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Abstract

This paper explores the problem of managing movements of
aircraft along the surface of busy airports. Airport surface
management is a complex logistics problem involving the
coordination of humans and machines. The work described
here arose from the idea that autonomous towing vehicles for
taxiing aircraft could offer a solution to the ’capacity prob-
lem’ for busy airports, the problem of getting more efficient
use of existing surface area to meet increasing demand. Sup-
porting autonomous surface operations requires continuous
planning, scheduling and monitoring of operations, as well
as systems for optimizing complex human-machine interac-
tion. We identify a set of computational subproblems of the
surface management problem that would benefit from recent
advances in multi-agent planning and scheduling and prob-
abilistic predictive modeling, and discuss preliminary work
at integrating these components into a prototype of a surface
management system.

1 Background and Motivation
Congestion at airports is recognized as one of the most
prominent problem areas in the international commercial
airspace. In particular, increasing the capacity of surface
area used for taxiing is a major logistical challenge. The nor-
mal approach to increasing capacity by expanding the sur-
face area used for taxiing has a number of problems, includ-
ing harmful impact to the environment (increased noise and
pollution) as well as adding to human workload and increas-
ing the overall complexity of operations. These difficulties
of increasing capacity through airport expansion motivate
the search for solutions that make more efficient use of ex-
isting space rather than creating new space. Automated tools
on the ground or in the control tower are being matured and
integrated into decision support systems. At the same time,
NASA and other government agencies are encouraging the
development of ’game changing’ technologies for radically
transforming future airspace operations.

In the spirit of ’changing the game’, we envision a future
in which automated surface movement management in the
control tower is combined with autonomous aircraft towing
vehicles. Specifically, by autonomous engines-off taxiing,
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we mean a taxiing system involving a towing vehicle that
will, on command, autonomously navigate to an assigned
aircraft, attach itself, tow the aircraft to an assigned location
(a runway for departures, a gate for arrivals), autonomously
detach itself, and navigate to an assigned location, either
a staging area or to service another aircraft’ (Morris et al.
2014). The focus in this paper is not on the problem of au-
tonomous taxiing, but rather the automation in the tower re-
quired to support autonomous operations. Specifically, we
identify a set of sub-problems in planning, scheduling, and
execution monitoring, that combine to provide a system for
continuous surface operations. The main sections of the pa-
per consist of an overview of the approach, a discussion of
the planning and scheduling components, and a monitoring
device that is based on recent advances in predictive analy-
sis.

2 Overview of Approach
Airport surface operations consists of all the activities re-
quired for handling arrivals and departures of commercial
aircraft. In principle this collection of activities includes ser-
vicing tasks such as refueling or loading/unloading baggage,
but here the focus is on the movement of aircraft: in the de-
parture phase, movements consist of pushback, navigation
to the entrance to the taxiway (called the spot), taxiing and
takeoff; in the arrival phase, movements consist of landing,
entering the taxiway, entering the ramp area, and navigating
to gate.

Airport surface operations is a complex logistics prob-
lem, involving the coordination of potentially large num-
bers of humans and machines. The two main criteria for
effective operations are safety and efficiency. At the cen-
ter of operations is ramp or Air Traffic control. Currently
tower operations for surface movement is heavily based on
human controllers interpreting surveillance data from sur-
face detection equipment such as ASDE-X, and communi-
cating routing information to pilots. Although the operating
environment is based on rigid rules and procedures, there
is much uncertainty in surface movement, primarily in the
form of delays due to changes in the operating environment.
Uncertainty is currently handled through continuous replan-
ning and rescheduling movements by human controllers to
respond to delays or other contingencies.
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Figure 1: System architecture

Here we propose a new design for tower operations based
on automation. We focus on two areas in which automated
decision making could assist the human controller in more
safe and efficient operations: data analysis for behavior mod-
eling and route planning and scheduling. The overall system
is visualized in Figure 1. The three main components of the
system are models, which are of two kinds: topological and
behavioral; route planning, and surface scheduling, com-
prised of the following sub-problems: runway sequencing
and scheduling (Rathinam et al. 2009); spot or gate release
scheduling (Malik, Gupta, and Jung 2012); gate allocation
(Cheng, Sharma, and Foyle 2001) and taxi route planning
and scheduling (Roling and Visser 2008). To this list we add
towing vehicle dispatching for autonomous towing vehicles
(Hiatt and Simmons 2007).

Surface movement optimization is NP-hard (Reif 1979).
Several types of constraints are involved, including push-
back times, taxiway layouts, and runway and taxi-way sep-
aration. Planning is dynamic, with aircraft continuously en-
tering and leaving the planning space, and replete with un-
certainty and unexpected events. These complexities and
the dynamic nature of the environment motivate approaches
to automated planning that require reduced computational
overhead while achieving useful results.

3 Planning and Scheduling
Surface planning and scheduling with autonomous towing
vehicles is viewed here as a centralized process, performed
by a decision-support tool used by ramp controllers, or tower
(ATC) operators. The airport ground routing and scheduling
problems require directing aircraft to their destinations in
a timely manner, with the aim being to reduce the overall
travel time, delays at the runway queue, and to maximize
throughput. Separation constraints between taxiing aircraft
maintain safety. Whereas for smaller airports the routing
problem can be simple to solve, for larger airports, espe-
cially during peak hours, the interaction between the routes

of different aircraft often requires the application of a so-
phisticated routing algorithm.

The overall approach to planning and scheduling towing
vehicle-based surface operations is an extension of the Spot
and Runway Departure Advisor (SARDA) approach (Malik,
Gupta, and Jung 2012). The SARDA scheduler addresses
the highly dynamic and uncertain planning environment by
a multi-stage process. The next paragraphs summarize this
process.

Route Planning
Airport surface route planning has received some atten-
tion in the AI and OR communities (Du, Brunner, and
Kolisch 2014), (Lesire 2010), (Ravizza, Atkin, and Burke
2014) (Atkin, Burke, and Ravizza 2010). In anticipation
of autonomous towing in future operations, we consider
here the application of recent approaches to multi-agent
path finding (MAPF) for route planning of towing vehi-
cles. MAPF seeks a set of conflict-free paths for a set
of agents. Although NP-hard to solve optimally (Yu and
LaValle 2013b), many powerful algorithms have been pre-
sented for solving MAPF. Among them are solvers based on
reduction to other problems (SAT, ILP, ASP) (Surynek 2012;
Yu and LaValle 2013a; Erdem et al. 2013), ad-hoc enhance-
ments to the A* algorithm (Standley 2010; Wagner and
Choset 2011; Goldenberg et al. 2014), unique state space
representations (Sharon et al. 2013; 2015) and other tech-
niques for non-optimal solutions (Luna and Bekris 2011;
de Wilde, ter Mors, and Witteveen 2013; Cohen, Uras,
and Koenig 2015). In particular, the Conflict-Based Search
(CBS) algorithm (Sharon et al. 2015) is considered state-of-
the-art for many MAPF domains.

MAPF is a discrete time planner: the output is a set of syn-
chronized paths that assign each agent to a location at each
discrete time step. An example of an MAPF instance and
output on a grid-shaped problem is illustrated in Figure 2.
Although an airport is not a grid, using a strategic place-
ment of obstacles, a grid can be transformed into a general
graph. We can made this transformation in order to create a
graphical representation of part of Dallas Fort Worth airport
(DFW); see Figure 3.

Dispatching and Scheduling
The SARDA scheduler contains three main components: a
runway sequencer and scheduler; a spot and gate release
scheduler; and a towing vehicle dispatcher. The spot and
gate release scheduler selects times for pushback from the
gate, and times for releasing the towing vehicle/aircraft for
entry into the taxiway (the spot is the entry point into the
taxiway from the ramp area). GIven a multi-agent plan gen-
erated by the MAPF, the scheduler continuously controls the
scheduling of towing vehicle movements.

The inputs to the scheduler consist of the current snapshot
of the airport (the current locations of each active towing ve-
hicle on the surface), scheduled push back and arrival times
for some time into the future (currently, the next 15 minutes),
and various constraints such as aircraft-specific parameters
and separation constraints. To handle uncertainty in surface
dynamics, these inputs are refreshed every few seconds. To



Figure 2: An instance of MAPF with start and goal lo-
cations being 13 and 22 for Agent 0, and 8 and 27 for
Agent1. The MAPF solution generated by the CBS algo-
rithm is: path of Agent 0: {13, 19, 20, 21, 22}; path of Agent
1: {8, 14, 15, 15, 21, 27}. The solution is no longer feasible
to execute if Agent 1 arrives at location 21 from location 15
before Agent 0 gets to or leaves location 21.

Figure 3: Graphical representation of surface of part of Dal-
las Fort Worth Airport

control the number of changes made to the outputs of the
schedule, a freeze horizon is imposed which precludes ma-
jor changes to be made to the current schedule.

The outputs of the scheduler, are, in fact, three schedules:
a runway schedule, a spot and pushback schedule, and a tow-
ing vehicle schedule, which are communicated to the tow-
ing vehicles.The times computed by the scheduler represent
each vehicle’s earliest possible arrival time at each node.
However, this set of routes may contain numerous conflicts
(separation constraint violations). To resolve such conflicts,
the system contains a flow model and a network event simu-
lator to model arrivals at nodes representing intersections, to
determine the amount of time that aircraft must hold at cur-
rent locations to maintain separation requirements, and to
ensure other safe conditions (e.g. at intersection crossings,
or to maintain wake vortex separation). The flow model as-
sumes conflict avoidance on the surface to be the combined
responsibility of the controller and towing vehicle. The con-

troller identifies spatial violations in the schedule such as
aircraft approaching head on. The towing vehicle determines
possible conflicts at the node it is currently approaching, and
adjusts its speed accordingly. Together, the scheduler and
deconfliction model approximate the taxi routings and re-
source utilization (gates and runways) that are most likely to
be used by tower controllers.

A towing vehicle dispatcher is a kind of resource sched-
uler: given an available towing vehicle, and an aircraft that
needs to be towed, the dispatcher assigns the towing vehi-
cle to the aircraft, and generates a shortest-path route for the
towing vehicle to navigate to reach the assigned craft. Order-
ing the available towing vehicles to determine the most ef-
ficient allocation can be decided using different criteria. We
currently use a simple shortest distance criterion: the avail-
able towing vehicles are ordered by distance between towing
vehicle and attachment point (i.e. gate or runway exit), and
the one with the smallest distance is assigned. A subset of
nodes in the graph are designated as towing vehicle depots
that provide a re-charging station and designated locations
for dispatching idle towing vehicles. Towing vehicle depots
should be strategically placed along the surface to reduce the
time between dispatching an idle towing vehicle and reach-
ing its assigned aircraft for attachment. Towing vehicles can
also be dispatched from locations other than depots; for ex-
ample, a towing vehicle might have completed a towing op-
eration to one gate, and be then dispatched to a nearby gate
for the next departure towing task. Problems similar to the
dispatching problem have been studied in the robotics liter-
ature; for example, (Hiatt and Simmons 2007).

Discussion
A discrete time approach to route planning has a number of
limitations: first, it requires the synchronization of the move-
ments of all agents perfectly, which can be difficult; second,
the size, velocity, safety margin and other properties of each
of the towing agents are not uniform, and this approach ab-
stracts away these differences; finally, and most importantly,
surface operations are laden with temporal uncertainty and
the concrete plans generated by an MAPF algorithm do not
allow for temporal uncertainty. As a result, the execution of
the synchronized discrete MAPF solutions in environments
with such complex dynamics involves continuous execution
modeling and potential replanning when the MAPF solu-
tions are no longer executable.

Simple Temporal Networks (STNs) have been used to
represent temporal flexibility in plans. Here we propose an
approach that takes a synchronized discrete solution gener-
ated by MAPF algorithms as input and generalizes it to a
continuous routing plan using STNs. A centralized execu-
tive and monitoring system can then use the STN to dispatch
towing vehicles and incrementally assign times for vehicle
locations along their assigned route. The main idea is to con-
sider only those locations visited by more than one agent at
different time steps. It is essential for the continuous routing
plan to respect the order of visitation by the agents to the
same location given by the MAPF solution, since the con-
sistency of the order of visitation is sufficient for the MAPF
solution to remain feasible to execute. This idea is demon-



strated in Figure 2. The partial order obtained in this way
can then be represented as a temporal plan graph in which a
vertex corresponds to the event of an agent visiting a loca-
tion, and a directed edge corresponds to the temporal prece-
dence between two events. This temporal plan graph allows
us to add additional temporal constraints between events. By
analyzing this temporal plan graph in the simple temporal
problem (STP) framework, we can efficiently reason about
the time interval that any given event can occur in, which
provides a principled formalism for performing probabilis-
tic reasoning at any time during the execution of the routing
plan. An example of a STN corresponding to the MAPF in-
stance shown in Figure 2 is found in Figure 4.

In this section we have sketched a system for a hy-
brid centralized system for airport surface route planning
and scheduling and distributed execution using autonomous
agents. A prototype of the SARDA-based planning and
scheduling system has been implemented in Python and
C++, along with a simulator of DFW terminal behavior; see
(Morris et al. 2014) for details about the implementation.

The main challenge for such a system is handling the
uncertainty on the airport surface, as the result of interfer-
ence with other surface vehicles, delays in communication,
changes in weather, and unexpected changes in traffic vol-
ume in the air. Our current procedure combines simple pre-
defined route planning with continuous scheduling and mon-
itoring to handle uncertainty. The efficiency of operations
can be improved upon, we claim, with more sophisticated
planning and modeling of surface behavior. This section has
illustrated the use of STNs to represent the temporal flexibil-
ity inherent in the problem. In the next section, we describe
work on probabilistic modeling and analysis for increasing
the predictive capabilities of a surface management system.

4 Modeling and Predictive Analysis
To address the temporal uncertainty on the airport surface
we propose a behavioral model which is automatically in-
ferred from telemetry data, log files and simulation data
available from previous or similar operations at the airport.
The model uses a grid abstraction of the surface as the ba-
sis for a Discrete Time Markov Chain (DTMC). The model
can be analyzed using temporal logic queries to obtain pre-
dictions about the likelihood that temporal constraints for
avoiding conflict will be violated. This information can be
used by humans or automated tools to monitor surface be-
havior or alter plans. This section describes the creation and
deployment of the model for predictive analysis.

Model Inference
The goal of the model inference component is to build “be-
havioral models” of surface operations (for both towing ve-
hicles and airplanes within a specified airport). Such models
contain key information that enable analysis with respect to
safety, delays, throughput etc. One can use such models to
optimize planning decisions for minimizing delays in taxi-
ing and avoiding congestions.

Our models are DTMCs, i.e. automata labeled with out-
going probabilities on their transitions. We infer these mod-
els from time series data; each step encodes the value of the
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Figure 4: A temporal plan graph generated from the MAPF
instance shown in Figure 2. Each vertex corresponding to the
event “j moves into loc” indexed by t is labeled as “AG:j,
L:loc, inNode=true, T:t” in the figure, while each vertex cor-
responding to the event that “j moves out of loc” indexed by
t is labeled as “AG:j, L:loc, inNode=false, T:t” in the fig-
ure. XStart has all labels being -3 and false. XFinish has
all labels being -4 and false. The minimum makespan of the
continuous routing plan, that equals the earliest time for the
event XFinish, is 4.1. Agent 1 can move into location 21 0.1
time units after Agent 0 moves out of location 21.



states observed at each time step. Thus the states of the in-
ferred model represent “abstractions” of the state reported
in the log file and transitions in the model correspond to the
time steps in the log file. The abstraction chosen depends on
the properties of interest. The log data is discretely sampled,
in some cases many times per second; therefore it is neces-
sary to select a resolution to allow for realistic state transi-
tions and to prevent state space explosion. The probability
distribution for a particular state is estimated by computing
the ratio between the number of traversals for each outgoing
transition and the total number of traversals of the transitions
exiting states; this corresponds to the maximum likelihood
estimator for the probability distribution at that state.

The abstraction we used is based on dividing the airport
surface into a grid. For each grid a “count” of the number
of vehicles (airplanes, towing vehicles) is stored. The counts
of the grid elements at a specific discrete time constitute a
state in the generated model. Using this abstraction, we can
either build a single model for the whole surface operations
or we can build several towing vehicle-centric models which
capture the operations of each towing vehicle separately, to-
gether with the interactions with other vehicles in its imme-
diate vicinity. The advantage of this latter approach is that
the models are smaller and therefore easier to build, while at
the same time being more precise.

We have developed a prototype tool, called tool, written
in Java that implements our approach. It builds models with
different levels of abstraction, allowing for the adjustment of
the granularity of abstraction: decomposing the airfield into
a coarse (fine) grid is likely to yield a less (more) precise
model at the expense of a smaller (bigger) state space. Fur-
ther, as noted, one can build models capturing the activities
of all the vehicles on the surface, or models focused on spe-
cific vehicles. The generated DTMC can be visualized (via
DOT files) and analyzed automatically using a translation
to the modeling formalisms of the PRISM (Kwiatkowska,
Norman, and Parker 2011) and UPPAAL (Larsen, Petters-
son, and Yi 1997) model checkers.

tool
Figure 5 provides an overview of tool. It is comprised of
three main components: a log parser, an intermediate model
generator, and a model generator. The modularity, along
with the design approach that provides several extension
points, facilitates easy experimentation with pre-processing
and abstraction techniques and to define translations from
a generic (intermediate) model to different modeling for-
malisms.

The log parser processes the input log, and uses defini-
tions of a state and the transition function to generate the
intermediate model. The intermediate model is domain ag-
nostic and defined as a generic automaton that allows to
generate input models for different model checkers, e.g., re-
active modules for the PRISM model checker. A state is
an assignment of values to model variables and transitions
can have attributes/labels attached. The attributes are used
for defining DTMCs. Translating the intermediate model re-
quires mapping states and transitions from the intermediate
model to the target modeling formalism.

Currently, tool supports surface log data from Dallas Fort
Worth airport. In addition, tool supports several variations of
grid abstractions applicable for abstracting “positional” log
data. Among them, tool has 3D and 2D grids with homoge-
neous and heterogeneous grid sizes. We provide translations
from the intermediate model to the modeling formalisms of
the PRISM model checker (reactive modules) and to the UP-
PAAL model checker (Networks of Timed Automata). We
also provide a translation to DOT for model visualization
and to facilitate systems understanding and debugging. Fig-
ure 6 shows an example model for a 2x2 grid abstraction.

Model Analysis The models are analyzed based on
queries written in temporal logics. For a data log recording
the positions of more than 30 autonomous towing vehicles
and airplanes each second, for 70 minutes of activity, we an-
alyzed 123 MB of data in less than 5 seconds. The generated
models have 75 states (10x2 grid abstraction) and 96 states
(4x4 grid abstraction), respectively. For the corresponding
DTMC generated as reactive modules for PRISM, we ana-
lyzed example qualitative and quantitative (PCTL) proper-
ties:
• P < 0.6 [F < 50 q0 < 30]: The probability that

less than 30 towing vehicles/airplanes are present in
quadrant 0 within the first 50 time units (seconds), is less
than 0.6.

• P =? [F < 300 q0 > 33]: What is the probability
that more than 33 towing vehicles/airplanes are present
in quadrant 0 within the first 300 time units (seconds)?

Verifying the properties takes less than a second, respec-
tively returning true and 0.1058.

As hinted, different partitioning schemes of the grid affect
the resulting state space of the model and the granularity of
the analysis. Table 1 shows examples of this, where we gen-
erated two different models: one that abstracts the positions
of all agents present in the model (row Multi); and one that
outputs separate models for each of the agents (rows SA∗),
with min (max) denoting the minimum (maximum) number
of transitions in the model generated for a towing vehicle.
Putting the individual models in parallel yields a complete
system. For each model, we analyzed the example property
P = [F < 3 q 0 1 > 0], i.e. What is the probability of
reaching the grid cell represented by state q 0 1 within 3
discrete time steps?.

Analyzing properties on the multi-agent model take
longer than for the single agent models. Also note that for
agent #19, different grid sizes yield the same probability.
Consider the following plan:
AGENT 0 Path: 11 11 19 27 28 29 21 13
AGENT 1 Path: 19 19 27 28 29 30 22
AGENT 2 Path: 27 28 29 37 45 37 29
AGENT 3 Path: 35 27 28 29 37 38

Where Agents 0 . . . 4 represent towing vehicles and
11, 19, 27 . . . represent grid positions. For example the first
line in the plan states that in the first time step, agent 0 is
in grid position 11. It will stay in the same position in the
2nd time step, while in the third time step it will move into
position 19.



Figure 5: Tool architecture overview.
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Figure 6: Discrete Time Markov Chain inferred from example log data. States are represented by the number of vehicles in each
cell of a 2x2 grid projected on the airport surface.

The analysis proceeds as follows. Suppose we have build
DTMC models for each agent using past telemetry data (us-
ing the procedure described in the previous section). We can
then analyze the plan with respect to to the built models: the
plan defines implicit constraints on the agent. For example
Agents 0 and 1 should not be in the same square (id 19) after
3 time steps. We can encode this constraint as the following
PCTL properties:

• P =? [F < 3 q19 > 0]: What is the probability that
Agent 0 is present in quadrant 19 within the first 3 time
units (seconds)? We check the first property against Agent
0’s model

• P =? [F < 3 q19 > 0]: What is the probability that
Agent 1 is present in quadrant 19 within the first 3 time
units (seconds)? We check this second (identical) property
against Agent 1’s model. etc

Note: we expect a lot of symmetries in terms of towing
vehicle-centric models and properties. We plan to address
this in the future.

We have described our preliminary efforts in developing
a model-inference component for which predictive analysis
is envisioned to support the decision procedure of the tow-

ing vehicle dispatcher. For future work, we plan to refine
our models. In particular we want to distinguish between ar-
rivals and departures and create a more detailed model with
a finer grid that takes into account the configuration of the
airport. For example, a finer grid may take into account the
gate area, taxiways, and runways and allow a decomposition
of this area into polygons. To bootstrap the model-inference,
we would also like to use random testing. We also plan to
integrate the model in the dispatcher to minimize delays in
taxiing, to avoid congestions, and to maximize throughput to
increase capacity of the airport. Another area that we plan to
investigate is the behavior of towing vehicles around inter-
sections. Another direction for future work is the inference
of continuous-time Markov chain models from log data.

5 Summary
Airport surface operations is a complex logistical prob-
lem involving the coordination of humans and machines
to achieve the maximum use of existing capacity. Automa-
tion for increasing capacity and reducing human workload
is slowly being integrated into tower operations. This paper
proposed a integrated approach for automating all phases of
surface operations, from route planning to execution mon-



2x2 4x4 8x8 10x4 4x10 10x10
ID T# S# P T ID T# S# P T ID T# S# P T ID T# S# P T ID T# S# P T ID T# S# P T

Multi - 257 115 0.0367 4 - 546 288 1.00 15 - 949 549 1.00 16 - 925 524 1.00 11 - 808 462 0.00 6 - 1143 688 0.00 16
SAmin #19 5 3 0.0138 3 #19 13 7 0.0138 3 #19 23 12 0.0138 2 #14 26 13 0 2 #19 19 10 0.0138 3 #19 33 17 0.00 1
SAmax #10 11 4 0.00825 2 #29 31 13 0.00 3 #24 85 38 0.00 3 #24 60 25 0.00 3 #24 59 25 0.00 3 #24 103 45 0.00 3

Table 1: Results for different grid configurations for multi-agent (row Multi) and single agent (rows SA∗) models. ID is the
agent ID; T# (S#) is the number of transitions (states) in the generated model; P is the obtained probability for the property
P =? [F < 3 q 0 1 > 0]; and T is the analysis time for the property.

itoring, including the potential for autonomous towing of
aircraft. One of the interesting issues in developing a com-
plete system for surface operations is the handling of uncer-
tainty. One solution, close to that adopted in current opera-
tions, is based on continuous scheduling and replanning of
surface trajectories to address uncertainty during plan ex-
ecution. Our general approach is to ’migrate’ part of the
uncertainty into probabilistic or flexible predictive models,
which then will enable decision making, either human or
automated, under more informed conditions. This approach
will guide future research on this problem.
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