and return a MAPF solution with a guaranteed
suboptimality bound. The suboptimality bound become smaller as the algorithm
runs longer. Second, we have developed Prioritized-Based Search (PBS) (Ma et al.,
2019a), a MAPF algorithm that searches in the space of all possible orderings of
agents. PBS is a two-level algorithm similar to CBS but performs a depth-first
search on the high level. Unlike CBS, PBS is suboptimal and complete only for a
realistic family of MAPF instances. However, empirical study shows that PBS
always returns close-to-optimal solutions (with a cost no more than 105% of the
optimal cost) in our experimental setting and can compute solution for 600 agents
in half a minute of computation time. Third, We have addressed the MAPF
problem where a deadline is given for agents to reach their target vertices (Ma et
al., 2018b,a). We have developed an Integer Linear Programming based algorithm
and a CBS-based algorithm that both maximize the number of agents reaching
target vertices before the deadline. Fourth, we have addressed the MAPF problem
for large-size agents with different geometric shapes and volumes of agents (Li et
al., 2019d). We tackle this challenge by allowing each agent to occupy more than
one vertex and generalizing the definition of collisions since the agent can intersect
with multiple vertices and edges at each time step. We have developed a version of
CBS to solve this problem optimally and demonstrate it for the navigation of a
drone fleet. Fifth, we have shown how a combination of swarm-based approaches
from the robotics community and an adapted version of CBS can be applied to the
navigation of multiple game characters that needs to keep a desired formation
while moving (Li et al., 2020b). This adapted version of CBS balances between the
makespan and the cost of deviating from the desired formation.

Safe Execution of MAPF Solutions
MAPF algorithms can be used to compute collision-free paths for multiple agents
in real-world multi-agent systems. However, real-world agents such as warehouse
robots cannot perfectly execute the computed solutions, namely following their
paths, since they can be delayed unexpectedly when they move, they have
unmodeled kinematic constraints (for example, they do not move at the same
speed), etc. existing AI research has not studied how the agents can safely execute
the computed MAPF solutions.

In our recent work (Ma, Kumar, and Koenig, 2017), we study a variant of MAPF
where each agent is delayed and stays in its current vertex with a given probability



whenever it intends to move to another vertex during plan execution. We propose
several decentralized execution policies to guarantee safe execution of MAPF
solutions under such delay uncertainty. Decentralized execution policies use a GO
or STOP command to control, at each time step, whether an agent should follow its
planned path to move to the next vertex or not. For example, a naive policy is to
move all agents in locked time steps according to a given MAPF solution, namely it
stops all other agents if an agent is delayed, which requires all agents to
communicate with each other at every time step. We proposed Minimal
Communication Policy (MCP) to make the execution more efficient. The key idea of
MCP is to respect the precedence constraints that, if two different agents visit the
same vertex, they have to visit it in the same order as specified by the given MAPF
solution. To do so, MCP constructs a directed acyclic graph whose nodes represent
events of agents visiting vertices and whose arcs represent precedence constraints.
During execution, MCP thus stops an agent only when a precedence constraint is
not satisfied until it receives a signal from another agent for the constraint. MCP
also attempts to minimize the number of arcs between events of different agents,
namely precedence constraints between agents, and thus the communication cost.
Furthermore, we have developed a version of CBS that computes MAPF solutions
with small expected makespan for given delay probabilities, assuming that MCP is
used for plan execution. In our most recent work (Li et al., 2021a), we combine
MAPF algorithms and MCP to develop a software that won the NeurIPS-20
Flatland Challenge1, a railway scheduling competition which was held in
partnership with German, Swiss, and French railway companies. Our software
uses automated planning and combinatorial search techniques only but
outperformed all other entries, including all reinforcement learning entries, to win
overall first place in both rounds of the competition in the top machine learning
conference NeurIPS 2020. The problem in the competition is a MAPF variant
similar to above where the agents can be stopped at a random time step for a
random duration during plan execution.

We have also extended the above idea to a hierarchical framework (Ma et al.,
2017a) for plan generation and execution to account for kinematic constraints of
agents during planning and other system dynamics during plan execution. This
framework uses a post-processing procedure called MAPF-POST (Hönig et al.,
2016a) that transforms a MAPF solution into a plan-execution schedule in
continuous time using a simple temporal network (STN). The STN is a also
directed acyclic graph similar to the one constructed by MCP. The STN takes into
account important kinematic constraints such as various edge lengths, different
agent sizes, and translational and rotational velocity limits of agents by
representing the kinematic constraints as temporal constraints between agents,
which are arcs annotated with time bounds in the directed acyclic graph, in the
computation. The resulting plan-execution schedule guarantees a user-specified
safety distance among agents and avoids replanning, namely resolving MAPF
problems, in many cases during execution. We have verified our framework using
different types of simulated and real robots. The pipeline of our framework is as
follows. First, our framework runs an optimal MAPF algorithm such as CBS to
compute a MAPF solution. Second, it then uses MAPF-POST to construct an STN
that transforms the MAPF solution into a plan-execution schedule, which specifies
the expected execution time when a robot should arrive at each location. Third, all
robots move along their paths to meet the expected execution time at each location.
If the execution deviates from the plan in the third step, the framework constructs a
new STN based on the real execution times and computes a new plan-execution
schedule for the rest of the plan. The framework needs to perform the first step to
replan, namely to solve a new MAPF instance, only when MAPF-POST fails to
compute a plan-execution schedule in the second step. In practice, our
experimental results show that the robots can almost always execute the given
MAPF solution safely without replanning.



Combined Target Assignment and Path Finding
Many real-world applications of multi-agent systems require the coordination of
not only path-planning operations but also target-assignment operations. For
example, an automated warehouse system needs to decide which robots to deliver
which parcels and on what routes the robots should move. In our recent work (Ma
and Koenig, 2016), we formalize and study a variant of MAPF called TAPF that
couples the target-assignment and the path-finding problems for multiple teams of
agents. In TAPF, agents are partitioned into teams and each team is given the same
number of target vertices as there are agents in the team. The problem of TAPF is to
assign the target vertices of each team to agents in the same team and plan
collision-free paths for the agents to their target vertices so that each agent reaches
exactly one target vertex and each target vertex is reached by an agent. Existing AI
research has considered only two extremes of TAPF. On one hand, the special case
of TAPF with one team of agents can be solved optimally in polynomial time (Yu
and LaValle, 2013a) by solving a max-flow problem. On the other hand, MAPF
algorithms assume that each agent forms a single-agent team, namely the agent is
assigned the only target vertex in its team. It remains unclear how and how well
one can solve the general case of TAPF with multiple teams of agents.

Therefore, we have developed an optimal TAPF algorithm called Conflict-Based
MinCost Flow (CBM) (Ma and Koenig, 2016). CBM breaks TAPF down to the
NP-hard sub-problem of coordinating different teams of agents and the
polynomial-time solvable sub-problems of coordinating the agents in every team. It
then tackles these sub-problems by using a combination of CBS for the NP-hard
sub-problem and a min-cost max-flow algorithm (Goldberg and Tarjan, 1987) for
the polynomial-time solvable sub-problems. Our experimental results demonstrate
that CBM can compute optimal TAPF solutions for more than 400 agents in
minutes of runtime, showcasing its potential for large-scale multi-agent systems. In
our empirical study (Hönig et al., 2016b), we verify CBM using both simulated and
real robots. We demonstrate how CBM can be combined with MAPF-POST to
generate plan-execution schedules that allow for the safe execution of TAPF on
these real-world agents. We apply the resulting techniques to solve a formation
control problem where drones in different colors move to desired locations to
display an English word in 3D space with each letter in a unique color.

Long-Term Task and Path Planning
Agents in many multi-agent systems need to constantly attend to new tasks after
they finish their current tasks. For example, a warehouse robot in an Amazon
fulfillment center (Wurman, D’Andrea, and Mountz, 2008) needs to pick up and
deliver another inventory shelf after it finishes delivering its current inventory
shelf. Existing AI research on MAPF and TAPF has focused mostly on one-shot
problems only where each agent has one target vertex and the agents stop moving
after they all reach their target vertices. Therefore, in our recent work (Ma et al.,
2017b), we formalize and study MAPD that generalizes the one-shot problems
MAPF and TAPF to a long-term problem. In MAPD, agents have to attend to a
stream of incoming tasks. Each task enters the system at an unknown time and is
characterized by two target vertices, namely a pickup vertex and a delivery vertex.
A free agent, namely one that is currently not executing any task, can be assigned
an unexecuted task. To execute the task, the agent has to first move from its current
vertex to the pickup vertex of the task, become occupied and start to execute the
task upon reaching the pickup vertex of the task, and then move from the pickup
vertex to the delivery vertex of the task, while avoiding collisions with other agents.

There are three benefits of modeling ‘‘pickup-and-delivery’’ tasks that have an
intermediate target vertex (the pickup vertex) and a final target vertex (the delivery
vertex) each instead of ‘‘navigation’’ tasks that have only one target vertex each. 1.
Modeling “pickup-and-delivery” tasks results in a mix of both single-agent teams
(each consisting of an occupied agent) and a team of free agents, while modeling
“navigation” tasks results in only one team of agents, which limits its
generalizability. 2. The resulting MAPD algorithms still apply directly to



‘‘navigation’’ tasks because each such task is a special case of a
‘‘pickup-and-delivery’’ task with the pickup and delivery vertices being the same
vertex. (c) Modeling “pickup-and-delivery” tasks also makes it easy to explain the
resulting MAPD algorithms, even though these algorithms can easily be
generalized to cases where the tasks have multiple (ordered) intermediate target
vertices and a subsequent final target vertex each.

We have considered an online setting (Ma et al., 2017b) of MAPD where tasks can
enter the system at any time and are not known until they have been added to the
system. We develop decentralized and centralized MAPD algorithms that are
deadlock-free. The key idea of these online MAPD algorithms is to decouple the
long-term problem of MAPD into a sequence of one-shot sub-problems at each
time and repeatedly apply task-assignment, MAPF, and TAPF algorithms to these
sub-problems. Experimental results show that these MAPD algorithms can
determine the tasks and paths for 500 agents in seconds of computation time. We
also demonstrate how one of our MAPD algorithms can account for kinematic
constraints of robots directly during planning (Ma et al., 2019b) in an online setting.
The resulting algorithm can compute an executable solution for 30 minutes of
operation of 250 robots and 2,000 tasks in less than 10 seconds of computation time,
which is more efficient than using MAPF-POST in a post-processing phase.

We have also considered an offline setting (Liu et al., 2019) of MAPD where all
tasks are known a priori, thus affording opportunity to optimize the order in which
agents execute tasks. We develop an offline MAPD algorithm that models the task
scheduling problem as a specialized asymmetric version of the Traveling Salesman
problem to compute a chronologically ordered task sequence for each agent.
Experimental results show that the offline MAPD algorithm can compute solutions
where agents finish all tasks by up to 46% sooner than online MAPD algorithms.

Finally, we have applied MAPD algorithms to an application of parcel sorting
with warehouse robots in an automated sortation center(Kou et al., 2020) where the
robots need to move to sorting stations to obtain an express parcel and deliver it to
a correct sorting bin associated with the postal code of the shipping address of the
parcel. A machine in each sorting station scans the shipping address of a parcel,
determines the sorting bin the parcel should be delivered to, and load the parcel
onto a robot as long as there are robots waiting in the queue of the sorting station.
Our goal is to optimize the idle time of the sorting stations, namely the duration
when there are no robots queuing, since it is often the throughput bottleneck of
such automated sortation centers. The problem is to assign sorting stations to
robots that are not delivering parcels and plan paths for all the robots. We develop
an algorithm that solves the TAPF sub-problem for robots that are not delivering
parcels and solves the MAPF sub-problem for robots that are delivering parcels.
We test our algorithm using an industrial simulator with real-world data of online
orders. Experimental results show that our algorithm can make decisions for 350
agents in no more than 2 seconds of computation time and improve throughput
(measured in the average number of parcels obtained by robots per second) of a
sortation center by up to 12%.

Summary

We described our research on using intelligent planning techniques to tackle
multi-agent coordination problems. We outlined four directions that generalize
task-assignment and MAPF research to real-world applications of large-scale
multi-agent systems. For our ongoing research, we are currently developing a
deeper theoretical understanding of using MAPF algorithms for long-term
autonomy of such systems (Ma, 2021), a learning-based distributed MAPF
algorithm (Ma, Luo, and Ma, 2021), and algorithms that can jointly solve MAPF
and complex task-planning problems (Zhong et al., 2022; Xu et al., 2022). We hope
that researchers working in this area can benefit from the insights provided in this
article.
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