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POMDPs

A partially observable Markov decision process (POMDP) is a
tuple 〈S,A, Ω,T ,O,R, b0, γ〉

S is a finite set of states, A is a finite set of actions, Ω is a
finite set of observations;

T (s, a, s ′) = p(s ′|s, a) is the transition function that maps
each state and action to a probability distribution over states;

O(s ′, a, o) = p(o|s ′, a) is the observation function that maps
a state and an action to a probability distribution over
possible observations;

R(s, a) is the reward function, b0(s) is the initial belief state,
and γ is the discount factor.
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Beliefs

A belief state b ∈ B is a sufficient statistic for the history, and is
updated after taking action a and receiving observation o as
follows:

ba,o(s ′) =
O(s ′, a, o)

∑
s∈S T (s, a, s ′)b(s)

p(o|a, b)
, (1)

where p(o|a, b) =
∑

s∈S b(s)
∑

s′∈S T (s, a, s ′)O(s ′, a, o) is a
normalizing factor.
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Policies

A policy is a mapping from the current belief state to an action.
A value function Vπ(b) specifies the expected reward gained
starting from b followed by policy π:

Vπ(b) =
∑
s∈S

b(s)R(s, π(b)) + γ
∑
o∈Ω

p(o|b, π(b))Vπ(bπ(b),o).
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POMDP Planning

Find an optimal policy that maximizes its value function.
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Challenges

Computational complexity:

We must reason in a (n − 1)-dimensional continuous belief
space (the curse of dimensionality).

Complexity also grows fast with the length of planning horizon
(the curse of history).

Practical challenges:

How to carry out intelligent information gathering in a large
high dimensional belief space.

How to scale up planning with long sequences of actions and
delayed rewards.
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o1 o2

Figure: A belief tree rooted at b0.
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Existing Solvers

PBVI (Pineau et al., 2003)

HSVI/HSVI2 (Smith and Simmons, 2004, 2005)

FSVI (Shani et al., 2007)

SARSOP (Kurniawati et al., 2008)

RTDP-Bel (Bonet and Geffner, 2009)

MiGS (Kurniawati et al., 2011)

Some online solvers, e.g. PUMA (He et al., 2010),
POMCP (Silver and Veness, 2010)
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Our Approach: Information Gathering and Reward
Exploitation of Subgoals (IGRES)

Main ideas:

1 Sample potentially important states as subgoals.

2 Generate macro-actions (sequences of actions) for transitions
to subgoals.

3 Generate macro-actions for information gathering and reward
exploitation in the neighborhood of subgoals.
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Capturing Important States

1 Identify importance heuristic functions with respect to:

Immediate reward;
Information gain.

2 Then a state is sampled as subgoal with probability of its
importance.
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Leverage the Structure

1 Specify distance between states with respect to the
approximate similarity of their value.

2 Group all the states by the distance to the subgoals.
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Sampling Belief States with Macro-actions

1 Associate each belief with an estimated current state.

2 Generate a macro-action towards the corresponding subgoal.

3 Gather information and exploit rewards around the subgoal.

b0 b1 bl

s0

a1 o1

s1 sla1
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Overview of IGRES
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Conclusion

Reduce planning complexity by using macro-actions.

Sample potentially most useful beliefs (based on subgoal
states).

Capability of planning in large state space for a long horizon.
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𝑠1  = “tiger-left” 
Pr(𝑜 = obs-left|𝑠 = s1, 𝑎 = listen) = 0.15 

Pr(𝑜 = obs-right|𝑠 = 𝑠1, 𝑎 = listen) = 0.85 

𝑠0  = “tiger-left” 
Pr(𝑜 = obs-left|𝑠 = s0, 𝑎 = listen) = 0.85 

Pr(𝑜 = obs-right|𝑠 = 𝑠0, 𝑎 = listen) = 0.15 

Reward Function: 
Opening the wrong door: -100 
Opening the correct door: 10 
“Listen” action: -1 

Figure: Tiger Domain
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Figure: RockSample Domain
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(a) Underwater Navigation, an
instance of coastal navigation,
shown on a reduced map with
a 11 × 12 grid. “S” marks
the possible initial positions for
the robot. The robot is equally
likely to start in any of these
positions. “D” marks the des-
tinations. “R” marks the rocks.
“O” marks places that the robot
can fully localize itself.

(b) Grasping. A fingered robot
arm grasps a stepped block.
Courtesy of L.P. Kaelbling and
T. Lozano-Pérez.

(c) Integrated Exploration. A robot navigates with an uncertain
map. Areas shaded in black represent obstacles. Areas shaded in
light gray represent (possibly damaged) bridges. “S” marks the start
location for the robot. “D” marks destination locations.

bathroom

target

robot

(d) Homecare. A robot fol-
lows a moving person, the
target. The light blue areas
indicate obstacles. The black
dashed curve indicates the
target’s path. The green area
around the robot indicates the
the robot sensor’ visibility re-
gion. The various shades of
gray show the robot’s belief
of the current target position.

Fig. 3. Some common robotic tasks modeled as POMDPs.

IV. EXPERIMENTS

We have successfully applied SARSOP to a set of distinct
robotic tasks. In this section, we describe these tasks, the
experimental setup, and the results.

A. Robotic Tasks Studied

Uncertainty arises in various ways in robotic systems.
Suppose that the state of a robotic system is given by (xr, xe),
where xr represents the state of the robot and xe represents
the state of the environment. Inaccuracies in robot control and
sensing are the typical causes for uncertainty in xr. They are

almost always present to some degree. Uncertainty in xe, On
the other hand, varies widely. We thus divide the robotic tasks
studied here into three categories according to the uncertainty
in xe. In the first category, the environment is static and known
with high accuracy. So uncertainty in xe can be ignored, and
we only need to consider uncertainty in xr in planning the
robot’s actions. In the second category, the environment is
static, but not known accurately. Thus, we must take into
account the uncertainty in both xr and xe in planning. In the
last category, the environment is not static and changes over
time. We need a dynamic model of the environment and use
it to plan actions for the robot to respond to changes in the
environment.

a) Underwater Navigation: We start with an instance of
the well known coastal navigation problem. An autonomous
underwater vehicle (AUV) navigates in an environment mod-
eled as a 51 × 52 grid map (Fig. 3a). The AUV needs to
navigate from the left border of the map to the right border. It
must avoid rocks scattered near the goals, as they may cause
severe damages to the vehicle. In each step, the AUV can either
stay in the current position or move to any of the four adjacent
positions (directly above, below, left, and right). Due to poor
visibility conditions, the AUV can only localize itself along
the top or bottom borders, where there are beacon signals. The
environment is static and known in advance. So this problem
belongs to the first category.

Roughly, the optimal policy for the AUV is to move
diagonally until it reaches the top or bottom border to localize
itself. It can then safely pass through the rocks and get to
the destinations on the right border. A feature of this problem
is that heuristics assuming full observability (e.g., an MDP
policy) favor shorter horizontal paths rather than diagonal
paths and thus often choose the wrong action.

b) Grasping: This problem was introduced in the work
of Hsiao, Kaelbling, and Lozano-Pérez [3]. As a POMDP, this
problem is similar to coastal navigation: the environment is
static and known, but due to limited sensing capabilities, the
robot has difficulty in determining its own state exactly. It
needs to perform information-gathering actions to reduce the
state uncertainty in order to reach the goal. However, as a
robotic task, grasping has quite different physical character-
istics. Here, a two-dimensional Cartesian robot arm with two
fingers tries to grasp a stepped block on a table (Fig. 3b).
It has only contact sensors at the tip and the sides of each
finger to help determine the state. The robot performs com-
pliant guarded moves (left, right, up, and down) and always
maintains contact with the surface of the block or the boundary
of the environment at the beginning and end of each move.
The goal is to move the robot arm and have its two fingers
straddle the block so that grasping is possible. More details
on this problem can be found in [3].

c) Integrated Exploration: For some tasks, robots must
traverse an area whose map is highly uncertain, for example,
when robots perform SLAM tasks. In this situation, the robot
must gather information to reduce map uncertainty, localize
itself, and navigate to reach the goal. This is sometimes

Figure: Underwater Domain
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Figure: Homecare Domain
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(a) (b)

Figure 3: Sampled milestones. (a) The initial roadmap. (b) The final roadmap. Each “×” marks a
milestone.

Figure 4: 3-D navigation. See the caption of Fig-
ure 2 for the meanings of labels.

of the corridor, the robot tries to position itself
near the center of the corridor and pushes all the
probability mass into it.

Figure 3 shows the sampled milestones in the
roadmaps constructed by MiGS. In the initial
roadmap, the milestones fall in some of the land-
mark regions and one goal region, as they provide
either good observations or high rewards. In the
final roadmap, the milestones cover all the land-
mark regions and goal regions. Some danger zones
also contain milestones, because the knowledge of
being in a danger zone provides information on the
robot’s position.

3-D Navigation. An unmanned aerial vehicle
(UAV) navigates in an indoor environment (Fig-
ure 4), where GPS signal is not available. The
environment is populated with obstacles and dan-
ger zones. The robot’s state is represented as
(x, y, z, θp, θy), where (x, y, z) is the robot’s posi-
tion, θp is the pitch angle, and θy is the yaw angle.
The 3-D environment is discretized into a grid with
18 × 14 horizontal positions and 5 height levels.
The pitch angle is discretized into 3 values, and
the yaw angle, 8 values. The robot starts at the
entrance to the environment, but does not know
its initial state exactly. In each step, the robot can
either rotate in place or move forward to one of the
adjacent cells according to its heading. Rotation
motion is quite accurate. However, when the robot
moves forward, the robot reaches its intended state
only 90% of the time; the rest of the time, it may
remain in the same state or drift to the left or right
of the intended state. The robot can localize itself
near the landmarks.

The main difficulty in this task is similar to that
of 2-D Navigation, but the state space is much
larger because of the 3-D environment. A typical
policy computed by MiGS takes the UAV through
the rightmost route, which is longer but safer, be-
cause no danger zones are present and there are
several landmarks along the way to aid localiza-
tion.

Target Finding. A robot wants to find a mov-
ing target as quickly as possible in an environment

11

Figure: 3D-Navigation Domain
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Results of the benchmark domains.

Return Time(s)

Tiger
|S| = 2, |A| = 3, |Ω| = 2
RTDP-Bel 19.42 ± 0.59 0.30
HSVI2 19.31 ± 0.09 <1
FSVI* N/A
SARSOP 18.59 ± 0.61 0.09
MiGS −19.88± 0 100
IGRES (# subgoals: 1) 19.41 ± 0.59 1

Noisy-tiger
|S| = 2, |A| = 3, |Ω| = 2
RTDP-Bel −13.67 ± 0.28 1.22
HSVI2 −13.69 ± 0.04 <1
FSVI* N/A
SARSOP −13.66 ± 0.18 0.18
MiGS −19.88± 0 100
IGRES (# subgoals: 1) −13.67 ± 0.18 1

RockSample(4,4)
|S| = 257, |A| = 9, |Ω| = 2
RTDP-Bel 17.94 ± 0.12 10.7
HSVI2 17.92 ± 0.01 <1
FSVI 17.85 ± 0.18 1
SARSOP 17.75± 0.12 0.7
MiGS 8.57± 0 100
IGRES (# subgoals: 4) 17.30± 0.12 10

RockSample(7,8)
|S| = 12545, |A| = 13, |Ω| = 2
RTDP-Bel 20.55± 0.13 103
HSVI2 21.09 ± 0.10 100
FSVI 20.08± 0.20 102
SARSOP 21.35 ± 0.13 100
MiGS 7.35± 0 100
IGRES (# subgoals: 8) 19.54± 0.12 100

Hallway2
|S| = 92, |A| = 5, |Ω| = 17
RTDP-Bel 0.237± 0.006 1004
HSVI2 0.507± 0.001 250
FSVI 0.494± 0.007 280
SARSOP 0.530 ± 0.008 200
MiGs 0.522 ± 0.008 200
IGRES (# subgoals: 20) 0.530 ± 0.008 200

Tag
|S| = 870, |A| = 5, |Ω| = 30
RTDP-Bel −6.32± 0.12 372
HSVI2 −6.46± 0.09 400
FSVI −6.11 ± 0.11 35
SARSOP −6.08 ± 0.12 30
MiGS −6.00 ± 0.12 30
IGRES (# subgoals: 20) −6.12 ± 0.12 30

Underwater Navigation
|S| = 2653, |A| = 6, |Ω| = 103
RTDP-Bel 750.07 ± 0.28 338
HSVI2 718.37± 0.60 400
FSVI 725.88± 5.91 414
SARSOP 731.33± 1.14 150
MiGS 715.50± 1.37 400
IGRES (# subgoals: 20) 749.94 ± 0.30 50

Homecare
|S| = 5408, |A| = 9, |Ω| = 928
RTDP-Bel** N/A
HSVI2 15.07± 0.37 2000
FSVI*** N/A
SARSOP 16.64 ± 0.82 1000
MiGS 16.70 ± 0.85 1600
IGRES (# subgoals: 30) 17.32 ± 0.85 1000

3D-Navigation
|S| = 16969, |A| = 5, |Ω| = 14
RTDP-Bel −93.03± 0.01 2115
HSVI2 −91.98± 0 2000
FSVI** N/A
SARSOP −99.97± 0 800
MiGS (2.977 ± 0.512) × 104 150
IGRES (# subgoals: 163) (3.272 ± 0.193) × 104 150

* ArrayIndexOutOfBoundsException is thrown.
** Solver is not able to compute a solution given large amount of computation time.
*** OutOfMemoryError is thrown.
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Results of the adaptive management of migratory birds
problem.

Return Time(s)

Lesser sand plover
|S| = 108, |A| = 3, |Ω| = 36
symbolic Perseus* 4675 10
IGRES (# subgoals: 18) 5037.72± 8.82 10

Bar-tailed godwit b.
|S| = 972, |A| = 5, |Ω| = 324
symbolic Perseus* 18217 48
IGRES (# subgoals: 36) 19572.41± 39.35 60

Terek sandpiper
|S| = 2916, |A| = 6, |Ω| = 972
symbolic Perseus* 7263 48
IGRES (# subgoals: 72) 7867.95± 2.44 60

Bar-tailed godwit m.
|S| = 2916, |A| = 6, |Ω| = 972
symbolic Perseus* 24583 58
IGRES (# subgoals: 72) 26654.06± 38.60 60

Grey-tailed tattler
|S| = 2916, |A| = 6, |Ω| = 972
symbolic Perseus* 4520 378
IGRES (# subgoals: 72) 4860.91± 38.47 60
IGRES (# subgoals: 72) 4927.17± 38.14 300

* Results from Nicol et al. (2013).

Hang Ma and Joelle Pineau McGill University Information Gathering and Reward Exploitation of Subgoals for POMDPs



Background
Our Contributions

Experiments
References

Figure: Performances on Grey-tailed tattler Domain
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Thank You!
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