
A New Constraint Satisfaction Perspective
on Multi-Agent Path Finding: Preliminary Results

Extended Abstract

Jiangxing Wang
University of Southern California

jiangxiw@usc.edu

Jiaoyang Li
University of Southern California

jiaoyanl@usc.edu

Hang Ma
University of Southern California

hangma@usc.edu

Sven Koenig
University of Southern California

skoenig@usc.edu

T. K. Satish Kumar
University of Southern California

tkskwork@gmail.com

ABSTRACT
In this paper, we adopt a new perspective on the Multi-Agent Path
Finding (MAPF) problem and view it as a Constraint Satisfaction
Problem (CSP). A variable corresponds to an agent, its domain
is the set of all paths from the start vertex to the goal vertex of
the agent, and the constraints allow only conflict-free paths for
each pair of agents. Although the domains and constraints are only
implicitly defined, this new CSP perspective allows us to use suc-
cessful techniques from CSP search. With the concomitant idea of
using matrix computations for calculating the size of the reduced
domain of an uninstantiated variable, we apply Dynamic Variable
Ordering and Rapid Random Restarts to the MAPF problem. In our
experiments, the resulting simple polynomial-time MAPF solver,
called Matrix MAPF solver, either outperforms or matches the per-
formance of many state-of-the-art solvers for the MAPF problem
and its variants.
ACM Reference Format:
Jiangxing Wang, Jiaoyang Li, Hang Ma, Sven Koenig, and T. K. Satish Ku-
mar. 2019. A New Constraint Satisfaction Perspective on Multi-Agent Path
Finding: Preliminary Results. In Proc. of the 18th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal,
Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
The Multi-Agent Path Finding (MAPF) problem is the problem of
assigning conflict-free paths to agents from their start vertices to
their goal vertices such that an optimization objective (like the
makespan or sum-of-costs) is minimized. It is important for many
real-world problems [11, 12, 20, 22]. Despite the fact that the MAPF
problem is NP-hard to solve optimally [24], many practical MAPF
solvers have been developed in the past few years [4–7, 9, 13–
15, 17, 19, 21, 23]. Many variants of the MAPF problem are also
NP-hard to solve optimally and can be solved by extending these
MAPF solvers, for example, MAPF with deadlines [10] and MAPF
with large agents [8].

In this paper, we adopt a new perspective on the MAPF problem
and view it as a Constraint Satisfaction Problem (CSP). A variable

The research at the University of Southern California was supported by the National
Science Foundation (NSF) under grant numbers 1724392, 1409987, 1817189, and 1837779,
as well as a gift from Amazon.
Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

corresponds to an agent, its domain is the set of all paths from
the start vertex to the goal vertex of the agent, and the constraints
allow only conflict-free paths for each pair of agents. Although
the domains and constraints are only implicitly defined, Dynamic
Variable Ordering (DVO) [2] can still be successfully applied since
it only requires knowledge of the cardinality of the reduced do-
main of an uninstantiated variable, which can be obtained using
matrix multiplication on the adjacency matrix of the graph. We use
this insight to develop a simple polynomial-time prioritized MAPF
solver [14, 16]. Moreover, we use Rapid Randomized Restart (RRR)
strategies [3] to make our Matrix MAPF solver probabilistically
complete.
2 MATRIX MAPF SOLVER

Algorithm 1 MatrixMAPFSolver: A MAPF solver that uses ran-
domized runs for a given makespan.
Input:
1: GraphG = (V , E)
2: AgentList A← {a1, a2 . . . aN }
3: Makespan T
4: Maxruns R
Output:
5: PathSet P
6:
7: MatrixList Movement[0 . . .T − 1]
8: MatrixList State[0 . . .T ]
9: for r = 1 . . . R do
10: P ← {}
11: for t = 0 . . .T − 1 do
12: Movement[t ] ← Adj(G) / adjacency matrix ofG /
13: end for
14: State[0] ← I / identity matrix /
15: A_current ← A
16: while A_current is not empty do
17: for t = 0 . . .T − 1 do
18: State[t + 1] ← State[t ] · Movement[t ]
19: end for
20: MinNumPath← minai ∈A_current State[T ](si , дi )
21: if MinNumPath < 1 then
22: Break
23: end if
24: a ← argminai ∈A_current State[T ](si , дi )
25: p ← PathPlanningForSingleAgent(a, Movement, State)
26: P ← P ∪ {p }
27: Movement← ModifyMovement(Movement, p)
28: A_current ← A_current \{a }
29: end while
30: if P contains conflict-free paths for all agents then
31: return P
32: end if
33: end for
34: return Failure

In this section, we describe our Matrix MAPF solver. For the outer
loop [Line 9-33], our Matrix MAPF solver tries at most R (in our ex-
periments: 15) randomized runs to solve the MAPF problem within



a specified makespan T . In each iteration [Line 16-29], the most
constrained agent, namely the one with the fewest available conflict-
free paths from its start vertex si to its goal vertex дi , is identified
[Line 20]. For this agent, a path of length T is chosen at random
[Line 25]. This path is treated as a dynamic obstacle for all fu-
ture agents [Line 27] by modifying Movement[t]: Some entries in
Movement[t] (t = 1 . . .T − 1) are set to 0 based on p[t] and p[t − 1]
so that movements of all future agents that create collisions with
the movements of this agent are prohibited. If the most constrained
agent has no paths available from its start vertex to its goal vertex,
then the current run is terminated unsuccessfully [Line 22] and the
next run is initiated.
3 EXPERIMENTS
In this section, we compare our MATRIX MAPF solver against
state-of-the-art solvers for MAPF and MAPF with deadlines [10].
All experiments are conducted on a 2.50 GHz Intel Core i5-3210M
laptop running Ubuntu 16.04 with 6 GB RAM. All results are av-
eraged over 100 MAPF instances on 2-D 4-neighbor grids of size
10× 10. Each cell is blocked independently with a given probability.
The start and goal vertices of each agent are selected randomly
from the unblocked cells such that no two agents have the same
start vertex or the same goal vertex. A time limit of 100 seconds is
used for the "MAPF" experiments, and a time limit of 60 seconds is
used for the "MAPF with Deadlines" and "Makespan Minimization"
experiments.
3.1 MAPF
In this section, we find feasible solutions. We compare our Matrix
MAPF solver against four well-known MAPF solvers with a vari-
ety of (or missing) optimization objectives: Cooperative A* [14]
(without a strategy for ordering agents), Push and Swap [9], and
ECBS for sum-of-costs [1] with suboptimality bounds 2 and 3. Co-
operative A* is provided with a makespan limit of L + 0.25 × N ,
and our Matrix MAPF solver is provided with a fixed makespan
of L + 0.25 × N , where L is the largest distance between any two
vertices in the graph and N is the number of agents.

Obstacle Density/Agents 10%/20 10%/30 10%/40 20%/20 20%/30 20%/40

Matrix
Success Rate 100 99 100 99 94 45
Makespan 18.48 21.65 24.43 20.10 26.98 66.19
Runtime 0.118 1.220 0.982 1.357 7.382 61.636

Push and Swap
Success Rate 91 52 16 72 27 12
Makespan 34.53 65.47 91.47 49.07 84.25 97.06
Runtime 9.005 48.008 84.008 28.007 73.011 88.022

Cooperative A*
Success Rate 74 22 1 22 1 0
Makespan 37.03 81.61 99.16 81.41 99.17 100
Runtime 26.059 78.028 99.002 78.017 99.001 100

ECBS(2)
Success Rate 100 99 99 98 89 35
Makespan 16.33 20.39 23.24 21.87 31.79 73.37
Runtime 0.002 1.024 2.490 3.084 13.458 71.522

ECBS(3)
Success Rate 100 99 98 97 93 46
Makespan 16.69 22.42 26.55 24.18 31.69 68.00
Runtime 0.003 1.034 3.205 4.510 9.713 61.344

Table 1: Results for the "MAPF" experiment. Obstacle density refers to the
probability with which each cell is blocked, and success rate refers to the
percentage of solved MAPF instances (that is, for which conflict-free paths
are found for all agents). The makespan and runtime calculations use 100 as
makespan and runtime, respectively, for each unsolved MAPF instance.

From Table 1, we observe that, in terms of the success rate, our
Matrix MAPF solver outperforms the other solvers in five of the six
scenarios, but the ECBS variants perform at a similar level. In terms
of the makespan, the ECBS(2) variant performs best in the three
scenarios with obstacle density 10% (even though it is bounded-
suboptimal with respect to the sum-of-costs), while our Matrix
MAPF solver performs best in the three scenarios with obstacle
density 20%. In terms of runtime, the ECBS variants and our Matrix
MAPF solver each perform best in three of the six scenarios.

3.2 MAPF with Deadlines
In this section, we maximize the number of agents that reach their
goal vertices within 15 time steps [10]. We use our Matrix MAPF
solver by terminating successfully on Line 31 whenever a solution
is found where all agents are instantiated and returning the solution
with the most instantiated agents over all runs otherwise. We com-
pare our Matrix MAPF solver against five MAPF solvers presented
in [10]: CBS-DL, DBS, and MA-DBS with merge thresholds 0, 10,
and 100.

Figure 1: Results for the "MAPF with Deadlines" experiment. The left col-
umn shows results for scenarios with obstacle density 10%. The right column
shows results for scenarios with obstacle density 20%. The x-axes show the
number of agents. Instantiated agents refer to agents that reach their goal
vertices by the deadline, and success rate refers to the percentage of instances
where all agents are instantiated.

From Figure 1, we observe that, in terms of the runtime and the
number of instantiated agents, ourMatrixMAPF solver outperforms
the other MAPF solvers. In terms of the success rate, it also mostly
outperforms the other MAPF solvers, except for the DBS and MA-
DBS(0) variants.
3.3 Makespan Minimization
In this section, we minimize the makespan. We use our Matrix
MAPF solver [Line 9-34] to find a small makespan by initializing T
with a lower bound on the makespan (in our experiments: 0) and
incrementing it (by 1) after each failed attempt [Line 34]. We com-
pare our Matrix MAPF solver against optimal solutions obtained
with a SAT-based MAPF solver [18].

Obstacle Density/Agents 10%/20 10%/30 10%/40 20%/20 20%/30 20%/40
Available MAPF Instances 100 99 98 70 66 64

Success Rate 100.0 100.0 98.0 100.0 98.5 56.3
Optimality Rate 99.0 94.9 64.3 87.1 50.0 4.7

Suboptimality Rate 0.08 0.89 6.88 1.11 15.57 67.05
Table 2: Results for the "Makespan Minimization" experiment. Optimality
rate refers to the percentage of MAPF instances for which our Matrix MAPF
solver produces the optimal makespans, and suboptimality rate = 100 ×
(found makespan–optimal makespan)/optimal makespan averaged over all
solved MAPF instances for which our Matrix MAPF solver finds a makespan.

From Table 2, we observe that our Matrix MAPF solver always
finds the optimal makespans for MAPF instances with 10% obstacle
density and 20 or 30 agents. For the other scenarios, it still finds low
makespans. As the obstacle density and the number of agents in-
crease, it finds larger and larger numbers of suboptimal makespans
and these makespans get larger and larger.



REFERENCES
[1] M. Barer, G. Sharon, R. Stern, and A. Felner. 2014. Suboptimal variants of the

conflict-based search algorithm for the multi-agent pathfinding problem. In SoCS.
[2] X. Chen and P. Van Beek. 2001. Conflict-directed backjumping revisited. Journal

of Artificial Intelligence Research 14 (2001), 53–81.
[3] L. Cohen, G. Wagner, D. Chan, H. Choset, N. Sturtevant, S. Koenig, and T. K. S.

Kumar. 2018. Rapid randomized restarts for multi-agent path finding solvers. In
SoCS.

[4] B. de Wilde, A. W. ter Mors, and C. Witteveen. 2013. Push and rotate: Cooperative
multi-agent path planning. In AAMAS. 87–94.

[5] E. Erdem, D. G. Kisa, U. Oztok, and P. Schueller. 2013. A general formal framework
for pathfinding problems with multiple agents. In AAAI. 290–296.

[6] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. R. Sturtevant, R. C. Holte, and J.
Schaeffer. 2014. Enhanced partial expansion A*. Journal of Artificial Intelligence
Research 50 (2014), 141–187.

[7] M. M. Khorshid, R. C. Holte, and N. R. Sturtevant. 2011. A polynomial-time
algorithm for non-optimal multi-agent pathfinding. In SoCS.

[8] J. Li, P. Surynek, A. Felner, H. Ma, T. K. S. Kumar, and S. Koenig. 2019. Multi-agent
path finding for large agents. In AAAI.

[9] R. Luna and K. E. Bekris. 2011. Push and swap: Fast cooperative path-finding
with completeness guarantees. In IJCAI. 294–300.

[10] H. Ma, G. Wagner, A. Felner, J. Li, T. K. S. Kumar, and S. Koenig. 2018. Multi-agent
path finding with deadlines. In IJCAI. 417–423.

[11] H. Ma, J. Yang, L. Cohen, T. K. S. Kumar, and S. Koenig. 2017. Feasibility study:
Moving non-Homogeneous teams in congested video game environments. In
AIIDE. 270–272.

[12] R. Morris, C. Pasareanu, K. Luckow,W.Malik, H. Ma, T. K. S. Kumar, and S. Koenig.
2016. Planning, scheduling and monitoring for airport surface operations. In
AAAI-16 Workshop on Planning for Hybrid Systems.

[13] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant. 2015. Conflict-based search
for optimal multi-agent pathfinding. Artificial Intelligence 219 (2015), 40–66.

[14] D. Silver. 2005. Cooperative pathfinding. In AIIDE. 117–122.
[15] T. S. Standley. 2010. Finding optimal solutions to cooperative pathfinding prob-

lems. In AAAI. 173–178.
[16] N. R. Sturtevant and M. Buro. 2006. Improving collaborative pathfinding using

map abstraction.. In AIIDE. 80–85.
[17] P. Surynek. 2009. A novel approach to path planning for multiple robots in

bi-connected graphs. In ICRA. 3613–3619.
[18] P. Surynek. 2012. Towards optimal cooperative path planning in hard setups

through satisfiability solving. In PRICAI. 564–576.
[19] P. Surynek. 2015. Reduced time-expansion graphs and goal decomposition for

solving cooperative path finding sub-optimally. In IJCAI. 1916–1922.
[20] M. M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal. 2015. CoBots: Robust symbi-

otic autonomous mobile service robots.. In IJCAI. 4423.
[21] K. Wang and A. Botea. 2011. MAPP: A scalable multi-agent path planning

algorithm with tractability and completeness guarantees. Journal of Artificial
Intelligence Research 42 (2011), 55–90.

[22] P. R. Wurman, R. D’Andrea, and M. Mountz. 2008. Coordinating hundreds of
cooperative, autonomous vehicles in warehouses. AI Magazine 29, 1 (2008), 9.

[23] J. Yu and S. M. LaValle. 2013. Planning optimal paths for multiple robots on
graphs. In ICRA. 3612–3617.

[24] J. Yu and S. M. LaValle. 2013. Structure and intractability of optimal multi-robot
path planning on graphs. In AAAI. 1444–1449.


	Abstract
	1 Introduction
	2 Matrix MAPF Solver
	3 Experiments
	3.1 MAPF
	3.2 MAPF with Deadlines
	3.3 Makespan Minimization

	References

