
Optimal Target Assignment and Path Finding
for Teams of Agents

Hang Ma Sven Koenig
University of Southern California

May 12, 2016
AAMAS, Singapore

Multi-Agent Path Finding (MAPF)

Find collision-free paths for all agents from their start vertices to
their targets.

Time Step 0

Time Step 1

Time Step 2

Time Step 3

Target Assignment and Path Finding (TAPF)

TAPF — A mix of non-anonymous MAPF and anonymous
MAPF.

Non-Anonymous MAPF

NP-Hard
Anonymous MAPF

P

 TAPF
 +

 =

An Example of TAPF
Team0: Agents that move from the stations to the storage locations.
Team1: Agents that move from the storage locations to Station 1.
Team2: Agents that move from the storage locations to Station 2.
Team3: Agents that move from the storage locations to Station 3.
. . .

Figure 3: A small region of a Kiva layout. The green cells represent pod storage locations, the orange ovals the robots (with
pods not pictured), and the purple and pink regions the queues around the inventory stations.

Figure 2: A Kiva drive unit and storage pod.

used to move the inventory pods with the correct bins from
their storage locations to the inventory stations where a pick
worker removes the desired products from the desired bin.
Note that the pod has four faces, and the drive unit may need
to rotate the pod in order to present the correct face. When a
picker is done with a pod, the drive unit stores it in an empty
storage location.

Each station is equipped with a desktop computer that
controls pick lights, barcode scanners, and laser pointers that
are used to identify the pick and put locations. Because ev-
ery product is scanned in and out of the system, overall pick-
ing errors go down, which potentially eliminates the need
for post-picking quality control. In general, every station is
capable of being either a picking station or a replenishment
station. In practice, pick stations will be located near out-
bound conveyors, and replenishment stations will be located
near pallet drop off points.

The power of the Kiva solution comes from the fact that
it allows every worker to have random access to any inven-
tory in the warehouse. Moreover, inventory can be retrieved
in parallel. When the picker is filling several boxes at the
same time, the parallel, random access ensures that she is
not waiting on pods to arrive. In fact, by keeping a small
queue of work at the station, the Kiva system delivers a new
pod face every six seconds, which sets a baseline picking
rate of 600 lines per hour.2 Peak rates can exceed 600 lines
per hour when the operator can pick more than one item off
a pod.3

For a large warehouse, the savings in personnel can be
significant. Consider, for example, what a Kiva implemen-
tation of the book warehouse would involve. A busy book-
seller may ship 100,000 boxes a day. With existing automa-
tion, this level of output would employ perhaps 75 workers

2This statistic is based on single unit picks and has been repro-
duced for extended periods in the Kiva test facility.

3This statistic was verified when a small Kiva demonstration
system was brought to a drugstore distribution center where opera-
tors picked at nearly 700 lines per hour.

1755

Figure: Kiva (Amazon Robotics) Automated Warehouse System1.

1P. R. Wurman, R. D’Andrea, and M. Mountz. “Coordinating Hundreds of
Cooperative, Autonomous Vehicles in Warehouses”. In: AI Magazine 29.1
(2008), pp. 9–20.

Task of TAPF

Find the target assignments and collision-free paths that
minimize the makespan.
The makespan = the earliest time step when all agents have
reached their targets.

How to Solve TAPF?

Ideas from:
I Conflict-Based Search (CBS)2 for solving

non-anonymous MAPF (NP-hard).
I Max-flow algorithm3 for solving anonymous MAPF (P).

2G. Sharon et al. “Conflict-based search for optimal multi-agent
pathfinding”. In: Artificial Intelligence 219 (2015), pp. 40–66.

3J. Yu and S. M. LaValle. “Multi-agent Path Planning and Network Flow”.
In: Algorithmic Foundations of Robotics X, Springer Tracts in Advanced
Robotics. Vol. 86. 2013, pp. 157–173.

Conflict-Based Min-Cost Flow (CBM) for TAPF

Our algorithm — Conflict-Based Min-Cost Flow (CBM) =
Conflict-Based Search (CBS) + (min-cost) max flow

CBS for Non-Anonymous MAPF

CBS:
1. Find paths for each single agent separately.
2. Look for collisions in paths.
3. If there is a collision between a1 and a2:

Option 1 or Option 2 to avoid collision.

I Collision: 〈Agent a1,Agent a2,Location x ,Time t〉
I Constraint:
〈Agent ,Location,Time〉
Option 1: a1 cannot stay in x at time step t .
Option 2: a2 cannot stay in x at time step t .

Conflict-Based Min-Cost Flow (CBM) for TAPF

Our algorithm:
Conflict-Based Min-Cost Flow (CBM) considers each team to
be a meta-agent.
A best-search on a search tree, nodes stored in a priority
queue.
The key of each tree node is the makespan of the paths stored
in the node.
For every tree node:

1. Find paths for a single team separately.
2. Look for collisions in paths.
3. If there is a collision between team1 and team2:

Option 1 or Option 2 to avoid collision.

Conflict-Based Min-Cost Flow (CBM) for TAPF

I Collision: 〈Team team1,Team team2,Location x ,Time t〉
I Constraint:
〈Team,Location,Time〉
Option 1: agents in team1 cannot stay in x at time step t .
Option 2: agents in team2 cannot stay in x at time step t .

Finding Paths for Single Teams

“Find paths for each single team teami separately” =
1. Assign agents in teami to targets given to teami
AND
2. Find paths for teami that have no collisions among agents in
teami , according to the target assignment.
Use a polynomial-time min-cost max-flow algorithm on a
time-expanded network.

An Example

a b d f

c

e

b d f

e

c

a

Finding Paths for Single Teams Separately

a b d f

c

e

s
2
2

g
2
2 g

2
1

0 out

1 in

1 out

2 in

2 out

g
1
1

s
1
1

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

s
2
1

a b c d e f

0 out

1 in

1 out

2 in

2 out

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

a b c d e f

team1 team2

team1

{c,d,e}

team2

{a,b,d}

{b,d,f}

Storing Paths and Key

Root

key = 2

Looking for Collisions in Paths

a b d f

c

e

s
2
2

g
2
2 g

2
1

0 out

1 in

1 out

2 in

2 out

g
1
1

s
1
1

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

s
2
1

a b c d e f

0 out

1 in

1 out

2 in

2 out

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

a b c d e f

team1 team2

team1

{c,d,e}

team2

{a,b,d}

{b,d,f}

Storing Colliding Teams

Root

key = 2

Colliding Teams

(team1, team2)

Poping a Tree Node

Root

key = 2

Colliding Teams

(team1, team2)

Earliest Collision

(team1, team2, d,1)

Two Options

Root

key = 2

Colliding Teams

(team1, team2)

Earliest Collision

(team1, team2, d,1)

(team2, d,1)

Option 1: Find New Paths for team1

a b d f

c

e

s
2
2

g
2
2 g

2
1

0 out

1 in

1 out

2 in

2 out

g
1
1

s
1
1

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

3 in

3 out

s
2
1

a b c d e f

team1 team2

team1

{c,c,d,e}

team2

{a,b,d}

{b,d,f}

0 out

1 in

1 out

2 in

2 out

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

a b c d e f

Constraints

(team1,d,1)

Storing Paths and Key

Root

key = 2

Colliding Teams

(team1, team2)

Earliest Collision

(team1, team2, d,1)

(team2, d,1)

team1

key = 3

Looking for Collisions in Paths

a b d f

c

e

s
2
2

g
2
2 g

2
1

0 out

1 in

1 out

2 in

2 out

g
1
1

s
1
1

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

3 in

3 out

s
2
1

a b c d e f

team1 team2

team1

{c,c,d,e}

team2

{a,b,d}

{b,d,f}

0 out

1 in

1 out

2 in

2 out

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

a b c d e f

Constraints

(team1,d,1)

Storing Colliding Teams

Root

key = 2

Colliding Teams

(team1, team2)

Earliest Collision

(team1, team2, d,1)

(team2, d,1)

team1

key = 3

Colliding Teams

(team1, team2)

Option 2: Find New Paths for team2

a b d f

c

e

s
2
2

g
2
2 g

2
1

g
1
1

s
1
1

s
2
1

0 out

1 in

1 out

2 in

2 out

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

3 in

3 out

a b c d e f

team1 team2

team1

{c,d,e}

team2

{a,a,b,d}

{b,b,d,f}

Constraints

(team2,d,1)

0 out

1 in

1 out

2 in

2 out

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

a b c d e f

Storing Paths and Key

Root

key = 2

Colliding Teams

(team1, team2)

Earliest Collision

(team1, team2, d,1)

team1

key = 3

Colliding Teams

(team1, team2)

team2

key = 3

Looking for Collisions in Paths

a b d f

c

e

s
2
2

g
2
2 g

2
1

g
1
1

s
1
1

s
2
1

0 out

1 in

1 out

2 in

2 out

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

3 in

3 out

a b c d e f

team1 team2

team1

{c,d,e}

team2

{a,a,b,d}

{b,b,d,f}

Constraints

(team2,d,1)

0 out

1 in

1 out

2 in

2 out

s
2
1 s

2
2 s

1
1 g

2
2 g

1
1 g

2
1

a b c d e f

Storing Colliding Teams

Root

key = 2

Colliding Teams

(team1, team2)

Earliest Collision

(team1, team2, d,1)

team1

key = 3

Colliding Teams

(team1, team2)

team2

key = 3

Colliding Teams

None

Poping a Tree Node

Ties are broken to favor nodes with fewest colliding pairs.

Root

key = 2

Colliding Teams

(team1, team2)

Earliest Collision

(team1, team2, d,1)

(team2, d,1)

team1

key = 3

Colliding Teams

(team1, team2)

team2

key = 3

Colliding Teams

None

BINGO!

Edge Weights — Reducing Possible Collisions

Idea: Choose paths that have fewest collisions with other
teams, when finding paths for a single team.

I Take into account the paths of other teams.
I Bias the search using a min-cost max-flow algorithm

that finds a max flow with minimal total edge weights.

Edge Weights are Crucial

Setups:
I 30×30 4-neighbor grids with 10% randomly blocked cells.
I 5 agents per team.
I 5-minute time limits.

CBM Unweighted CBM
agents time success time success

10 0.34 1 0.41 0.72
15 0.57 1 1.06 0.44
20 0.78 1 2.06 0.22
25 1.07 1 1.58 0.08
30 1.71 1 6.73 0.02
35 1.92 1 - 0
40 2.95 1 - 0
45 3.66 1 - 0
50 5.32 1 - 0

Guarantees

CBM is optimal and complete.

Comparisons

Setups:
I 30×30 4-neighbor grids with 10% randomly blocked cells.
I 5-minute time limits.

CBM is Faster

CBM: Specialized solver.
versus
ILP (Integer Linear Program): Useful tool and easy to model.

CBM ILP
agents time success time (over solved instances) success

10 0.34 1 18.24 1
15 0.57 1 35.44 1
20 0.78 1 62.85 0.94
25 1.07 1 88.55 0.82
30 1.71 1 108.75 0.66
35 1.92 1 121.99 0.46
40 2.95 1 152.98 0.14
45 3.66 1 161.52 0.14
50 5.32 1 161.95 0.04

Spectrum: Anonymous←→Non-Anonymous

Fixed 100 agents in total, 2 to 50 teams.

0

2

4

6

8

10

12

14

0

5

10

15

20

25

30

35

40

45

2 4 5 10 20 25 50

Ti
m
e

M
ak
e
sp
an

Number of Teams

Makespan

Time

[2 teams, 50 agents per team]←→ [50 teams, 2 agents per team]
Anonymous ←→ Non-Anonymous

P←→ NP-hard

Scalibility: Simulated Warehouse System

I Each instance has 420 agents: 210 “incoming” and 210
“outgoing”.

I CBM solves 40 out of the 50 Kiva instances within a time
limit of 5 minutes each.

I Average running time over solved instances is 91.61
seconds.

Takeaways

TAPF: A mix of non-anonymous MAPF and anonymous MAPF.
CBM: Guarantees optimality and completeness.

Non-Anonymous MAPF

NP-Hard
Anonymous MAPF

P

 TAPF
 +

 =

	TAPF
	CBM
	Experiments

