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Background

POMDPs

A partially observable Markov decision process (POMDP) is a
tuple (S, A, 2, T,0,R, by, )
@ S is a finite set of states, A is a finite set of actions, {2 is a
finite set of observations;
@ T(s,a,s’) = p(s'|s,a) is the transition function that maps
each state and action to a probability distribution over states;
e O(s',a,0) = p(o|s, a) is the observation function that maps
a state and an action to a probability distribution over
possible observations;
e R(s,a) is the reward function, by(s) is the initial belief state,
and + is the discount factor.
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Background

A belief state b € B is a sufficient statistic for the history, and is
updated after taking action a and receiving observation o as
follows:

vor o 0(5,2,0) Yous T(5,2,5)b(s)
) = 2(0la.5) ’

where p(ola, b) =3 s b(s) D ycs T(s,a,5)0(s',a,0) is a
normalizing factor.
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Background

Policies

A policy is a mapping from the current belief state to an action.
A value function V,(b) specifies the expected reward gained
starting from b followed by policy :

Ve(b) = 3" b(s)R(s. 7(5)) +7 3 plo]b, 7(5))Vi(57(41).
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Background

POMDP Planning

Find an optimal policy that maximizes its value function.
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Background

Challenges

Computational complexity:
@ We must reason in a (n — 1)-dimensional continuous belief
space (the curse of dimensionality).

o Complexity also grows fast with the length of planning horizon
(the curse of history).
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Background

Challenges

Computational complexity:
@ We must reason in a (n — 1)-dimensional continuous belief
space (the curse of dimensionality).
o Complexity also grows fast with the length of planning horizon
(the curse of history).
Practical challenges:
@ How to carry out intelligent information gathering in a large
high dimensional belief space.
@ How to scale up planning with long sequences of actions and
delayed rewards.
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Background

Figure: A belief tree rooted at bg.
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Background

Existing Solvers

PBVI (Pineau et al., 2003)

HSVI/HSVI2 (Smith and Simmons, 2004, 2005)
FSVI (Shani et al., 2007)

SARSOP (Kurniawati et al., 2008)

RTDP-Bel (Bonet and Geffner, 2009)

MiGS (Kurniawati et al., 2011)

Some online solvers, e.g. PUMA (He et al., 2010),
POMCP (Silver and Veness, 2010)
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Our Contributions

Our Approach: Information Gathering and Reward
Exploitation of Subgoals (IGRES)

Main ideas:
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Our Contributions

Our Approach: Information Gathering and Reward
Exploitation of Subgoals (IGRES)

Main ideas:

© Sample potentially important states as subgoals.
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Our Contributions

Our Approach: Information Gathering and Reward
Exploitation of Subgoals (IGRES)

Main ideas:
© Sample potentially important states as subgoals.

@ Generate macro-actions (sequences of actions) for transitions
to subgoals.
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Our Contributions

Our Approach: Information Gathering and Reward
Exploitation of Subgoals (IGRES)

Main ideas:
© Sample potentially important states as subgoals.
@ Generate macro-actions (sequences of actions) for transitions
to subgoals.

© Generate macro-actions for information gathering and reward
exploitation in the neighborhood of subgoals.
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Our Contributions

Capturing Important States

@ Identify importance heuristic functions with respect to:
e Immediate reward,;
e Information gain.
@ Then a state is sampled as subgoal with probability of its
importance.
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Our Contributions

Leverage the Structure

@ Specify distance between states with respect to the
approximate similarity of their value.

@ Group all the states by the distance to the subgoals.
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Our Contributions

Sampling Belief States with Macro-actions

@ Associate each belief with an estimated current state.
@ Generate a macro-action towards the corresponding subgoal.

© Gather information and exploit rewards around the subgoal.
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Our Contributions

Overview of IGRES
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Our Contributions

Conclusion

@ Reduce planning complexity by using macro-actions.

@ Sample potentially most useful beliefs (based on subgoal
states).

o Capability of planning in large state space for a long horizon.
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Experiments

Reward Function:

Opening the wrong door: -100
Opening the correct door: 10
“Listen” action: -1
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Experiments

* Deterministic motions

* Noisy sensor for -
Rock-goodness

* +10 for sampling good = & |Exit

+ -10 for sampling bad

* +10 for exiting - -

* No other cost/reward a

Figure: RockSample Domain
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Experiments
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Figure: Underwater Domain
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Experiments

bathroom

robot

Figure: Homecare Domain
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Experiments

Figure: 3D-Navigation Domain

Hang Ma and Joelle Pineau McGill University Information Gathering and Reward Exploitation of Subgoals for F



Experiments

Results of the benchmark domains.
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Experiments

Results of the adaptive management of migratory birds

problem.

Return Time(s)
Lesser sand plover
|S| = 108 |A\73|Q\736
symbolic Perseus* 4675 10
IGRES (# subgoals: 18) 5037.72 £+ 8.82 10
Bar- talled godW|
S| = 072, A] = 5, |2 = 324
symbollc Perseus* 18217 48
IGRES (# subgoals: 36) 19572.41 £ 39.35 60
Terek sandpi
|S| = 2916, T Al =6,|02| =972
symbolic Perseus* 7263 48
IGRES (# subgoals: 72) 7867.95 + 2.44 60
Bar-tailed godwit m
[S| = 2916, |A| =6, | 2| = 972
symbolic Perseus* 24583 58
IGRES (# subgoals: 72) 26654.06 + 38.60 60
Grey-tailed tattler
S| = 2016, | A| = 6, | 2| = 072
symbolic Perseus* 4520 378
IGRES (# subgoals: 72 4860.91 + 38.47 60
IGRES (# subgoals: 72 4927.17 + 38.14 300

* Results from Nicol et al. (2013).

Hang Ma and Joelle Pineau McGill University Information Gathering and Reward Exploitation of Subgoals for F



Experiments
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Figure: Performances on Grey-tailed tattler Domain
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Experiments

Thank You!
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