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The Generalized Log-Ratio Transformation:
Learning Shape and Adjacency Priors for
Simultaneous Thigh Muscle Segmentation

Shawn Andrews and Ghassan Hamarneh

Abstract—We present a novel probabilistic shape represen-
tation that implicitly includes prior anatomical volume and
adjacency information, termed the generalized log-ratio (GLR)
representation. We demonstrate the usefulness of this repre-
sentation in the task of thigh muscle segmentation. Analysis
of the shapes and sizes of thigh muscles can lead to a better
understanding of the effects of chronic obstructive pulmonary
disease (COPD), which often results in skeletal muscle weakness
in lower limbs. However, segmenting these muscles from one
another is difficult due to a lack of distinctive features and inter-
muscular boundaries that are difficult to detect. We overcome
these difficulties by building a shape model in the space of GLR
representations. We remove pose variability from the model by
employing a presegmentation-based alignment scheme. We also
design a rotationally invariant random forest boundary detec-
tor that learns common appearances of the interface between
muscles from training data. We combine the shape model and
the boundary detector into a fully automatic globally optimal
segmentation technique. Our segmentation technique produces a
probabilistic segmentation that can be used to generate uncer-
tainty information, which can be used to aid subsequent analysis.
Our experiments on challenging 3D magnetic resonance imaging
data sets show that the use of the GLR representation improves
the segmentation accuracy, and yields an average Dice similarity
coefficient of 0.808± 0.074, comparable to other state-of-the-art
thigh segmentation techniques.

Index Terms—Statistical Shape Analysis, Muscle Segmenta-
tion, Probabilistic Segmentation, Edge Detection, Uncertainty,
COPD

I. INTRODUCTION

An important precursor to any anatomical volume mea-
surement or shape analysis from a medical image is seg-
mentation. Manual segmentation in 3D medical images is
extremely time consuming, tedious, and suffers from inter-
and intra-operator variability. Highly automated segmentation
is important for studies involving a large cohort of subjects
to reduce manual labour and variability, and to improve the
efficiency in analyzing large groups of data. When manually
segmenting an image, a clinician often must rely on their
prior knowledge of anatomy in order to distinguish different
structures; automated segmentation methods must somehow
encode similar anatomical information to achieve adequate
accuracy. For example, Yazdanpanah et al. and Garvin et al.
[1], [2], encoded spatial relationships between retinal layers
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via level sets with concentric circle shape priors. Nosrati et
al. and Delong and Boykov [3], [4] encoded containment and
exclusion constraints in level sets and graph cut segmentation
frameworks, respectively, and applied their methods to cardiac,
bone, microscopy, and other segmentation tasks.

In this paper, we propose training statistical shape mod-
els using a novel segmentation representation that implicitly
includes prior anatomical volume and adjacency information,
termed the generalized log-ratio (GLR) representation. The
GLR representation is designed to incorporate statistically
meaningful localized uncertainty information through the use
of probabilistic labels [5]. Encoding uncertainty in automated
segmentations aids in subsequent user analysis and identifi-
cation of segmentation errors [6], [7]. We demonstrate the
efficacy of the GLR representation by applying it to task of
knee extensor and flexor (thigh) muscle segmentation on a
data set including patients with chronic obstructive pulmonary
disease (COPD).

In patients with COPD, skeletal muscle weakness is com-
mon [8]–[12]. Thigh muscles are often the most affected due
to lack of use [11]. Reduced muscle mass is among several
factors that lead to reduced force production, also including
changes in the muscle contractile apparatus and neuromuscular
activation [8]. The relative effects of these factors are an
ongoing area of study [12]. Thus, size and shape measurements
are required to study the contribution of muscle mass reduction
to force loss. Recently [13], a non-uniform distribution of
atrophy and size changes was found across knee extensors
and flexors in patients with COPD, which may be reflective
of localized factors such as denervation, limited recruitment, or
atrophy of specific muscle fibers, rather than systemic factors
contributing to muscle atrophy. Further, classifiers trained on
3D shape descriptors of thigh muscles have been able to detect
COPD [14]. Information regarding the specific muscles or
muscle regions that are most atrophied together with functional
assessment will enable therapeutic interventions to be targeted
to the affected regions [13]–[15] rather than the prescription
of a generalized approach that may prove ineffectual.

Magnetic resonance imaging (MRI) can be used to generate
volumetric images, from which muscle can be distinguished
from the surrounding regions and volume and shape properties
of individual muscles can be estimated [16] (Fig. 1). However,
there are two issues that complicate the task of thigh muscle
segmentation from MRI. The first issue is that each of the thigh
muscles have similar intensity and texture, so they cannot be
differentiated using local image features. The second issue is
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Fig. 1. (Color Figure) An example slice of a thigh MRI and the corresponding labeled ground truth.

that the boundaries of intermuscular fat between neighboring
muscles often has thickness on the order of the imaging
resolution, and tends to be obscured in many areas by imaging
noise and partial volume effects. Further, the texture and
intramuscular fat in the muscles can create intensity gradients
greater than nearby intermuscular boundaries (Fig. 1).

A diverse set of techniques for overcoming these issues have
been proposed in the muscle segmentation literature. Gilles
et al. deformably register template meshes of muscles and
other thigh anatomy to a novel image, matching model edges
to boundaries in the images and employing regularization
terms designed to model real anatomy [17], [18]. Other works
have been successful in employing atlas-based segmentation
to muscle segmentation (including certain thigh muscles),
registering novel MRI data to an already segmented atlas
[19]–[21]. Essafi et al. propose a wavelet-based encoding for
calf muscles represented using landmarks, which provides a
hierarchical encoding of shape variability [22]. Wang et al.
capture muscle shape variability using the relative positions of
small cliques of nearby landmark points, and segment novel
images by training random forest classifiers for the landmark
locations based on image features [23]. The above methods
rely on matching explicit surface models to muscle boundaries
and can suffer from difficult to detect or false boundaries that
often occur in thigh MRI data. Further, none of these methods
guarantee a globally optimal solution, and thus can be sensitive
to improper initialization.

Baudin et al. employ several techniques for implicit seg-
mentation of thigh muscles that achieve excellent results. First,
they present a technique to automatically detect voxels inside
the various muscles utilizing a boundary map calculated from
local intensity variance, and use these voxels as “seeds” to
guide a subsequent segmentation [24]. However, the detection
of enough boundaries to ensure seeds lie in the interior of
muscle regions may be difficult. Baudin et al. also present
a technique for encoding shape models learnt from training
segmentations into a random walker (RW) segmentation [25]
framework, which benefits from RW’s robustness to missing
edges [26], [27]. These works exhibit the greatest similarity
to our proposed approach, as the segmentation step is convex
and it provides a probabilistic solution. However, the MRI
acquisition scheme employed in these works is designed for

intermuscular boundary detection [28], whereas our data ex-
hibits many false edges from intramuscular fat (Fig. 4, Fig. 14)
which can cause errors in RW based approaches due to their
dependence on local gradient information for regularization.
Also, they employ a deformable registration step prior to the
construction of their shape models. Deformable registration is
difficult to perform optimally, and may remove some of the
shape variability that we wish to capture in our PCA shape
model in order to be able to use it to differentiate COPD and
healthy muscle structure.

In this work, we build a fully automatic thigh segmentation
technique that is robust to low quality MRI data. To ensure
consistent and predictable automatic results, we wish to ensure
our algorithm converges to a globally optimal solution. This
is in contrast to many deformable model and atlas-based
techniques [18], [20], which tend to use non-convex energy
functions and are prone to getting stuck in local minima (but
often can be more efficient to locally optimize). Given that a
fully automated segmentation technique should be designed
to facilitate subsequent manual analysis, our segmentation
technique is designed to encode statistically meaningful un-
certainty information that can be used to help identify seg-
mentation errors or image pathologies.

Our segmentation technique consists of four main steps:

1) We define the GLR representation in the context of
thigh muscle segmentation to encode muscle size and
adjacency information and train a statistical shape model
over the space of GLR representations, capturing the
relative thigh muscle shapes and locations.

2) We introduce a technique for presegmenting images into
bone, fat, and muscle classes, with all knee extensor and
flexor muscles combined under one label. We use this
presegmentation to perform an anatomical alignment of
the images, removing pose and size variance so only the
variance in higher order shape moments remains.

3) We train a random forest classifier to robustly detect all
intermuscular boundary locations in the images while
discarding false boundaries from intramuscular fat. We
devise features oriented towards the nearest boundary
when training, adding rotational invariance to the clas-
sifier.

4) Information from the shape model, the presegmentation,
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and the boundary likelihoods are incorporated into a
strictly convex energy functional that is globally min-
imized using a primal-dual technique to produce a
probabilistic segmentation.

The remainder of the paper is laid out as follows. In Sec. II,
we describe our generalized log-ratio segmentation representa-
tion and discuss its applicability to thigh muscle segmentation.
In Sec. III, we describe our random forest muscle boundary
detection scheme and discuss its benefits. In Sec. IV, we
provide our presegmentation and anatomical alignment steps,
and develop a strictly convex energy functional including the
learnt shape model and muscle boundary locations. In Sec. V,
we examine the accuracy, robustness, and usefulness of our
segmentation technique.

II. GENERALIZED LOG-RATIO SEGMENTATION
REPRESENTATIONS

A. Log-Ratio Transformations

While our goal in this paper is fully automated segmenta-
tion, verification of results by a human expert is often neces-
sary for clinical accuracy. Further, the difficulty in detecting
intermuscular boundaries in the images means that the location
for these boundaries may have to be chosen somewhat arbi-
trarily in some locations. To address these issues, we design
our algorithm to incorporate statistically meaningful, spatially
localized uncertainty information into the segmentation.

Multi-label uncertainty information can be encoded using
a probabilistic labeling of the image. For an image with K
labels, a probabilistic labeling is represented by a function
q = [q1, . . . , qk]> : Ω → PK , where Ω is the set of n voxels
and PK is the unit simplex:

PK =

{
q ∈ RK

∣∣∣∣∣ qi > 0,

K∑
i=1

qi = 1

}
. (1)

For x ∈ Ω, q`(x) represents the probability that x is assigned
label `. A probabilistic labeling allows, among other things,
the ambiguity of intermuscular boundaries to be quantified.

To guide our segmentation, we build a statistical shape
model by applying principal component analysis (PCA) to a
set of M K-label manually generated training segmentations
{q1, . . . ,qM}, with qi : Ω → PK , extracting the mean
shape and modes of greatest variation. In previous works,
PCA was applied directly to training segmentations by treating
probabilistic labelings as vectors in Rn·K [26], [29]. However,
PCA assumes that data lies in an unconstrained vector space.
Thus, these shape models include invalid probabilities that
require projection back onto the simplex. This projection will
discard uncertainty information, since many projections may
be onto the vertices of the simplex, with probability 1 for one
of the labels and 0 for the others.

Fortunately, techniques have been established that avoid
the above issue. The general idea is to map the probabilistic
labels at each voxel to an unconstrained vector space, perform
statistical analysis, and then map the results back to the
simplex. To describe how best to do this, we first introduce
some basic concepts in simplicial geometry.

The simplex PK is a (K − 1) dimensional vector space,
with vector addition and scalar multiplication given by the
perturbation and power transformation operations, respectively
[30], [31]. For p,q ∈ PK , perturbation is defined as

p⊕ q = C([p1q1, . . . , pKqK ]) , (2)

and for a scalar α, power transformation is defined as

α� p = C([pα1 , . . . , pαK ]) . (3)

Here C(·) is the normalization operator, ensuring a vector
sums to 1. The perturbation operation can be interpreted as
an application of Bayes rule to discrete distributions (i.e.
probabilistic labelings), combining a prior distribution (q) and
a likelihood function (p) into a posterior distribution (q⊕ p).
The power transformation can be used to control the certainty
of a probabilistic labeling [32].

Several techniques exist that bijectively map PK to RK−1

while mapping (2) and (3) to Euclidean vector addition and
scalar multiplication, respectively. The most prominent of
these transformations is the LogOdds transformation, intro-
duced by Pohl et al. [32]:

LogOdds(q) =

[
log

(
q1

qK

)
, . . . , log

(
qk−1

qK

)]>
, (4)

where q ∈ PK and log(·) is the natural logarithm.
While the LogOdds transformation is symmetric between

the first k-1 labels, it is asymmetric in the last label, so
changes in the probability of this label have a greater influence
on the result of the transformation than the other labels. A
symmetrized analogue to the LogOdds transformation is the
ILR transformation, used previously in medical image anal-
ysis applications [31]. However, a more general asymmetric
transformation would allow us control how much influence
different labels have on the transformation.

In this paper, we introduce a family of transformations that
generalize the LogOdds function, known as log-ratio (LR)
transformations. An LR transformation of the unit simplex is
a function LR : PK → RK−1 given by

LR(q) = A log(q), A1 = 0 , (5)

where q ∈ PK . A = [a1, . . . , aK ] is a (K − 1)×K matrix, 1
and 0 are vectors of all 1’s and 0’s, respectively, and log(·) is
understood to be applied component-wise to q. The LogOdds
transformation in (4) is equivalent to (5) with A = [I,−1],
where I is the identity matrix. The condition on A ensures
that vector addition and scalar multiplication correspond to
perturbation and power transformation, respectively (see Ap-
pendix A). The condition also results in a simple form for the
inverse transformation, given by (see Appendix A)

LR−1(φ) = C
(
exp

(
A+ φ

))
, (6)

where φ ∈ RK−1 is an LR-vector, exp(·) is the natural
exponential function, (understood to be applied component-
wise), and A+ is the pseudoinverse of A (i.e. AA+A = A). We
now demonstrate how the matrix A can be chosen to encode
prior anatomical volume and adjacency information directly
into a segmentation representation.
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Fig. 2. An illustration of how the GLR transformation can be used to ensure small or thin structures are properly segmented. An image region may
be segmented correctly into 3 regions (a) or incorrectly into 2 regions (b). This example assumes a regularization term penalizing the total change in the
segmentation. Using no prior adjacency information such as the ILR transformation may result in the middle region being skipped, as the segmentation incurs
too large of a regularization penalty (c). If it is known from the training data that regions 1 and 3 do not share boundaries with each other, but rather with
the thin region 2, the GLR transformation can be constructed so that transitioning from region 1 to region 3 through region 2 does not incur any additional
cost compared to skipping region 2 (d). Such situations occur in thigh muscle segmentation (e).

(a) LogOdds A Columns (b) ILR A Columns (c) GLR A Columns

Fig. 3. (Color Figure) An example of the columns of A for the LogOdds,
ILR, and GLR transformations for K = 3 labels. For the GLR transformation,
the columns are chosen to satisfy a predefined pairwise distance function D.

An LR transformation is a weighted sum of the columns
of A, with weights given by the log of the probabilities, so
there is a correspondence between the columns of A and the
probabilistic labels. To make this correspondence clearer, let
ri = C(ei+ε ·1) ∈ PK for i ∈ {1, . . . ,K}, where ei is the ith

standard basis vector and ε is a small scalar, so ri represents
a probabilistic labeling where label i is very likely. Taking
advantage of the fact that A · 1 = 0 (see Appendix A),

LR(ri) = A log
(
C
(
ei + ε · 1

))
(7)

= A log

(
1

ε
· ei + 1

)
(8)

≈ log

(
1

ε

)
ai . (9)

Thus, the magnitude of LR(ri) is proportional to ‖ai‖, the
Euclidean norm of ai, and the distance between LR(ri) and
LR(rj) is proportional to ‖ai−aj‖. By adjusting the value of
‖ai− aj‖, we can encode pairwise label distances into an LR
transformations that determine how much the transformation
is affected by changes from “likely label i” to “likely label
j”. There are two ways that this pairwise distance will affect
our segmentation algorithm:
• To regularize a segmentation we penalize large gradient

values in the segmentation’s components (see Sec. IV-D
for more details), and the gradient values between an
image region that is “likely label i” and an image region
that is “likely label j” will be proportional to ‖ai − aj‖.
Increasing (decreasing) ‖ai − aj‖ will deter (encourage)
boundaries between labels i and j in the segmentation.
This can ensure, for example, that a thin label is not

neglected by discouraging its neighboring labels from
sharing a boundary.

• Increasing ‖ai−aj‖ will result in greater variance in LR
space near boundaries between labels i and j, and thus
these boundaries will have a greater influence in PCA.

In LogOdds, the first (K − 1) columns of A are sym-
metric (i.e. equidistant from each other), but the last column
is not, with ‖ − 1‖ =

√
K − 1 (Fig. 3a). Since the last

label is usually chosen to represent the “background” label,
foreground-background boundaries have a greater effect on the
PCA modes calculated in LogOdds space than foreground-
foreground boundaries [31]. Since accurately modeling in-
termuscular boundaries is key to accuracy in thigh muscle
segmentation, the LogOdds transformation is not appropriate
for this task.

The isometric log-ratio (ILR) transformation is another LR
transformation that has been applied to medical image segmen-
tation, and uses a matrix A with all K columns symmetric (i.e.
equidistant) (Fig. 3b) [30], [31], [33], [34]. This results in all
boundaries being treated equally, so the ILR transformation is
an appropriate choice when lacking prior knowledge about the
segmentation labels.

In thigh muscle segmentation, however, we want our shape
model to focus on capturing intermuscular boundaries cor-
rectly, as the muscle-background boundaries are relatively easy
to detect from image gradients. Implicit PCA shape models
often capture the variability in larger structures more accu-
rately than smaller structures, simply because larger structures
contain more voxels, which increases their overall influence
on the PCA modes. We can offset this bias towards larger
structures by constructing our LR transformation so that voxels
on the boundaries of smaller structures have a greater influence
on the PCA modes. In the following section, we present a
technique for choosing the matrix A to encode predefined
pairwise label distances, resulting in a generalized log-ratio
(GLR) transformation (Fig. 3c).

B. Setting Label Transition Penalties

In order to better capture the shapes of smaller structures,
we want to choose a distance function between labels that
encodes the relative volumes and adjacencies of the structures.
At a high level, the idea is to construct a distance function
between labels that varies inversely with the surface area
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of the shared boundaries of the structures corresponding to
those labels. Smaller structures will have smaller boundaries,
and thus greater distances and increased influence on a PCA
shape model. From the training segmentations, we calculate
the average number of voxels in the boundary between labels
i and j (approximately the average surface area), σi,j (with
σi,i = 0). We define σ as the matrix of all surface areas and
σ̄ as the mean across all pairs of labels:

σ̄ =
2

K · (K − 1)

K∑
i=1

K∑
j=i+1

σi,j . (10)

We want to define a squared-distance matrix D with compo-
nents varying inversely to the corresponding components of
σ; for example we use

Di,j =
σ̄

σi,j + σ̄
if i 6= j, Di,i = 0 . (11)

The smaller the boundary shared by a pair of labels, the
greater the distance between them will be under the GLR
transformation, discouraging transitions between them in the
segmentation (Fig. 2).

Given such a K × K matrix D of pairwise squared
distances between labels, we would like to choose A such
that ‖ai − aj‖2 = Di,j . It is known that D encodes a
Euclidean distance if and only if T = − 1

2CDC is positive
semidefinite, where C = I − 1

K 11> is a centering matrix
[35]. If T is positive semidefinite, then the desired A is
given by T = A>A. The distance encoded in D from (11)
may not be Euclidean, in which case T will have negative
eigenvalues. Only the relative values of the distances in (11)
are meaningful (i.e. which labels are closer and which are
farther), so we want to alter these distances to make them
Euclidean while maintaining this relative ordering. Let ψ be
the smallest eigenvalue of T . If ψ < 0, we add (−2ψ) to the
off diagonal components of D, which will ensure a Euclidean
distance (see Appendix B) and maintain the relative distance
ordering.

For the remainder of this paper, the GLR transformation
uses the distance function specified in (11). We will use the
GLR transformation in our segmentation framework, detailed
in Sec. IV, but first we will introduce another component
of our segmentation framework: a robust statistically-based
technique for identifying intermuscular boundaries.

III. INTERMUSCULAR BOUNDARY DETECTION

Accurate detection of intermuscular boundaries in thigh
MRI data is confounded by several factors. First, the layer
of intermuscular fat dividing the muscle tissue can often be
of a sub-voxel thickness, resulting in partial volume effects
obscuring the boundary. Second, intramuscular fat and other
textures inside muscle regions can create many false edges
(Fig. 4). Third, the intermuscular boundaries vary greatly in
both thickness and appearance, even within a single slice of
an MRI (Fig. 4d).

Wang et al. account for the difficulty in locating muscle
boundaries by adopting a random forest (RF) classifier [23],
[36], trained from existing segmentations, to attempt to locate

landmark points. We expand on this technique and train an RF
classifier to identify all intermuscular boundaries and distin-
guish them from false boundaries. RFs are able to efficiently
model complex unknown distributions, including distributions
with many modes, and thus may be able to account for the
large variety in intermuscular boundary appearances.

Our RF boundary classifier builds upon our previous tech-
nique for intermuscular boundary detection [37], where we
calculated the direction and magnitude of maximum curvature
of the intensity values at each voxel. However, the variety
of boundary appearances (Fig. 4d) limits the ability of the
curvature alone to detect them all, and intramuscular fat results
in false boundaries. We increase the “recall”, detecting a larger
variety of boundary appearances, by using a larger set of
filters beyond just the curvature. We increase the “precision”,
detecting less false boundaries, by training a RF classifier to
distinguish intermuscular fat from intramuscular fat.

Instead of only looking at the curvature of the image, we use
a set of 20 3D directional Gabor filters, designed to capture
a range of boundary widths and appearances, oriented in 18
different directions, for a total of 20 × 18 = 360 filters. A
Gabor filter in the direction of the unit vector v′ is given by

g(v) = exp

(
−‖v‖

2

2σ2

)
cos

(
2π

v′>v
γ

)
(12)

or g(v) = exp

(
−‖v‖

2

2σ2

)
sin

(
2π

v′>v
γ

)
. (13)

We use σ2 ∈ {0.5, 1, 2, 4, 8} and γ ∈ {0.25, 1} for both sin
and cos to get our 20 filters for a given direction. Since the out-
of-plane resolution is much greater than the in-plane resolution
(see Sec. V-A) and since the thigh muscle boundaries are
usually oriented perpendicular to the image plane, the 18
directions are all chosen in-plane, aligned with the angles
{10◦, 20◦, . . . , 180◦}. Further, we found that increasing the
number of features did not have a significant influence on
accuracy, likely due to the limited amount of training data.

We use the 360 filter responses to construct a feature vector
for each voxel (with each set of 20 filters for each direction
grouped together), and then use these features to train a RF
classifier from the training data. We use 100 trees in the RF,
each with a depth of 7 and 20 features randomly chosen per
tree and each node splitting on a single feature. The trade-off
in these parameters is computation time versus accuracy; we
found increasing these parameters did not increase accuracy.

If we append the filter responses in a fixed order to
create a length 360 feature vector, boundaries that are similar
in appearance but oriented differently will have completely
different feature vectors, complicating the training process.
Instead, to construct the feature vectors for training, we
shift the filter responses so the first set of 20 filters are
oriented together towards the nearest boundary (calculated
using the training segmentations), with the remaining filters
in clockwise order, as illustrated in Fig. 5. For voxels on a
boundary, this boundary alignment results in the first 20 feature
components corresponding to responses for filters oriented
across the boundary, thus adding rotational invariance to the
classifier and effectively increasing the amount of training data



IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015 6

(a) Image (b) Canny Edge Detection (c) True Boundaries (d) Zoomed in True and False Boundaries

Fig. 4. An example showing the false boundaries created by intramuscular fat (b), with segmentation (i.e. true boundaries) shown in red for comparison (c)
and the zoomed versions of some true boundaries (green boxes) and false boundaries (red) (d), demonstrating the difficulty in distinguishing them.

Fig. 5. An illustration of how the filters are shifted at each voxel to make
the feature vector used when training the RF. The filters corresponding to the
red direction should give the largest response. The feature vectors at each
location are constructed by ordering the filter responses so that the direction
with the largest expected response comes first. When applying the RF, each
of the 18 possible orderings of the filters are tested.

available. Incorporating all of the filters into the RF is useful
for detecting false boundaries, which may have large filter
responses in multiple different directions.

Since we are focused on detecting intermuscular boundaries
(as mentioned, other boundaries are easy to detect), we only
train on voxels that are labeled as muscle in the training seg-
mentations. Intermuscular boundary voxels are assigned target
value 1, voxels adjacent to these are also assigned target value
1 (since a near miss will still provide decent segmentation
accuracy and this increases the amount of positive training
data), and other muscle voxels are assigned target value 0.

Given a novel image, we again extract the 360 filter re-
sponses at each voxel, but we are not able to shift these filters
to align with the nearest boundaries, since these boundaries are
not known. Instead, we apply the RF classifier to 18 different
feature vectors, generated from all 18 possible shifts of the
filter responses, which gives us a boundary likelihood for
each voxel/direction pair. This results in a boundary likelihood
function h : Ω → [0, 1] and corresponding boundary normal
vector field d1 : Ω → S2 (where S2 is the unit sphere). An
example of the boundary likelihood function h is shown in
Fig. 6. We describe how we incorporate h and d1 into our
segmentation algorithm in Sec. IV-D.

(a) Thigh Slice (b) Likelihood (c) True Boundaries

Fig. 6. An example of the boundary likelihoods found using our RF classifier.
In (b), lighter shading corresponds to higher likelihoods. (c) shows the true
boundaries overlayed on the slice.

IV. CONVEX SEGMENTATION FRAMEWORK

We formulate our segmentation algorithm as an energy min-
imization problem. We represent segmentations as functions
φ : Ω→ RK−1, where φ(x) is a GLR vector as defined in Sec.
II-B. Since Ω is a discrete set of n voxels, segmentations can
be interpreted as vectors in Rn·(K−1), useful when performing
PCA. We define our energy functional as a weighted sum of
terms:

E(φ) = Ergn(φ) + w1Eshp(φ) + w2Ebnd(φ) , (14)

where w1 and w2 are scalar weights. The first term incorpo-
rates local regional image information into the segmentation
by performing a presegmentation, as described in Sec. IV-A.
The second term, incorporating the information from a PCA
shape model, is described in Sec. IV-C. The third term forces
the segmentation boundaries to conform to the intermuscular
boundaries found in Sec. III, and is described in Sec. IV-D.

A. Presegmentation

While it is difficult to distinguish thigh muscles from each
other, it is much easier to distinguish muscle tissue from other
anatomical structures, even by intensity alone, as seen in Fig.
7a. We take advantage of this to perform a presegmentation
and identify which voxels are muscle (regardless of which
particular muscle) to guide the segmentation. While we are
only eventually interested in segmenting the muscles, it is
useful to segment the fat tissue and the femur bone for the
purpose of anatomical alignment (detailed in Sec. IV-B). Since
the presegmentation does not require a shape model, it can
be used to align the training images prior to shape model
construction.

To perform the presegmentation, we note that the thigh
images exhibit three main intensity classes (Fig. 7a), “dark”
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(a) Thigh Slice (b) GMM Probabilities (c) Presegmentation (d) Alignment - Before (e) Alignment - After

Fig. 7. An example illustrating the GMM probabilities and presegmentation. In (b), we see the thresholded probabilities for GMM on “light”, “gray”, and
“dark” labels. In (c), we see the results of the thresholded presegmentation of the image. In (d) we see the overlay of the presegmented muscle labels from
two images (red and green, overlap in yellow), and in (e) we see the same muscle labels overlayed after being aligned.

(background, cortical bone), “gray” (muscle), and “light” (fat,
bone marrow). We assign a probability for each of these
classes to each voxel by fitting a Gaussian mixture model
(GMM) to the voxel intensities. Since we know roughly the
means and variances of the intensities of these three classes
from training data, we can provide a good initialization to the
GMM, and because the three classes are so distinct, we have
found the GMM to converge to the same distribution when the
initialization is perturbed. The result is a length 3 probability
vector, mapped to R2 using the ILR transformation1, assigned
to each voxel, πGMM : Ω→ R2.

To account for artifacts in the presegmentation due to
noise and partial volume effects (Fig. 7b), we incorporate a
regularization step:

πopt = arg min
π

Epreseg(π) (15)

Epreseg(π) =
∑
x∈Ω

‖π(x)− πGMM(x)‖2+

w3

∑
x∈Ω

2∑
i=1

‖∇πi(x)‖ , (16)

where w3 is a scalar weight and ∇ is the spatial gradient
operator. The second term in (16) is a standard total variation
(TV) term on the components of φ, which can be globally
optimized using primal-dual techniques [38] and creates a
smooth presegmentation (Fig. 7c).

Identifying the femur bone is useful both for the alignment
of images described in Sec. IV-B and to provide anatomical
context to the shape model described in Sec. IV-C. To extract
the bone from the presegmentation, we use the following
postprocessing technique, which we have empirically found
to give consistently accurate results:

1) Convert πopt to P3 and threshold to create a crisp (non-
probabilistic) segmentation;

2) Find the convex hull of the “gray” (muscle) label;
3) Label the largest connected component of the “dark”

region inside this convex hull as cortical bone;
4) Find the “light” region voxels inside the cortical bone

region and label it as bone marrow.
Following this procedure, we have an estimate of the location
of muscle tissue (“gray” regions), bone, and fat (the remaining
“light” regions, see Fig. 7c). Incorporating bone and fat into

1We do not have strong prior knowledge to incorporate into GLR.

the segmentation allows us to encode which muscles border
bone and which border fat in the GLR transformation.

Using the probabilities from πopt and the bone and fat
locations found using the above procedure, we construct a
4 label probabilistic segmentation (muscle, bone, fat, and
background). We convert this to a 14 label segmentation by
“spreading” the muscle probability at each voxel evenly among
all 11 muscles labels, and apply the GLR transformation to
the resulting probabilities, denoting the result πrgn. For the
remainder of the paper, we fix the number of labels as K = 14.

We define the regional energy term as:

Ergn(φ) = −
∑
x∈Ω

〈φ(x), πrgn(x)〉 , (17)

where 〈·, ·〉 is the standard Euclidean inner product. Here, we
use an inner product instead of a distance term (as in (16))
since we do not want φ(x) to be close to πrgn(x) (which has
a maximum muscle probability of 1/11) but to only follow its
guidelines as to what voxels are and are not muscle.

B. Anatomical Alignment

Besides acting as a regional prior for the segmentation,
we use the presegmentation πopt to guide the alignment of
images for the purpose of building an anatomical shape prior.
Since our shape model is poor at capturing variability in
lower order shape moments such as pose and size, but is
strong at capturing variability in higher shape moments, we
preprocess the images by applying a linear transform to each
slice to remove pose and size variability. In Sec. V-A, the
images are cropped from just above the knee to just below
the hip using a supervised method, so the slices in each
image already correspond. Further, the out-of-plane resolution
is much greater than the in-plane resolution, so out-of-plane
rotations result in significant image blurring. For these reasons,
we focus on in-plane alignment. This leaves 5 degrees of
freedom to eliminate for each slice: 2 for translation, 1 for
rotation, and 2 for scaling.

The translation is determined by aligning the centroid of
the bone to a common location. The rotation and scaling are
determined by fitting an ellipse to the detected muscle region,
rotating the image around the bone so the major axes of the
ellipses align, and scaling the slices anisotropically along the
ellipse axes so the muscles are roughly the same size (Fig.
7e). This procedure may result in adjacent image slices being
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transformed differently and no longer being aligned, so we
take each of the 5 transformation parameters for each slice
and fit to them a linear function of the slice index, so the
transformations vary linearly across slices.

C. Building Muscle Shape Models

Once the images have been aligned, we capture the vari-
ability in the higher order shape moments by constructing a
PCA shape model using training segmentations.

The training segmentations are crisp (non-probabilistic), so
must be converted to probabilistic segmentations in order to
be mapped to GLR space. We use the technique introduced
by Pohl et al., calculating the signed distance maps (SDMs)
of the foreground labels and converting them to probabilistic
segmentations using the LogOdds transformation [32]. We
then map each probabilistic segmentation to GLR-space and
perform PCA to find the m < M modes of greatest variance,
with m chosen to capture 90% of the variability in the M
training segmentations. This gives us the mean shape µ, the
(n · (K − 1))×m matrix of shape modes Γ, and the m×m
diagonal matrix of variances Λ = diag([λ1, . . . , λm]>), where
λ1 ≥ · · · ≥ λm.

We decompose φ = φPC + φorth + µ, where φPC lies in the
span of the shape modes Γ and φorth is orthogonal to each of
the shape modes (Γ>φorth = 0). We divide our shape energy
term into two parts to separately penalize the two components
of φ. The first part is given by a squared Mahalanobis distance:

EPC(φ) = (φPC)
>

ΓΛ−1Γ> (φPC) (18)

= (φ− µ)
>

ΓΛ−1Γ> (φ− µ) . (19)

We note (19) does not penalize φorth. A common practice is
to constrain ‖φorth‖ = 0 [29], [33]. In this paper, to allow
for more flexible segmentations, we introduce a second shape
energy term penalizing φorth:

Eorth(φ) = ‖φorth‖2 =
∥∥(φ− µ)− ΓΓ> (φ− µ)

∥∥2
. (20)

We combine these to get

Eshp(φ) = EPC(φ) + λ−1
m Eorth(φ) , (21)

where Eorth is multiplied by λ−1
m to ensure that variations out

of the span of the shape modes are penalized at least as much
as variations within the shape modes.

D. Boundary-Based Term

In Sec. III, we described how to train and apply a rota-
tionally invariant RF classifier that, when applied to a novel
image, provides a boundary likelihood function h : Ω→ [0, 1]
and a vector field d1 : Ω→ S2 normal to the boundary tangent
plane at each voxel. We define d2,d3 : Ω→ S2 as two vector
fields that, along with d1, form orthonormal bases at each
voxel (thus d2(x) and d3(x) span the plane tangent to the
detected boundary at x ∈ Ω). To incorporate h and D(x) =
[d1(x),d2(x),d3(x)] into an energy term, we penalize gradi-
ents in the segmentation’s components in directions other than
orthogonal to the boundary, and penalize changes orthogonal
to the boundary according to the likelihood h. Specifically,

(a) (b) (c)

Fig. 8. A graphical illustration of the dual formulation of Ebnd in (23).
The example is shown in 2D instead of 3D for clarity. (a) shows the p
corresponding to a ∇φi(x) parallel to d1(x). (b) shows the p corresponding
to a∇φi(x) perpendicular to d1(x). (c) shows the p for an arbitrary∇φi(x),
with the strength of the penalty being proportional to the length of the
projection of p onto ∇φi(x).

defining the diagonal matrix H(x) = diag([(1− h(x)), 1, 1]),
we define our energy term as

Ebnd(φ) =
∑
x∈Ω

K−1∑
i=1

‖H(x)−1 ·D(x)> · ∇φi(x)‖ . (22)

We ensure (1−h(x)) > ε > 0 for numerical stability. By pro-
jecting ∇φi(x) onto D, we penalize the component of ∇φi(x)
parallel to d1(x) by a factor of only (1− h(x)) < 1 as much
as the component of ∇φi(x) in the span of {d2(x),d3(x)},
encouraging the segmentation to change labels across the
detected muscle boundaries.

This modified total variation term can be efficiently globally
minimized using established primal dual techniques [38], [39]:

Ebnd(φ) =
∑
x∈Ω

K−1∑
i=1

max
pi(x)∈C(x)

pi(x)>∇φi(x) (23)

C(x) =

{
p ∈ R3

∣∣∣∣ (p>d1(x)

1− h(x)

)2

+

(
p>d2(x)

)2
+
(
p>d3(x)

)2 ≤ 1

}
. (24)

The dual variables P = [p1, . . . ,pK−1] are constrained to
the ellipsoids C(x) at each voxel, which is flattened along
the direction d1(x) by a factor of 1/(1 − h(x)) (Fig. 8).
We employ a primal-dual proximal point method, which can
guarantee convergence given small enough step size [40], [41]
(see Appendix C).

V. RESULTS

A. Data

A sample of patients was obtained with moderate to severe
COPD on the basis of the Global Initiative for Chronic
Obstructive Lung Disease guidelines [42] and of greater than
50 years of age. The healthy control group were age greater
than 50 years, free of lung disease and non-smokers.

A 1.5T MRI scanner (1.5T Horizon Echospeed Scanner;
GE Healthcare, Milwaukee, WI) was used to acquire 5 mm-
thick, contiguous, axial slices from the anterior superior iliac
spine to the tibial plateau while the subjects lower extremities
were strapped to a foam block to minimize movement. Images
were T1-weighted magnetic resonance (echo time, 8 ms;
repetition time, 650 ms) with a 40 cm2 field of view and
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(a) Manual Segmentation Labels

(b) Thresholded Auto. Seg. Labels
(c) Volumetric Auto. Seg.

Fig. 9. A comparison of manual and automated segmentation results.

1: Preseg. 2: Align RW with Shape Priors and Ground Truth Seeds

GMM + Rigid Alignment 3: Train RF 4: SDMs to Probs. 5: GLR 6: PCA 7: min E

1: Preseg. 2: Align Curv. Based Bndy 4: SDMs to Probs. 5: GLR 6: PCA 7: min E

1: Preseg. 2: Align 3: Train RF 4: SDMs to Probs. LogOdds 6: PCA 7: min E

1: Preseg. 2: Align 3: Train RF 4: SDMs to Probs. ILR 6: PCA 7: min E

1: Preseg. 2: Align 3: Train RF 7: min E6: PCA5: GLR4: SDMs to Probs.

RW-Shape [19]

GLR-No Preseg

GLR-No RF

LogOdds-Full

ILR-Full

GLR-Full 

Fig. 10. A summary of our method and the various techniques we compare against. Colored blocks correspond to steps from Algorithm 1, and gray blocks
correspond to one of our contributions being replaced by another technique.

Algorithm 1 An Overview of the Segmentation Framework
1: Construct a presegmentation of all the images (training

and testing) (see Sec. IV-A, Fig. 7).
2: Use the presegmentation to align all the images (see Sec.

IV-B, Fig. 7e).
3: Train a RF boundary classifier (see Sec. III, Fig. 6).
4: Convert the training segmentations to probabilistic seg-

mentations by applying LogOdds to the SDMs of the
labels (see Sec. IV-C).

5: Use boundary overlaps of the labels in the training seg-
mentations to choose an appropriate GLR transformation,
and apply it to the probabilistic training segmentations
(see Sec. II-B).

6: Construct a PCA shape model (see Sec. IV-C).
7: For each testing image, construct and minimize the ap-

propriate energy functional (14) to find the optimal prob-
abilistic segmentation.

a 512 × 384 pixel matrix (in-plane resolution, 0.78 × 0.78
mm). For each subject, two sets of images, one for the
upper and another for the lower thigh regions, were collected
in immediate succession without a change in the subjects

position. A landmark (vitamin E capsule) at the midthigh (half
the distance between the anterior inferior iliac spine and the
superior margin of patella) was identified on the MRI scans
to register the two images into a single image of the entire
thigh. The vitamin E landmark facilitated the identification
of overlap between the two sets of images. The MRI scan
yielded a total of approximately 100 slices for each participant,
which were merged into a single 3D image using the Merge
module in the Amira 3.1 software package (Mercury Computer
Systems, Inc, Chelmsford, MA), with the coincidence of the
landmark verified after merging. ITK-SNAP 1.6.0.1 [43] was
used for the manual slice-by-slice segmentation of individual
muscles of the left thigh from the merged axial MRIs. Seg-
mentation was performed by a physical therapist with expert
anatomic knowledge. The images were semi-automatically
cropped down to 250 × 250 × 40, so that only the left thigh
was contained, and the slices started just above the knee and
extended 5 × 40 mm to the upper thigh, so that the muscles
of interest were all almost entirely contained. Differences in
thigh length are left to be accounted for by the shape model.
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Fig. 11. A comparison of GLR-Full to each of the other 5 methods in
Fig. 10, summarized for each label and each image. We note that the GLR-
Full results have a higher mean DSC and also lower variance than the other
methods, indicating more consistent results across all muscles. The RW based
algorithm has a higher DSC than some of the other techniques, but a larger
variability, because of instances where false boundaries near the seeds skewing
the results.

Muscle DSC
1 0.72 ±0.24
2 0.71 ±0.27
3 0.70 ±0.16
4 0.75 ±0.20
5 0.80 ±0.16
6 0.89 ±0.08
7 0.85 ±0.11
8 0.79 ±0.06
9 0.93 ±0.06
10 0.81 ±0.11
11 0.86 ±0.03

TABLE I
THE MEAN DSC FOR EACH MUSCLE IN GLR-FULL.

B. Muscle Segmentation

We test our automated segmentation technique by randomly
taking 20 images for training and use the remaining 20 for
testing. We choose 10 of the training images from the COPD
patients and 10 from the healthy patients, ensuring our trained
models incorporate both healthy and pathological examples.

Our parameters w1, w2, and w3 were set in the training
stage using only the training data. For w1 and w2, we found
the best combination of weights, in terms of average DSC, out
of 20×20 = 400 possibilities when running our segmentation
algorithm on each of the training images in a leave-one-out
approach, giving w1 = 5 and w2 = 50. w3 was set by
finding the value that provided the best match between the
presegmented muscles and the manually segmented muscles
in the training data, giving w3 = 10. By setting the parameters
using only the training data, we avoid biasing the weights.

We perform the 7 steps in Algorithm 1. Our main con-
tributions correspond to steps 1 and 2 (presegmentation and
alignment), step 3 (RF boundary classifier), and step 5 (the
GLR segmentation representation). We will evaluate the im-
portance of each of these contributions by removing them one
at a time from the segmentation algorithm and comparing the
change in segmentation accuracy, quantified using the Dice
similarity coefficient (DSC) with the manual segmentation.

We remove steps 1 and 2 by using the GMM probabilities
instead of the presegmentation to construct Ereg in (17) and

Fig. 12. A comparison of the various algorithms, where positive values
indicate GLR-Full performs better. We note that the GLR-Full algorithm
typically provides higher DSC values compared to the other algorithms that
do not include all of our contributions, with the exceptions being RW-
Shape Prior and ILR-Full. RW-Shape performs better on muscles with strong
intermuscular boundaries and minimal intramuscular fat (e.g. label 1), but
performs significantly worse on muscles with weak intermuscular boundaries
(e.g. label 8). ILR-Full performs better on some of the larger muscles, as is
expected, because the GLR transformation was designed to ensure the smaller
muscles were captured better by the segmentation. The results are summarized
in Fig. 11.

by performing a rigid alignment of the foreground voxels
instead of the alignment described in Sec. IV-B, denoting
the resulting algorithm “GLR-No Preseg”. We remove step
3 by using the existing curvature-based boundary function
described at the beginning of Sec. III [37], denoting the
resulting algorithm “GLR-No RF”. We remove the use of the
GLR transformation in step 5 by instead using the LogOdds
and ILR transformations, denoting the resulting algorithms
“LogOdds-Full” and “ILR-Full” respectively. We denote our
full algorithm “GLR-Full”. Fig. 10 provides a summary.

We evaluate our method against the recent thigh segmenta-
tion techniques of Baudin et al. [27]. The technique of Baudin
et al. achieves an excellent mean DSC of 0.86± 0.07, though
their data differs significantly from ours. Their images exhibit
stronger intermuscular boundaries and less false boundaries
from intramuscular fat (Fig. 14). These complications are
discussed in more detail in Sec. VI; in this section we compare
to their technique by running an implementation of it on our
data. Their technique incorporates a PCA shape model into a
random walker segmentation formulation (RW), so we use the
same training and testing sets to build their shape model. We
set the free parameters in their algorithm similarly to how
we set our w1, w2, and w3, using only the training data.
Baudin et al. also introduce a technique for automatically
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finding seed voxels in the centers of muscles, based on
detecting image gradients [24]. We found the false boundaries
from intramuscular fat in our images made placing seeds
correctly difficult, but to ensure a fair comparison, we use the
manual segmentations of the testing images to provide the RW
algorithm with 5 to 15 seeds for each muscle (depending on
the muscle volume) spread along their 3D medial axes (note
these seeds are not used when running our method).

The comparative segmentation results of the methods from
Fig. 10 are summarized in Fig. 11, where we see that GLR-
Full in general outperforms the other methods, both in terms
of mean DSC and variance in DSC, due to segmenting all
muscles well. The DSC values for GLR-Full grouped by
muscle are seen in Table I. More detailed results for individual
muscles are seen in Fig. 12. The muscle labels are ordered by
mean volume across the images, with label 1 corresponding
to the smallest muscle (Fig. 1).

RW provides good results in the presence of missing edges,
which was a motivation for its use in thigh segmentation,
where intermuscular boundaries can be difficult to detect.
However, RW regularizes the segmentation using local image
gradients, so in the presence of numerous false edges, such as
those resulting from intramuscular fat, RW can give erroneous
segmentation results. We see this reflected in Fig. 11, as RW-
Shape Prior performs well on muscles with strong intermus-
cular boundaries and minimal intramuscular fat (e.g. label
1), but performs poorly on muscles with weak intermuscular
boundaries and intramuscular fat (e.g. label 8).

From Fig. 11, we also see that ILR-Full outperforms GLR-
Full on some of the larger muscles, which is to be expected,
since there must be a trade-off as to which muscles are
better modeled by the LR transformation. However, GLR-Full
exhibits less variance between the DSC scores by focusing
on the more difficult smaller muscles, an important property
because the shapes of smaller muscles are also important for
COPD treatment planning [13].

Another the recent thigh segmentation technique is that of
Gilles and Magnenat-Thalmann [18]. Gilles and Magnenat-
Thalmann also focus on modeling other anatomy, such as
ligaments and cartilages. They report a mean distance between
manual and automatic segmentations (without user input) of
1.58 ± 1.92 mm, whereas the mean distance found from our
automatic segmentation after thresholding is slightly less, at
1.54± 0.67 mm.

VI. DISCUSSION

1) Segmentation Uncertainty: Our probabilistic segmen-
tation technique actively attempts to maintain meaningful
probabilities at each voxel. As such, we should be able
to extract useful segmentation uncertainty information from
these probabilities. We follow Saad et al. [7] and calculate
uncertainty as 1 minus the difference between the highest
and second highest label probabilities, a measure of how
close the segmentation was to assigning a different label to
a voxel. These uncertainty values should correlate well with
segmentation error; more specifically, the set of voxels with
the highest uncertainty should have both high “error precision”

(i.e. most of them should be erroneous) and high “error recall”
(i.e. most of the error should be contained in this set). We
evaluate these assertions in Fig. 13.

This evaluation of uncertainty could have many uses. It
would be useful if our automatically generated segmentations
were used as prior terms in an interactive segmentation al-
gorithm such as RW. Uncertainty could be used to direct the
user towards areas of high uncertainty to provide input [44].
These areas of high uncertainty may indicate a pathology
inconsistent with the shape model or errors made in the
automated segmentation.

2) COPD Classification: A unique component of our data
is the inclusion of COPD patients. While inclusion of COPD
data complicates the segmentation process, through increased
intramuscular fat and shape variability, it also provides an
opportunity to evaluate our shape model by attempting to
distinguish COPD and healthy images. We build two new
shape models, one from the 10 COPD training images and
one from the 10 healthy training images, and then construct
the energy term Eshp from (21) for both. We evaluate these
two shape terms at each of the automatically generated seg-
mentations from the testing set, the intuition being that the we
should be able to determine if a patient has COPD symptoms
based on which shape energy gives a lower value (indicating
a better shape match). We found that, of the 10 COPD and 10
healthy images from our testing set, 6 of the COPD images
and 9 of the healthy images were properly classified using this
technique. This is not a statistically significant result (due to
the small sample size), but indicates that potential differences
in higher order shape moments are being captured by these
shape models.

3) Comparison to Other Works: Due to the lack of publicly
available thigh muscle data and differences in imaging modal-
ities between related publications, comparison to competing
methods proves difficult. The works of Baudin et al. [24], [26],
[27] are perhaps closest to this work algorithmically, but the
data they use exhibits significantly different properties (Fig.
14).

They use a 3T scanner and a 3-point Dixon sequence that
combines several acquisitions in order to improve the strength
of intermuscular boundaries [28]. Unfortunately, MRI methods
designed for muscle detection are not always available, as is
the case for our COPD data.

Due to the stronger intermuscular boundaries and less false
edges (Fig. 14), their RW-based algorithm is well-suited to
the task (and performs better than our method would on
similar data). However, as demonstrated in Sec. V, our method
performs better on our data. We note that, due to the intensity
inhomogeneities in the image from Fig. 14b, our presegmen-
tation method would have to be updated, e.g. to correct for
these inhomogeneities ahead of time [45]. Fortunately, the
boundaries between muscle, fat, and bone are still clear, so
developing an appropriate presegmentation technique should
not be a large obstacle. Future work toward establishing
standardized testing data for this challenging problem could
ameliorate these difficulties and speed research progress.

4) Limitations: Our segmentation framework has several
limitations that result from trade-offs made to keep our algo-
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(a) (b) (c)

Fig. 13. (Color Figure) An analysis of uncertainty information and error. (a) shows the voxels of top 5% most uncertainty (green), the erroneous voxels (red),
and their intersection (yellow). (b) and (c) show the “error precision” (yellow/(yellow + green)) and “error recall” (yellow/(yellow + red)) for percentiles
of uncertainty across all images. A general strategy for identifying errors in a crisp segmentation might be to simply take boundary voxels as being likely
erroneous, so we present this as a baseline in (b) and (c). We see that the top 5% of voxels have about 20% higher precision but the same recall as the
boundary voxels, indicating uncertainty is useful for error detection.

(a) T1 MRI Data (b) Dixon Method MRI Data

Fig. 14. Our data (a) compared to data used by Baudin et al. (b).

rithm fully automatic and to accurately model thigh muscle
variability.

The GLR transformation only imposes soft adjacency con-
straints on the labels, rather than hard constraints that would
be imposed by deformable models [17], [18] or atlas-based
segmentation [20]. Such soft constraints are necessary for
probabilistic segmentations, and allow pathologies to be more
easily segmented.

Because our shape model is poor at capturing pose variabil-
ity, it would be difficult to apply our technique to data sets
involving limb articulation without advanced pre-processing
of the images to remove articulation variability.

Our segmentation technique is designed to run automatically
without any human interaction, and thus accuracy rather than
speed was our primary goal. Using unoptimized MATLAB
code run on a machine with 2 Quad Core Intel Xeon 2.33
GHz CPUs, our segmentation method took 50 ± 4.3 minutes
per image to run, compared to the RW with shape model
algorithm which took 13 ± 1.2 minutes per image. Gilles et
al. report segmentation run times in the 2 to 8 minute range
for their different algorithms [17], [18]. Interactive algorithms
that do not use shape models but instead rely on user input run
even faster, for example standard RW with user input seeds
requires only 2.5± 0.2 minutes to run. Requiring that a user
interact with the algorithm means that time spent computing a

segmentation is the valuable time of a human expert, whereas
an automatic algorithm run before any user input is given is
only spending relatively cheap computation time.

Our shape model is also fairly memory intensive, but it
uses memory comparable to other techniques that model shape
variability, such as RW-Shape. If memory is an issue, it
can be mitigated by using fewer PCA modes and possibly
downsampling the images when constructing the shape model.

VII. CONCLUSION

In this paper, we introduce the GLR transformation for
representing probabilistic segmentations. Our GLR transfor-
mation implicitly encodes label transition penalties, similar to
penalties encoded explicitly by other techniques [35]. Once
the GLR transformation has been applied, the penalties are
automatically enforced by standard gradient and distance
terms. The GLR transformation can be designed to ensure
statistical shape models capture variability in smaller structures
accurately. In the future, we will explore other techniques for
incorporating prior information into the GLR transformation.

We used our GLR representation as a basis for a novel
fully automatic thigh muscle segmentation scheme. The GLR
representation and corresponding statistical shape model im-
prove the segmentation accuracy of smaller muscles that are
usually more difficult to detect. In the context of thigh muscle
segmentation, we provide several other contributions. Our
anatomically-based alignment scheme leverages a relatively
easy to solve subproblem (presegmentation) to perform an au-
tomatic rigid alignment. Non-rigid alignments often introduce
user-dependence or free parameters into the algorithm, and it
is not clear what shape variability will remain to be captured
by PCA shape models. Our RF boundary detection technique
learns the appearance of both true and false boundaries.

In the future, we will extend the RF to learn boundaries
between specific pairs of labels, and include this information
in our energy term. In order to do this, we will explore in-
cluding more complex filters into the training process. Another
direction of future research will be to combine RW like energy
terms that perform well for muscles with strong intermuscular



IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015 13

boundaries with our energy terms, which focus on muscles
with weak boundaries, and switch between these types of
terms in a spatially adaptive manner [46], [47]. We will also
explore extending other popular segmentation frameworks to
this challenging problem.

Our preliminary results indicate that statistical shape models
can capture variability in the higher order shape moments
between healthy and COPD thigh muscles. For future work,
we will investigate how these shape models are useful for
subsequent analysis of the COPD effects on these muscles,
leading to better diagnosis and treatment planning.
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APPENDIX A
LOG-RATIO CALCULATIONS

An LR transformation for q ∈ PK is given by

LR(q) = A log(q) (A.1)
A1 = 0 , (A.2)

where A is a (K−1)×K matrix. Recall that log(·) of a vector
denotes component-wise application. LR transformations of
this form map perturbation and power transformation to vector
addition and scalar multiplication. That is, for p,q ∈ PK and
α ∈ R,

LR(p⊕ q) (A.3)

= LR(C([p1q1, . . . , pKqK ]>)) (A.4)

= A log

(
1

Z
[p1q1, . . . , pKqK ]>

)
(A.5)

= A([log(p1) + log(q1), . . . , log(pK) + log(qK)]
>

)−
log(Z)A1 (A.6)

= A log(p) +A log(q)− 0, from (A.2) (A.7)
= LR(p) + LR(q) (A.8)

LR(α� q) (A.9)

= LR
(
C
(

[qα1 , . . . , q
α
K ]
>
))

(A.10)

= A log

(
1

Z
[qα1 , . . . , q

α
K ]
>
)

(A.11)

= A(α[log(q1), . . . , log(qK)]>)− log(Z)A1 (A.12)
= αA log(q)− 0, from (A.2) (A.13)
= α LR(q) . (A.14)

Z is the normalizing scalar associated with C(·) that ensures
a vector sums to 1.

From (A.2), A has 0 as an eigenvalue with corresponding
right eigenvector 1. We assume A has no other zero eigenval-
ues, i.e. its columns are all linearly independent. If A+ is the
pseudo-inverse of A, then

A+A = I − 11>

K
, (A.15)

where I is the identity matrix. This allows us to define the
inverse of a LR transformation:

LR−1(LR(q)) (A.16)

= C
(
exp

(
A+ LR(q)

))
(A.17)

= C
(
exp

(
A+A log(q)

))
(A.18)

= C

(
exp

((
I − 11>

K

)
log(q)

))
(A.19)

= C


 exp(log(q1)) / exp(1> log(q)/K)

...
exp(log(qK)) / exp(1> log(q)/K)


 (A.20)

= C




q1
β
...
qK
β


 , where β = exp

(
1> log(q)

K

)
(A.21)

= q, since C(·) removes scaling factors. (A.22)

Expanding the derivation of (9) from Sec. II-A, we let ri =
C(ei + ε · 1) ∈ PK for i ∈ {1, . . . ,K}, where ei is the ith

standard basis vector and ε is a small scalar, and we let δi,j
be the Kronecker delta. Then

LR(ri) = A log
(
C
(
ei + ε · 1

))
(A.23)

= A log

(
1

Z

(
1

ε
· ei + 1

))
(A.24)

= A log

(
1

ε
· ei + 1

)
−A · (log(Z) · 1) (A.25)

= A log

(
1

ε
· ei + 1

)
(A.26)

= [a1, . . . , aK ]

 log(δ1,i/ε+ 1)
...

log(δK,i/ε+ 1)

 (A.27)

=

K∑
k=1

log(δk,i/ε+ 1) ak (A.28)

= log

(
1 + ε

ε

)
ai (A.29)

≈ log

(
1

ε

)
ai . (A.30)

APPENDIX B
EUCLIDEAN LABEL TRANSITION PENALTIES

Let D be a symmetric K × K matrix with 0’s on the
diagonal, calculated from label transition penalties using (11).
As described in Sec. II-B, if T = − 1

2CDC is positive
semidefinite, where C = I − 1

K 11>, D encodes a Euclidean
distance metric. Further, if T = A>A and A = [a1, . . . , aK ],
then ‖ai − aj‖2 = Di,j .

If T is not positive semi-definite, we advocate adding the
positive constant (−2ψ) to the off-diagonal components of D,
where ψ < 0 is the smallest eigenvalue of T . This technique
ensures a Euclidean distance matrix and preserves the relative
ordering of the label transition penalties. We denote the matrix
D̂ = D − 2ψ(11> − I) and T̂ = − 1

2CD̂C and show that D̂
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corresponds to a Euclidean distance by showing T̂ is positive
definite. First, we establish several properties of C:

C1 = 1− 1

K
11>1 (B.31)

= 1− K

K
1 (B.32)

= 0 (B.33)

CC = I − 2

K
11> +

1

K2
11>11> (B.34)

= I − 2

K
11> +

K

K2
11> (B.35)

= C . (B.36)

Now, since C1 = 0, 1 is a zero eigenvalue of T corresponding
to the eigenvector 1. Let T = QΨQ> be the eigenvector
decomposition of T , with Q a matrix of orthonormal eigen-
vectors and Ψ a diagonal matrix of eigenvalues. Then

T̂ = −1

2
C(D̂)C (B.37)

= −1

2
(CDC − 2ψC11>C − 2ψCC) (B.38)

= −1

2
(CDC + 2ψC) (B.39)

= QΨQ> − ψI +
ψ

K
11> (B.40)

= Q(Ψ− ψI)Q> . (B.41)

Q(Ψ − ψI)Q> is an eigenvector decomposition of T̂ , and
since all of the diagonal components of (Ψ− ψI) are greater
than or equal to zero (the smallest component of Ψ is ψ), T̂
is positive semi-definite.

APPENDIX C
PRIMAL DUAL PROXIMAL POINT

In Sec. IV, we solve an optimization problem of the form

min
φ

max
P∈CP

Ecnv(φ) + Ebnd-tot(φ, P ) (C.42)

CP =

{
P = [p1, . . . ,pK−1]

∣∣∣∣ pi(x) ∈ C(x), (C.43)

∀i ∈ {1, . . . ,K − 1}, x ∈ Ω

}
, (C.44)

where C(·) are the convex sets defined in (24). Ecnv encom-
passes the convex regional and shape energy terms, and can
be expressed as a quadratic:

Ecnv(φ) =
1

2
φ>Mφ+ b>φ , (C.45)

where M is a positive semi-definite matrix and b ∈ Rn·(K−1).
Ebnd-tot equals Ebnd with the implicit maximization P removed:

Ebnd-tot(φ, P ) =
∑
x∈Ω

K−1∑
i=1

pi(x)>∇φi(x) (C.46)

=
∑
x∈Ω

K−1∑
i=1

(div pi(x)) φi(x) , (C.47)

where div is the divergence operator [38].
We solve (C.42) using a proximal point method [40], [41].

The idea is to iteratively optimize for the primal variables φ
and the dual variables P , adding a soft constraint to prevent
the solutions from changing too much in a given step. Given
solutions φj = [φ1

j , . . . , φ
K−1
j ] and Pj = [p1

j , . . .p
K−1
j ] at

iteration j, the primal step is

φj+1 = arg min
φ

Ecnv(φ) + Ebnd-tot(φ, Pj) +
‖φ− φj‖2

2τ1
.

(C.48)

With a fixed Pj , Ebnd-tot(φ, Pi) is linear in φ (from (C.47)), so
(C.48) is a convex quadratic and can be globally optimized.

The dual step is:

Pj+1 = arg max
P∈CP

Ebnd-tot(φj+1, P )− ‖P − Pj‖
2

2τ2
(C.49)

‖P − Pj‖2 =

K−1∑
i=1

‖pi − pij‖2 . (C.50)

With a fixed φj+1, Ebnd-tot(φ, Pi) is linear in P (from (C.46)),
so (C.49) is a concave quadratic. CP is a hyper-ellipse, and
thus a convex set that can be projected onto. Thus the dual
step can also and can be globally optimized.

This algorithm converges for small enough τ1 and τ2
[41]; empirically we found τp = τq = 0.1 provided fast
convergence.
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