Optimal Target Assignment and Path Finding
for Teams of Agents

Hang Ma Sven Koenig
University of Southern California

May 12, 2016
AAMAS, Singapore

et USC Umvsrslt¥ of

4% Southe

Multi-Agent Path Finding (MAPF)

Find collision-free paths for all agents from their start vertices to
their targets.

“wa’, USCUniversity of
% Southern Cali%ornja

44 Sou

Time Step 0

“wa’, USCUniversity of
% Southern Cali%ornja

4 dou

Time Step 1

“wa’, USCUniversity of
% Southern Caligurnja

4 dout

Time Step 2

%

‘‘‘‘‘ USC Universit: of
& i\ Southern Califorr

Time Step 3

“wi=t USCUniversity of

A% Southern California

Target Assignment and Path Finding (TAPF)

TAPF — A mix of non-anonymous MAPF and anonymous
MAPF.

Non-Anonymous MAPF Anonymous MAPF
NP-Hard

g‘ﬂ 'USC Universit: of
M Southern Califo

An Example of TAPF

TeamO: Agents that move from the stations to the storage locations.
Team1: Agents that move from the storage locations to Station 1.
Team2: Agents that move from the storage locations to Station 2.
Team3: Agents that move from the storage locations to Station 3.

v

mﬂo

g

Figure: Kiva (Amazon Robotics) Automated Warehouse System’.

'P.R. Wurman, R. D’Andrea, and M. Mountz. “Coordinating Hund[q,d&&g

niversity of

Cooperative, Autonomous Vehicles in Warehouses”. In: Al Magazine‘@.swhemcm ornia
(2008), pp. 9-20.

Task of TAPF

Find the target assignments and collision-free paths that
minimize the makespan.

The makespan = the earliest time step when all agents have
reached their targets.

“wa’, USCUniversity of

9% Southern California

How to Solve TAPF?

Ideas from:

» Conflict-Based Search (CBS)? for solving
non-anonymous MAPF (NP-hard).

» Max-flow algorithm? for solving anonymous MAPF (P).

2@. Sharon et al. “Conflict-based search for optimal multi-agent
pathfinding”. In: Artificial Intelligence 219 (2015), pp. 40—66.

8J. Yuand S. M. LaValle. “Multi-agent Path Planning and Network Flow”,
In: Algorithmic Foundations of Robotics X, Springer Tracts in Advancédk Souhern Califonia
Robotics. Vol. 86. 2013, pp. 157-173.

Conflict-Based Min-Cost Flow (CBM) for TAPF

Our algorithm — Conflict-Based Min-Cost Flow (CBM) =
Conflict-Based Search (CBS) + (min-cost) max flow

Frigt USCUn vsmtg of

S Soutt

CBS for Non-Anonymous MAPF

Q Q Q
: L)
CBS:

1. Find paths for each single agent separately.
2. Look for collisions in paths.

3. If there is a collision between a; and ao:
Option 1 or Option 2 to avoid collision.

» Collision: (Agent a;, Agent ap, Location x, Time t)

» Constraint:
(Agent, Location, Time)
Option 1: a; cannot stay in x at time step t.
Option 2: a, cannot stay in x at time step t. 25 USCUniversiyof

A% Southern California

Conflict-Based Min-Cost Flow (CBM) for TAPF

Q Q Q Q ¢ Q

; Yy PP 9O
Our algorithm:
Conflict-Based Min-Cost Flow (CBM) considers each team to
be a meta-agent.
A best-search on a search tree, nodes stored in a priority
queue.
The key of each tree node is the makespan of the paths stored

in the node.
For every tree node:

1. Find paths for a single team separately.
2. Look for collisions in paths.

3. If there is a collision between teamy and teamyp: e
Option 1 or Option 2 to avoid collision. 8 Southemn Calorna

Conflict-Based Min-Cost Flow (CBM) for TAPF

» Collision: (Team teamy, Team teams,, Location x, Time t)

» Constraint:
(Team, Location, Time)
Option 1: agents in teamy cannot stay in x at time step t.
Option 2: agents in team, cannot stay in x at time step t.

“wa’, USCUniversity of

A% Southern California

Finding Paths for Single Teams

“Find paths for each single team team; separately” =

1. Assign agents in team; to targets given to team;

AND

2. Find paths for team; that have no collisions among agents in
team;, according to the target assignment.

Use a polynomial-time min-cost max-flow algorithm on a
time-expanded network.

“wa’, USCUniversity of

A% Southern California

An Example

“wa’, USCUniversity of
44 Southern California

Finding Paths for Single Teams Separately

teaml
{c,d,e}
{a,b,d}
{b.d.f}
b ¢ d e f a b ¢ d e f
52 SZ st gz gl g2 sl1 gl
0 out 0 out
lin q/' lin
1 out 1out
2in 2in
2 out 2 out
teaml “wa’, USCUniversity of

A% Southern California

Storing Paths and Key

Root
key =2

et USC Umvsrslt¥ of

4% Southe

Looking for Collisions in Paths

teaml
{c,d,e}
{a,b,d}
{b,d,f}
b ¢ d e f a b ¢ d e f
52 SZ st gz gl g2 sl1 gl
0 out 0 out
lin lin
1 out 1out
2in 2in
2 out 2 out

teaml USCUniversity of

outhern California

Storing Colliding Teams

Root
key =2

Colliding Teams
(team1l, team?2)

“wi=t USCUniversity of
LS SouthernCali%ornja

Poping a Tree Node

Root
key =2
Colliding Teams
(team1, team?2)
Earliest Collision
teaml, team2, d,

“wi=t USCUniversity of
.4 Southern California

Two Options

(teaml, d,1)

/

Root
key = 2
Colliding Teams
(team1l, team?2)
Earliest Collision
teaml, team2, d,

(team2, d,1)

™~

USCUniversity of

outhern California

Option 1: Find New Paths for team;

teaml Constraints
{c.c.d,e} (team1,d,1)

{ab,d}

{b.d.f}

a b ¢ d e f

sh 911

0 out

‘1/‘ lin
1out
2in
2 out

“wi=t USCUniversity of

A% Southern California

Storing Paths and Key

Root
key = 2
Colliding Teams
(team1l, team?2)
Earliest Collision
teaml, team2, d,

(teaml, d,1) (team2, d,1)

USCUniversity of

Southern California

Looking for Collisions in Paths

teaml Constraints
{c,c,de} (team1,d,1)

{a,b,d}

{b.d.f}

a b ¢ d e f

sh 911

0 out

‘1/‘ lin
1out
2in
2 out

“wi=t USCUniversity of

A% Southern California

Storing Colliding Teams

Root
key = 2
Colliding Teams
(team1l, team?2)
Earliest Collision
teaml, team2, d,

(teaml, d,1) (team2, d,1)

teaml

key =3 () (
Colliding Teams
(team1, team?2)

USCUniversity of

Southern California

Option 2: Find New Paths for team.

teaml Constraints
{c.d.e} (team2,d,1)

{aab,d}
{b,b,d,f}
b ¢ d e f a b ¢ d e f
SZ s22 Sll gz gl gz sh gl
0 out 0 out
lin lin
1out 1out
2in 2in
2 out 2 out
3in
3out

USCUniversity of

outhern California

teaml

Storing Paths and Key

Root
key = 2
Colliding Teams
(team1l, team?2)
Earliest Collision
teaml, team2, d,

O

(teaml, d,1) (team2, d,1)

teaml

key =3
Colliding Teams
(team1, team?2)

s USCUniversity of

A% Southern California

Looking for Collisions in Paths

teaml Constraints
{c.d.e} (team2,d,1)

{a,a,b,d}
{b,b,d,f}
b ¢ d e f a b ¢ d e f
Sz s22 Sll gz gl gz sh gl
0 out 0 out
lin lin
1out 1out
2in 2in
2 out 2 out
3in
3out
teaml USCUniversity of

Southern California

Storing Colliding Teams

Root
key = 2
Colliding Teams
(team1l, team?2)
Earliest Collision
teaml, team2, d,

O

(teaml, d,1) (team2, d,1)

team2
key =3
Colliding Teams
None

teaml

key =3
Colliding Teams
(team1, team?2)

“wa’, USCUniversity of

A% Southern California

Poping a Tree Node

Ties are broken to favor nodes with fewest colliding pairs.

Root
key =2
Colliding Teams
(teaml, team?2)
Earliest Collision
teaml, team2, d,

(teaml, d,1) (team2, d,1)

team2
teaml key =3
'kgy =3 Colliding Teams
CollldTg Tear;s None
teaml, team
() BINGO!

s USCUniversity of

A% Southern California

Edge Weights — Reducing Possible Collisions

Idea: Choose paths that have fewest collisions with other
teams, when finding paths for a single team.
» Take into account the paths of other teams.

» Bias the search using a min-cost max-flow algorithm
that finds a max flow with minimal total edge weights.

“wa’, USCUniversity of

A% Southern California

Edge Weights are Crucial

Setups:

» 30x30 4-neighbor grids with 10% randomly blocked cells.
» 5 agents per team.
» 5-minute time limits.

CBM Unweighted CBM

agents | time | success | time | success

10 0.34 1 0.41 0.72

15 0.57 1 1.06 0.44

20 0.78 1 2.06 0.22

25 1.07 1 1.58 0.08

30 1.71 1 6.73 0.02

35 1.92 1 - 0

40 2.95 1 - 0

45 3.66 1 - 0

50 5.32 1 - 0 @&

hiversity of
Southefn California

Guarantees

CBM is optimal and complete.

“wi=t USCUniversity of
LU SouthernCali%ornja

Comparisons

Setups:
» 30x30 4-neighbor grids with 10% randomly blocked cells.
» 5-minute time limits.

“wa’, USCUniversity of

A% Southern California

CBM is Faster

CBM: Specialized solver.

Versus

ILP (Integer Linear Program): Useful tool and easy to model.

CBM ILP
agents | time [success | time (over solved instances) | success

10 0.34 1 .24 1

15 0.57 1 35.44 1

20 0.78 1 62.85 0.94
25 1.07 1 88.55 0.82
30 1.71 1 108.75 0.66
35 1.92 1 121.99 0.46
40 2.95 1 152.98 0.14
45 3.66 1 161.52 0.14
50 5.32 1 161.95 0.04

“wa’, USCUniversity of

9% Southern California

Spectrum: Anonymous<+—Non-Anonymous

Fixed 100 agents in total, 2 to 50 teams.

Makespan

45

y74am

rd

v

1 5 ; ~—Makespan

=&=Time

2 4 5 Numberlgf Teams

20

25

14

12

- 10

[2 teams, 50 agents per team] +— [50 teams, 2 agents per team]
Anonymous <+— Non-Anonymous
P +— NP-hard

#ct USCUniversity of
W% Southern Caligjmja

Scalibility: Simulated Warehouse System

» Each instance has 420 agents: 210 “incoming” and 210
“outgoing”.

» CBM solves 40 out of the 50 Kiva instances within a time
limit of 5 minutes each.

» Average running time over solved instances is 91.61
seconds.

NN BN DR .

4% Southern California

Takeaways

TAPF: A mix of non-anonymous MAPF and anonymous MAPF.
CBM: Guarantees optimality and completeness.

Non-Anonymous MAPF Anonymous MAPF
NP-Hard

szt USCUniversity of
&% Southern Calig)rnja

	TAPF
	CBM
	Experiments

