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Medial-Based Deformable Models in Nonconvex
Shape-Spaces for Medical Image Segmentation
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Abstract—We explore the application of genetic algorithms
(GA) to deformable models through the proposition of a novel
method for medical image segmentation that combines GA with
nonconvex, localized, medial-based shape statistics. We replace
the more typical gradient descent optimizer used in deformable
models with GA, and the convex, implicit, global shape statistics
with nonconvex, explicit, localized ones. Specifically, we propose
GA to reduce typical deformable model weaknesses pertaining to
model initialization, pose estimation and local minima, through
the simultaneous evolution of a large number of models. Fur-
thermore, we constrain the evolution, and thus reduce the size of
the search-space, by using statistically-based deformable models
whose deformations are intuitive (stretch, bulge, bend) and are
driven in terms of localized principal modes of variation, instead
of modes of variation across the entire shape that often fail to
capture localized shape changes. Although GA are not guaranteed
to achieve the global optima, our method compares favorably to
the prevalent optimization techniques, convex/nonconvex gra-
dient-based optimizers and to globally optimal graph-theoretic
combinatorial optimization techniques, when applied to the task
of corpus callosum segmentation in 50 mid-sagittal brain magnetic
resonance images.

Index Terms—Deformable models, evolutionary computing,
genetic algorithms, medical image segmentation, medial-shape
representation.

I. INTRODUCTION

EDICAL image segmentation has important applica-
tions in computer-aided diagnosis, statistical shape
analysis, and medical image visualization. Deformable models
are a popular class of segmentation techniques that have been
widely researched and adopted to medical image analysis
(MIA) problems [1], [2]. This adoption is due to their inherent
smoothness properties and ability to fit to missing boundaries.
At a high level, deformable models work by deforming a user
provided initial shape to fit to a target structure in a medical
image. Shape-changing deformations result from the minimiza-
tion, with respect to the shape, of an energy function measuring
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how plausible the shape model is and how well it aligns with
the boundaries of the target anatomy in the image. The energy
function is typically formulated as a weighted sum of internal
and external terms. Internal terms favor plausible shapes regard-
less of image data. External terms favor shape models that align
to image features, such as image boundaries with high gradient
magnitude, and are primarily pixel-based. Being pixel-based,
external terms are susceptible to noise that can obscure struc-
tures and lead to false boundaries, thereby necessitating the use
of internal terms in the form of shape priors [3]-[10]. Shape
priors provide resilience to false boundaries by heavily penal-
izing the implausible shape configurations that the false bound-
aries imply. Since the shape itself is most commonly represented
by a function, the cost function is often termed an energy func-
tional and its gradient is derived using methods from variational
calculus. The shape deformations are therefore typically simu-
lated by solving an initial value problem using gradient descent
optimization algorithms [11].

The primary goal of this work is to address two open and
related problems in deformable-model-based medical image
segmentation.

1) Shape model fidelity: The ideal shape model must cap-
ture the anatomical variability of the target anatomy
without representing invalid shapes. However, the better
the shape model the harder it becomes to formalize and
optimize in a segmentation framework. For example,
a convex shape-model is readily formulated and opti-
mized, but inaccurately fits a nonconvex shape-space;
nonconvex shape-spaces are more accurate, but are harder
to formalize and optimize. By the same token, localized,
medial-axis-based shape statistics better respect anatom-
ical variability than global statistics [12], but their inherent
nonconvexity makes them challenging to optimize. There
is a trade-off: one gains optimizablity but loses fidelity.

2) Optimizability: As the objective function of a deformable
model more faithfully encodes the desired properties of
the target anatomy, the energy landscape becomes more
complicated and problems with initializations and local
minima arise. For example, adding pose to even convex
shape-model-based deformable models is well known
to cause nonconvexity [9]. At the expense of the desired
faithfulness, recent trends have focused on ensuring global
optima by simplifying the objective function through the
use of convex, or submodular, approximations and shape
spaces [9], [13]-[17]. Thus trading fidelity for optimiz-
ability. Where this sacrifice is not practical, a different
solution is required. Genetic algorithms (GA) are a pow-
erful alternative optimization-technique that place very
little requirement on the objective function, but to the best

0278-0062/$26.00 © 2011 IEEE



34

of our knowledge they remain entirely unexplored in their
application to localized shape-based image segmentation.
There are, however, some existing applications of GA to
deformable models (see Section I-C for details).
In what follows, we elaborate on these open problems, and
propose our solution that combines GA with localized shape
training.! There is a trade-off in 1) and 2) above. Shape model
fidelity is desirable, but lowers optimizability. Optimizability
is desirable, but lowers fidelity. We will use GA to mitigate the
trade-off that is usually required between between 1) and 2)
above, allowing complex shape models while reducing prob-
lems with initializations and still being able to attain solutions
close to the global optimum.

A. Shape Model Fidelity

In many applications, prior knowledge about object shape
variability is available or can be obtained by studying a training
set of shape examples. This knowledge restricts the space of
allowable deformations to a learned shape-space that approxi-
mates the space of anatomically feasible shapes [3]-[6], [20].
One of the most notable works in this area is that of Cootes
et al., where they introduced and refined active shape models
(ASM) [3], [21], [22]. In ASM, principal component analysis
(PCA) is calculated over a set of landmark points extracted from
training shapes. The resulting principal components are used
to construct a point distribution model (PDM) and an allow-
able shape domain (ASD). In a natural extension to their pre-
vious work, Cootes et al. modify their method to include image
intensity statistics [4]. Staib and Duncan constrained the de-
formable models in Fourier space by conforming to probability
distributions of the parameters of an elliptic Fourier decompo-
sition of the boundary [23]. Statistical prior shape knowledge
was also incorporated in implicit, level-set-based deformable
models. Leventon et al. introduced statistical shape priors by
using PCA to capture the main modes of variation of the level set
representation [5]. However, as Pohl et al. point out, level-sets
do not form a vector space and hence more accurate shape statis-
tics could be captured by transforming the shapes into a vector
space using the logarithm of odds before performing PCA [24].

Though simpler to optimize than their nonlinear counter-
parts, linear models of shape deformation may not always
adequately represent the variance observed in real data. Linear
shape models assume the data lies on a linear manifold, but
shapes often lie on nonlinear manifolds where the manifold’s
properties are not accurately captured by linear statistics [25].
Picture fitting an ellipse to an “S”-like shape space. In order
to include the entire letter, extraneous white-space (non-valid
shapes) must also be included. Nonlinear shape models have
been introduced to address this problem [7], [25]-[31].

We argue that the shape model fidelity problem, as described
above, is not necessarily due to the application of a linear model
to nonlinear data but rather because of the implicit nature in
which the statistics are applied. By implicit, we mean the sta-
tistics attempt to model variation in the shape, rather than vari-
ation in the parameters governing the deformations themselves.
Note that we are not referring to the shape representation being
implicit or explicit, but instead whether the deformations are

IThis work builds on that presented in [18] and extends [19].
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Fig. 1. Shape deformations of the boundary of the corpus callosum (CC) under
its global modes of variation using a boundary-based model (a) and a medial-
axis-based model (b). In (a) the mean shape is shown in blue. The red and green
contours indicate a positive and negative deformation of the CC along the first
principal component. Notice the global and linear statistics in (a) enforce a very
unnatural deformation of the shape compared to the deformations in (b).

implicitly or explicitly studied. Implicit shape statistics result
from the majority of previous deformable model approaches
adopting a boundary-based shape representation, aside from a
few exceptions [12]. As a consequence, the statistics are cal-
culated using boundary models of the shape instead of models
representing the interior and skeletal topology of the structures.
Studying the underlying structural changes of a shape allows de-
formations that were previously nonconvex to be decomposed
into linear models. We refer to these as explicit shape statistics
since they are calculated over the very parameters responsible
for varying the object’s shape. Consider an object represented
by a single pixel. Different images of the object show the pixel
moving around in a circle. A nonlinear function is required to
describe the pixels motion and hence no linear statistics can cap-
ture the motion adequately as long as it is the object’s z, i posi-
tion being studied. However, once decomposed into a function
ofsin and cos, the underlying parameter that controls the objects
variability is linear in its variation, and hence linear statistics
will have greatly improved shape model fidelity. The same ar-
gument carries forward, albeit more complexly, to a more com-
plex object. A simple bending of a shape’s medial-axis is a linear
deformation under the appropriate representation, as it’s simply
a rotation of some of the medial-nodes (Fig. 1). However, the
bending is a highly nonconvex deformation once embedded in
the image domain, as either an implicit shape [24] or an ex-
plicit-boundary based model [3].

In addition to being implicit in nature, the statistics are often
global in nature, whereby global we mean the statistics attempt
to model variation in the entire shape. In other words, each shape
is a single point in some high-dimensional space, and the sta-
tistics, linear or not, describe some restricted set of that space.
Global shape statistics are unable to restrict deformations to par-
ticular locations of the shape model or anatomy. Furthermore, as
most dimensionality reduction techniques are designed to pre-
serve variance, small changes in shape are discarded to preserve
larger ones. Though small in scale, those changes can represent
true signal changes (i.e., not due to noise) in a localized region
of a shape [32], [33]. Global deformations can not adapt to lo-
calized variations in shape, which are often of high interest, e.g.,
regions of pathology.

Decomposing implicitly complex deformations, like bending
an object, into simpler linear parameters is made possible
through localized shape statistics defined over a medial-based
shape representation, which allows deformations to be further
quantified into specific types (bending, bulging, stretching)
that can be linearly measured. Specifically, medial-axis-based
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Fig. 2. Synthetic example of a single parameter deformable model with local minima. The circular deformable model’s only parameter is its radius r. The energy
function F (r) is minimal for the circle with darkest average intensity. The input image is shown in (a) with the darkest outmost boundary representing the global
minima. (b) A traditional deformable model is initialized at a single point (red) while GA-based statistical deformable models are initialized at multiple locations
(green) and perform mutations on r. (¢c) The GA converges to the global minimum (darkest), while the gradient descent based deformable model gets stuck in a

lighter local minimum.

2-D shape representations enable such deformations by de-
scribing the object’s shapes in terms of an axis positioned in
the middle of the object, along with thickness values assigned
to each point on the axis that imply the object’s boundary.
Rotating part of the medial axis produces bending deforma-
tions, increasing the thickness along part of the axis creates
bulging, and lengthening the medial-axis produces a stretching
of the object. Medial-based shape representations have been
emerging as a powerful alternative to boundary-based tech-
niques [18], [34]-[39]. In addition to decomposing seemingly
complex deformations into their linear variables, medial-axis
representations also avoid having to define absolute positions
of boundary points. With medial-axis representations, defor-
mations like bending the object are performed directly on the
medial-axis, which implicitly moves the boundary and ensures
the affected boundary points move together. By comparison,
with a boundary representation, one has to carefully move all
the connected points to ensure boundary continuity. Statistics
on the nonlinear manifolds of medial representations have also
been proposed [25]. However, there has been little exploration
of building deformable models using these shape representa-
tions and their corresponding shape statistics [12], [19]. In this
work, we explore this very notion by building a medial-based
deformable model with deformations governed by explicit,
localized shape statistics.

B. Optimizability

Energy-functional minimization can be carried out in a va-
riety of ways through various forms of optimization. One so-
lution is to perform explicit differentiation under the Euler-La-
grange constraints, where each new image segmentation appli-
cation that requires a modified energy functional must be ac-
companied by one such derivation. The result is a set of con-
straints, that guarantees a stationary point of the energy func-

tional. The solution is then obtained through a gradient descent
process where the change of the shape model (with respect to
an artificial time variable) is equated to the Euler-Lagrange con-
straints. When applied to typical deformable models, which are
represented by nonconvex energy functionals, the optimization
process still requires initialization at some optimal target loca-
tion of an image, with some shape, orientation, and scale. To-
gether, the location, orientation, and perhaps the scale of the
shape model are referred to as the pose. Depending on the ini-
tialization, a different segmentation is typically obtained, and
different initializations can therefore produce different amounts
of segmentation error (Fig. 2). It is, as such, common for de-
formable models to be described as having problems with local
minima.

As a direct result of the commonly occurring problems with
local minima, there has been a number of recent approaches to
obtaining global optima to energy functionals [9], [13]-[17].
Graph cuts were demonstrated as a global minimization tech-
nique for a popular energy-functional [40], as a special case of
computing a geodesic on a Riemannian space whose metric is
computed from the image [13]. However, graph cuts have been
shown to apply only to a restricted class of energy functionals
that are submodular [41], and their solutions are discrete ap-
proximations to the continuous formulations whose accuracy is
dependent on the resolution of the approximating graph [13].
Naturally, as that resolution increases so does their running
time. Random walkers were developed in a similar nature,
solving image segmentation as a graph problem wherein the
global optimum is obtained to a particular cost function [15].
In fact, graph cuts and random walkers have been shown to
be specific instantiations of a single framework [42]. Another
line of work has come from the relaxation of the underlying
shape model from a nonconvex space to a convex one; thereby
defining convex energy functionals which can then be mini-
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mized instead of their nonconvex counterparts. This convex
relaxation work, which began in 2004 with a simple restricted
class of functionals [16], was later extended to a broader class
in [17], and then a similar work appeared in 2008 with the addi-
tion of a shape prior [9]. However, restrictions still exist in that
the functionals and the shape spaces they are optimized over
must be convex when defined over the relaxed space, and that
the relaxed shape-space must itself be convex. Though they can
be globally optimized, convex energies and shape spaces may
not be expressive enough to capture the characteristics of the
segmentation problem at hand as accurately as their nonconvex
counterparts. In other words, they may not faithfully encode
the desired properties of the target anatomy. This is especially
true for the shape spaces, as our results demonstrate later in
the paper (Section III). Similarly, not all energy functionals
and shape spaces can be represented convexly. There is thus a
trade-off: gain global optimality but likely lose accuracy. As a
consequence, these works do not provide a definitive solution
to the problem. Another solution present in the optimization
literature when initialization and local minima are problematic
is GA, a method which is largely unexplored in relation to
shape-model-based deformable models.

To reemphasize the argument of the previous paragraph, we
pose the following question: Is it worth sacrificing the com-
plexity of the energy functional, and thereby reducing its ability
to address image variability, in exchange for global optimality,
or can more complex functions and shape spaces be utilized
with an approximate optimization method and achieve superior
accuracy? Our hypothesis is that while convex approximations
to nonconvex functions and shape spaces can be globally op-
timized they sacrifice fidelity to the data and, in doing so, are
less accurate than nonconvex spaces and functions optimized
using GA. We propose a novel method that uses GA to over-
come the initialization and local-minima entrapment typically
encountered in nonconvex problems. While we are not guaran-
teed global optima, our results show that using nonconvex shape
spaces our method can outperform convex shape spaces under
the same energy function (Section III), i.e., the energy function
remains fixed, while only the shape constraints and solvers are
varied.

C. Contributions and Related Work

To summarize the previous sections, in order to be applicable
to medical image segmentation, deformable models require
learned, intuitive shape models, and a level of robustness to
initialization. It is well known that implicit shape statistics,
though easily represented and applied to deformable models,
provide unintuitive deformations of shape and often fail to
adequately represent nonconvex, localized deformations [12].
Localized shape statistics are more intuitive to clinicians, and
better represent local variations in shape, but the proposed
methods remain largely unapplied to deformable models.
Robustness to initialization can be handled through convex
optimization methods, but there are drawbacks in that: not
all energy functions are convex; convex functionals may not
faithfully represent the segmentation problem; and convex
shape-spaces may not accurately summarize the variability of
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the target anatomical structure. Therefore, what is desirable is a
method that generalizes to a larger class of functionals (convex
or not) while allowing the exploration of the search space in a
manner that still converges towards an optimal solution. The
method must allow the exploration to be carried out from a
variety of initial locations, and enable it to be done in a way that
reflects the nonconvex, localized variations of shape in terms
of bends, bulges, and stretches. We propose one such method.

In this paper, we explore the application of GA to deformable
models as well as propose a novel deformable-model based on
localized shape statistics using hierarchical regional principle
component analysis (HRPCA). Our main contribution in this
paper is a novel method for fitting complex, medial-based shape
models to medical images under arbitrary energy functionals.
In a narrower sense, our new segmentation method replaces
gradient descent with GA, and convex, implicit, global shape
statistics with nonconvex, explicit, localized ones. GA address
the typical initialization, local minima problems associated
with traditional energy-minimization techniques. Our unique
application of a medial-based deformable model with HRPCA
maintains a statistically feasible shape model. It also reduces
the size of the search space by constraining the evolution to
deformations that are intuitive (stretch, bulge, bend) and are
driven in terms of localized principal modes of variation, in-
stead of modes of variation across the entire shape. Though not
expressly guaranteed to find the global optimum, our method
compares favorably to leading segmentation techniques, in-
cluding convex/nonconvex gradient based optimizers and
globally optimal graph-theoretic combinatorial optimization
techniques, on a data set of 50 mid-sagittal brain magnetic
resonance images.

Though prior works have used GA for medical image seg-
mentation, here we limit our discussion to those pertaining to
deformable models. For a comprehensive survey of the use of
GA for medical image segmentation, the reader is referred to
[43]. A few methods have used GA to minimize traditional de-
formable models [44]-[49]. Ballerini extends the classical ac-
tive contour models [50] by using GA to directly minimize the
standard energy functional [44]. Members of the GA popula-
tion are hypothetical shape configurations, represented by their
explicit contour locations. The method was later extended to
color images by using one image term per color channel [45].
MacEachern and Manku presented a similar method using a bi-
nary representation of the contour [46]. Similarly, Tohka pre-
sented simplex meshes paired with image-based energies, min-
imized via a hybrid GA-greedy approach, and applied the tech-
nique to the segmentation of 3-D medical images [47]. Fan et
al. also develop a GA method for an explicit active contour,
but describe their method using Fourier descriptors and em-
ploy parallel GAs to speed up minimization [48]. A different
shape representation, known as topological active nets, is used
by Ibafiez et al. to enable the segmentation of objects with un-
known topologies, or even multiple objects in the same scene
[49]. However, aside from simple boundary smoothness con-
straints, all of these methods are based on classical active con-
tour models or their variants without incorporating prior shape
knowledge, making them prone to latching to erroneous edges
and ill-equipped to handle gaps in object boundaries. In [51],
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GA were used with statistically-based ASMs, where the param-
eter space consists of possible ranges of values for the pose and
shape parameters of the model. The objective function to be
maximized reflects the similarity between the gray levels re-
lated to the object in the search stage and those found from
training. Additional works use convex, implicit, global shape
statistics assuming a Gaussian distribution around a mean shape
[52]-[54]. Mignotte and Meunier [54] incorporate prior shape
information by defining the mean as a circular deformable tem-
plate, while [53] uses a PDM for occluded shape reconstruction,
and [52] uses a level set shape representation and a learned mean
from training data. Although these techniques apply GA to pro-
duce generations of plausible populations of shapes, the statisti-
cally-based deformations are global (over the whole shape) and
their convexity may not offer the required flexibility to accom-
modate for shape variations that are restricted to particular lo-
cations, nor are they intuitively defined (bulge, bend, stretch)
deformations. In summary, though GA have been used to opti-
mize both classical, and shape-prior-based deformable models,
they have not been applied to deformable model methods incor-
porating localized, medial-based shape statistics. In Section I1I,
we show superior accuracy to a globally optimized method that
makes use of convex, implicit, global PCA-based shape statis-
tics [9].

Other works have set out to automatically fit medial-based
shape models to image data [55], [56]. These approaches build
on the m-reps shape representation of Pizer ef al. [57], in which
shapes are represented using a global-to-local scale approach as
objects, “figures” (anatomical subregions or parts), and “atoms”
(individual medial nodes). Once initialized by registration to
manually specified points, models are fitted to the data using
a hierarchical local-search method, i.e., starting first with each
object, then each figure, and finally each atom. At each scale,
models are fitted to the image data using an iterative condi-
tional modes (ICM) strategy across the scale’s entities (objects,
figures, or atoms), with the conjugate gradient method being
used to optimize each entry (object, figure, or atom) individu-
ally [58]. Our HRPCA-based approach complements the afore-
mentioned works [55], [56] by computing statistics across a
spectrum of shape scales and locations; ranging from an indi-
vidual medial node (or atom), and adding increasingly more
atoms until covering a whole anatomical part (or figure). This
is achieved through our HRPCA in which multilocation, mul-
tiscale HRPCA statistics are gathered for different deforma-
tion profiles. This offers greater deformation flexibility (i.e.,
at multiple locations, sizes, and deformation types) during the
model-to-image fitting and, at the same time, remains faithful
to the underlying variability in the training data. Inspired by the
approach in [55], [56], we also seek to fit our shape model to
the image in a global to local manner. However, in our case we
employ genetic algorithms in order to alleviate the initialization
requirement of the gradient descent-like ICM method, which is
known to be heavily sensitive to its initial configuration [59,
Sec. 9.3.1, p. 247]). Furthermore, we present comparison to nu-
merous convex and nonconvex methods for medical image seg-
mentation, exploring the aforementioned questions relating to
energy function and shape space fidelity versus optimizability
(Section III).

To the best of our knowledge, none of the existing image
segmentation techniques evolve a population of shapes using
intuitive, spatially constrained, and plausible deformations, nor
have they enabled such deformations under general energy func-
tionals that are customizable for the problem domain.

II. METHODS

In this work, we build a deformable model that uses a me-
dial shape representation to provide a way to synthesize intu-
itive deformations and localized shape statistics (HRPCA). Our
use of HRPCA captures regional medial-based shape informa-
tion, thereby providing controlled localized fitting of specific
anatomical regions of a shape [Fig. 1(b)]. We solve our resulting
optimization problem using GA, demonstrating a generic way
to fit complex shape models to medical images.

In order for the descriptions that follow to lend more readily
to standard descriptions of GA, from here on in the paper, we
consider the problem of fitting an HRPCA-based deformable
model to an image as a fitness maximization problem, rather
than an energy functional minimization problem. This is done
without loss of generality.

We begin with an overview of how we use HRPCA to build
localized shape statistics, where some of the key differences
between what we have referred to as global and local statistics
should become clearer. We also provide a short introduction to
GA for the unfamiliar reader. We then use a motivating example
to describe how GA can be used for deformable models, before
describing our use of GA in detail.

A. Statistically-Constrained Localized and Intuitive
Deformations Using HRPCA

We use the multiscale (hierarchical) and multilocation (re-
gional) PCA method introduced in [18] on a training set of me-
dial shape profiles. We will first give an overview of medial
shape profiles and then proceed to describe how HRPCA is ap-
plied in this work.

Medial-axis-based 2-D shape representations describe the ob-
ject’s shapes in terms of an axis positioned in the middle of the
object along with thickness values assigned to each point on the
axis that imply the shape of the boundary. We therefore describe
the shape as a mapping from R to R*, the domain of which is
a parameter m that traverses the medial axis. We use a single
primary medial axis, though secondary medial axes or subfig-
ures would be needed to represent more complex structures. The
range of the mapping consists of four scalar values for each m,
forming medial profiles. These are a length profile L(m), an
orientation profile R(m), a left (with respect to the medial axis)
thickness profile T¢(m), and a right thickness profile 77 (m),
where m is now discretized, m = 1,2, ..., N, N is the number
of medial nodes, and nodes 1 and N are the terminal nodes.
For all examples here and all results presented later, N = 100.
The length profile represents the distances between consecutive
pairs of medial nodes. The orientation profile represents the an-
gles between segments connecting consecutive pairs of medial
nodes. Finally, the thickness profiles represent the distances be-
tween medial nodes and their corresponding boundary points on
both sides of the medial axis (Fig. 3), and will be different only
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Fig. 3. Example medial shape profiles used to reconstruct a CC shape model.
The values of the medial profiles are plotted along the y-axis with pixels for
length and thickness profiles, and radians for the orientation profile. All plots
are a function of the medial node number m = 1,2, ...,100, indicated along
the r-axis. Adapted from [18].

when the shape is asymmetric. In other words, corresponding
boundary points !, and 7, lie at distances T'(m) and 7" (m),
respectively, along a direction normal to the medial axis at z,,
(Fig. 4). As the medial-axis is discretized into N nodes, im-
plying N —1 segments, the normal to node z,,, is measured from
the medial-segment connecting z,,, and x,,_1 (see right-angles
in Fig. 4, right). Clearly, z; is an exception and in that case the
medial-segment connecting z; and x5 is used. Other more elab-
orate medial representation may be adopted as well (e.g., m-reps
[57]).

In order to build energy functions using HRPCA-based shape
models, the boundary of the CC shape must be reconstructed
from the four medial profiles and a set of affine parameters
that describe the objects pose and scale. The affine parameters
are: the position, (¢, t,), describing the (x, y)-coordinate of a
known reference node; the scale, (s, s,), describing the scale
of the object; the base angle, #, describing the angular offset
of the model from the x-axis. To reconstruct the object’s shape
given its set of medial profiles, we calculate the positions of the
medial and boundary nodes from a known reference node at lo-
cation z1 = (. t,). The next node at position 22 = x1 + vy is
determined using an offset vector v whose angle is specified by
the orientation profile plus the base angle £, and whose length
is specified by the stretch profile scaled by (s, s,). The corre-
sponding boundary nodes z!, and z} (Fig. 4, right) are then or-
thogonal to the medial axis, at a distance specified by the thick-
ness profile scaled by (s, s,). This process is repeated recur-
sively, generating 3 = x3 4 v2, and so on. For complete details
see [18]. Finally, with the medial profiles like those shown in
Fig. 3 as an input, we can reconstruct the CC structure in Fig. 4.
Using polygon rasterization, the reconstructed set of nodes can
then be used to create a binary image, of the same size as an
input image, I, with ones representing pixels on or within the
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right boundary

______________
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Fig. 4. Representing the CC using medial profiles. (Top) Anatomically labeled
CC shape reconstruction resulting from the medial profiles in Fig. 3. (Bottom)
The details of the medial profile representation for the splenium region (dashed).
Medial nodes are shown in white, whereas the left and right boundary nodes
are shown in dark and light gray, respectively. x,,,, ¥ , and 7 are the mth

Lo

medial, left boundary and right boundary nodes, respectively. L{m), R(m),
T'(m), and T7(m) are the length, orientation, left and right thickness profile
values, respectively. Adapted from [18].

shapes’ border, and zeros representing pixels not belonging to
the shape [60].

The profiles are thus rotation- and translation-invariant, and
capture intuitive measures of shape: length, orientation, and
thickness. Altering the different profiles produces intuitive,
controlled deformations: stretching, bending, and bulging,
respectively. For example, setting § = 0 and {12(m) = 0} _;
would produce a straight-line medial axis, parallel to the z-axis
of the image. Setting {R(m) = 7/2};?;:N/2 would create a
right-angle bend at the midpoint of the medial-axis. Increasing
¢ would simply rotate the object around the reference point.
Of course, setting I2(m) randomly may be undesirable and
produce unwanted shapes. Next we describe how to use training
data to calculate statistics for each profile in order to restrict the
deformations to plausible shapes.

In HRPCA, the principal component analysis is a function of
the location, /, scale, s, and type of shape profile, d (i.e., length
L(m); orientation IR(m); left thickness 7"(m); or right thick-
ness T7(m) profiles) (Fig. 5). For clarity of presentation, we
define p;(m) as the dth shape profile (e.g., p1(m) = L(m)).
Hence, for each location, scale, and shape profile type, we obtain
an average medial sub-profile, p5, the main modes of variation,
M5, and the amount of variation each mode explains. The sub-
script “dls” indicates that the statistics are made specific to a
location { (e.g., to the left of the shape), scale or extent s (e.g.,
affecting one tenth of the shape, half of it, or all of it), and the
deformation profile type d (e.g., bending or bulging). Note, of
course, that at each location, /, a maximum scale, s, of N —[+1
can be selected. For example, pr, 15 = p1.1,5 + My 150115
would calculate a new L(m) = p115, form = 1...3, since
only those 5 positions are affected. Example modes of variation
for a global bending deformations are shown in Fig. 1(b), i.e.,
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Fig. 5. Hierarchical regional principal component analysis is a function of the
deformation (d), location (1), and scale (s). Since all scales are not valid for all
locations, only a subset of the full space (the right angle prism drawn with solid
black) is valid (see Section II-D2). Adapted from [18].

d = 2,1 = 1 and s = 100. For each location, /, with scale s,
there are s values, say thickness values, for the 7" profile and,
as such, for each profile, location, and scale, M4j; is an s X s
covariance matrix for the s modes of variation of length s. Con-
sequently, we can now generate a statistically feasible stretch,
bend, or bulge deformation at a specific location and scale in
terms of the corresponding main modes of variation [18].
More specifically, a new statistically feasible profile, made
specific to a particular deformation type, location and scale,
is calculated by perturbing the mean training profiles by a
weighted sum of the covariance of the corresponding training
profiles using the following model of medial profile variations

Pdis = Pais + Maistais (D

where pqys is the resulting shape profile, d is the deformation
profile type (L(m), R(m), T'(m), or T"(m)), | and s are the
specified location and scale values, pqs is the average medial
profile for the specified type (L(m), R(m), T'(m), or T" (m)),
the columns of My, encode the main variation modes for the
specified profile type, and agq)s are weights of the variation
modes and are typically limited to +3 standard deviations.

Note that for any shape profile type, multiple variation modes
can be activated by setting the corresponding weighting factors
to nonzero values. Since each variation mode acts at a certain
location and scale, we obtain for each profile

N N-I+1

pa=pa+ Y. > Masoua. )
=1 s=1

The upper limit of the inner summation of (2) indicates that all
locations have PCA performed at them for all scales as long as
the combination of locations and scales is valid.

In summary, varying the weights of one or more of the vari-
ation modes alters the length, orientation, or thickness profiles
and generates, upon shape reconstruction, statistically feasible

Thickness 7" ()
(a) (b)

Orientation R(m)

Fig. 6. Overlay plot of (a) thickness profiles, measured in pixels, and (b) ori-
entation profiles, measured in radians. Results are from a training set of 50
CC shapes, with both profiles plotted as a function of the medial-node number,
m = 1...100. Mean profiles appear in bold. Adapted from [18].

stretch, bend, or bulge deformations at specific locations and
scales.

Each scale and location provides a unique measurement for
the analysis of a shape. Examples of the global (maximal scale)
thickness and orientation samples with their corresponding av-
erages are shown in Fig. 6. These examples also serve to il-
lustrate how visualization of these profiles can provide better
understanding of the variations present in the data by identi-
fying contributions of different types of deformations along the
anatomical shape. Notice, for example, that towards the center
of the CC (value range 30—50 on the horizontal axis of the plots)
the bulk of the variation lies in the thickness profile, some-
thing not readily interpreted from results with classical PCA
approaches (i.e., global PCA on boundary, or implicit, shape
models, as opposed to localized PCA on a medial-axis based
shape model). With classical PCA approaches, one would cap-
ture the variation in the CC’s shape, but could not readily inter-
pret it as being mostly a change in thickness instead of a bending
or stretching of the object, nor could one readily identify exactly
where the variance occurs on the model.

We note, however, that although each scale and location pro-
vides a unique measurement for analysis, there is a degree of re-
dundancy in the representation when building a statistical model
of deformations. Each profile is a real-valued vector of length
N, and thus lies in R™. Any orthogonal set of N vectors is a
basis for RY, and by defintion any set larger than N must have
vectors that are linear combinations of other members of the set.
As such: 1) any large-scale deformation can be represented as
the union of multiple smaller-scale deformations and 2) the en-
tire V x 4 = 400 dimensional space of deformations can be
captured via a global, explicit PCA (over the whole shape, i.c.,
by setting [ = 1 and s = N), assuming all the PCA modes are
retained in the model and no limits are placed on the amount
of variation (typically measured as multiples of standard devia-
tions) along each mode. In other words, with enough modes of
variation, any single scale of deformations can capture the en-
tire shape space.

By design, global PCA seeks a subset of vectors that maxi-
mally represents the variability in the data, assuming the data
follows a Gaussian distribution. A significant drawback of this
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global approach is that varying the weight of a single varia-
tion mode generally causes all the landmark positions to change
(Fig. 1). In other words, although the global model produces
feasible shape deformations only, a desirable trait, it generally
produces global deformations over the entire object, making it
difficult to guarantee fitting one part of the shape without un-
fitting another part. In contrast, setting s = 37, for example,
produces 64 possible locations (from location I = 1 to! =
N — s 4+ 1 = 64). Each location has 37 modes of variation
for a total of 64 x 37 = 2368 variables. Clearly only N = 100
of these vectors can be orthogonal, but no two vectors need to
point in the same direction. Hence each vector can represent a
unique and statistically valid localized deformation of the shape
model for a particular anatomical region.

These statistically valid and localized deformations can
be used effectively during the segmentation process, as will
be better detailed in Section III. For example, suppose our
shape model fits perfectly over all the corpus callosum (CC)
except for a misalignment around the splenium region of the
CC (Fig. 4). In this scenario, the shape of the model must be
adjusted only around the splenium without affecting any of the
correctly aligned parts. This is simply accomplished by setting
! =1 and s = 37 to localize the deformations around the sple-
nium part only and ensure plausible deformations respecting
the variations observed in the training set in that region only.
A compact yet global PCA (s = 100) is unlikely to include a
mode of variation that directly accomplishes this task. Instead
some complex combinations of several global modes must be
used to ensure the desired localized effect.

The trade off is clear, finer scale deformations mean more
variables that will need to be optimized, but the statistics will
better represent localized changes in shape. Larger scale defor-
mations have fewer variables but sacrifice localized changes to
preserve global ones, and thus it is difficult to fit one part of
the model without unfitting another part. We can exploit the ad-
vantages of both options during our segmentation procedure by
starting with larger scale deformations, and then moving to in-
creasingly finer scale deformations (Section II-D for details).
By starting with large scale deformations, we can find the best
global fit of the model to the image data without wasting time
on localized changes that represent a small portion of the overall
error. Once the global model is fitted, localized deformations
can refine anatomical subregions and thus give a better fit to
localized variability in the data (results of this can be seen in
Fig. 10).

The preceding discussion outlined how to learn our shape
model through examples. Additional details on HRPCA are
available in [18] for the interested reader. Next we describe
how to build a fitness function that can be used to characterize
how well the shape model has been fitted to the image. The
fitting procedure itself, performed using GA, is described in
Section II-D. Essentially we need to discover how to deform
the shape (what pose parameters and modes of variation, s
to activate) in order to fit the shape to the image. The GA
optimization explores the space of these deformations and finds
the ones that best fit the model to the data (those that score
highly according to the objective function).
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B. Building a Fitness Function

The fitness function is used for ranking the population in
order to determine which members should reproduce and which
should survive. It is akin to the energy functional in typical de-
formable models, in that it is the objective function being opti-
mized. As noted in Section I, the use of GA allows us to easily
adapt the function to any given task including both convex and
nonconvex prior shape and image-based knowledge; something
globally-optimal energy-minimizing models do not generally
allow for [41]. Rather than focusing on easily described and
optimized terms, fitness functions can be constructed that di-
rectly reflect the characteristics thought to be exhibited by the
target structure. The general form of our energy function is then
a weighted combination of the desired terms. For example, we
can adopt the fitness function Fit; (¢), where ¢ is a potential seg-
mentation, to consider the mean and standard deviation of the
image intensity enclosed by the shape’s boundary, the average
edge strength along said boundary, and the learned size of the
CC

Fit1(i) = wy exp (iif(b)) + ws <1 — €Xp (;WTZ;EL»)

()

+ w4 exp (—_§;£Z)> 3)
where
N 2
Fi(i) = (/1, - Z (](T))
x=1
S IV I Vg
By(i) ==
;1 [Va(x)]]
5 Hw)al)
Fs(i) = :lv—
,; q(z)
N
> (I(x) — F3(2))
Fyi) = | = (4)
; q(z)

z; ...z are the indices of the A/ pixels, ¢(x) is a binary image
of the reconstructed shape (Section II-A), and y and o5 are the
average and standard deviation, respectively, of the sizes of the
CCs learned from the training set. / is the image, and 74, 03, 74
are the learned averages in edge strength, mean image intensity,
and image intensity standard deviation. Hence, F; (¢) represents
the conformance to the learned area of shape ¢, F» (i) the average
gradient magnitude along the shape’s boundary, F3(i) the mean
image intensity enclosed by the shape’s boundary, and Fj(7)
the standard deviation of the intensity enclosed by the shape’s
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boundary. Finally, w1, wo, w3 and w4 are scalar weights control-

ling the importance of each term in the segmentation process.
Alternatively, we can adopt a more traditional energy func-

tional commonly used in the deformable model community

/\/‘

Fito(i) = — Y (w1 (f(x)g(z) + gx)(1 — gq(x)))

x=1
+ wah(z)|V(z)]) + ws Fi(d) Q)
where f = —log(Pobi(1)), g = —log(Psi(I)), for object and
background likelihoods Poy; and Pyr, h = 1/14+|VI|?, and Fy
is the shape term as defined in (4) (see [9] for details). This
functional has recently been shown to be convex when defined
over convex shape-spaces [9], and can therefore be globally op-
timized in that scenario. Using this functional is therefore a good
way to investigate the fidelity trade-off between convex and
nonconvex shape-spaces, since we can compare the accuracy of
the guaranteed global optima under convex shape-spaces to the
potentially global optima found using the proposed nonconvex
shape-space. Since, with GA, we seek to define a maximization
problem, the function of [9] has been negated, thus making it a
concave optimization problem over a nonconvex shape-space.

Depending on the image segmentation task at hand, one func-
tional will likely perform better than the other. We simply illus-
trate here that novel, as well as traditional, functionals can be
optimized with GA.

C. Genetic Algorithms

GA are an optimization technique that models our under-
standing of evolution. In essence, a number of simultaneous po-
tential solutions (the population) each having an encoded state
(the chromosome) perform a random walk (mutations) around
the search space, while forming new solutions from combina-
tions of existing solutions (crossover) and, thus, adjusting and
refocusing the efforts of the search on regions of the search
space with exceptionally “fit” members (good solutions). A few
important choices are made during any application of GA: how
to encode the population (binary, integer, decimal, etc.), how
to mutate the population (mutate all genes, some genes, etc.),
how to select the parents for crossovers (roulette wheel, tourna-
ment selection, etc.), how to perform those crossovers (uniform,
single-point, multipoint, etc.), and finally what fitness function
to use for evaluation. Though these choices seem complex, we
found through experimentation that different genetic operators
yielded negligible impact on our results. The interested reader
is referred to [61] for an in-depth review of GA.

D. Genetic Algorithms for HRPCA

An overview of our GA is given in Algorithm 1 including a
summary of all the free parameters and the associated settings
that were used for all results presented in Section III. Fixed
values were set by observing results on the training data. For
example, the maximum number of iterations, MaxIter, was
set by noting that the algorithm always converged within 500
iterations.

In the subsequent sections, we describe the representation of
individuals, the encoding of the model into chromosomes (de-
formation weights) to be optimized, the method of mutating (de-
forming) the model, our selection and crossover methods, and
our fitness function (energy function to minimize).

1) Population Representation: In medical image segmenta-
tion using GA, the individuals forming the population represent
potential shapes of the target structure, each having some level
of accuracy measured by the fitness function (Section II-B). We
require a shape representation that allows us to describe and
control the shape deformations intuitively and in terms of our
calculated shape statistics. Consequently, we represent each in-
dividual by its associated stretching, bending and thickness pro-
files along with its global orientation, base-node position, and
scale (Section II-A).

2) Encoding the Shape Parameters of the Population for GA:
We use chromosomes to represent the set of all the weights of
the principal components as obtained from the HRPCA, where
each gene represents a weight (as a floating point number) for
a particular deformation, location, scale, and rpode oYf variation
(Fig. 7, ). In total, there are at most 3¢ Y°n | S0 1
d+(1/6)(2N +3N?2+ N3) weights available for mutation since,
for each of the four deformations, d = 4, we have N = 100 dif-
ferent locations, but for each location, {, we can only have up to
N —1+1 scales, s, each of which has at most s weights for the s
principal components (Fig. 5). In our application, this would add
up to 686, 800 dependent variables for our model, which moti-
vates the need for GA with a coarse-to-fine approach to search
the highly multivariate space. The large number of variables is
based on the assumption that for each deformation type, loca-
tion, and scale, all modes of variation are used. However, in
practice we found that only a maximum of five modes of vari-
ation for each deformation type at each location and scale are
needed to account for at least 90% of the variance, with at most
s modes for s < 5. As previously discussed, there is a level of
redundancy in the HRPCA space whereby any large scale defor-
mation can be achieved by a combination of smaller scale defor-
mations. Although smaller scale deformations have more valid
locations and therefore more variables to optimize, they are de-
sirable in that they better represent smaller, localized changes
in the model. To avoid optimizing a needlessly high number of
variables early on, we slowly decrease the scale of the deforma-
tion in a coarse-to-fine manner, and never optimize over more
than one scale at a time (see Section II-D3 for details).

3) Mutations and Crossovers: As previously discussed, GA
use mutations to walk randomly around the search space and
crossovers to initialize the search in new locations that result
from combinations of pairs of current solutions.

With regards to mutations, in order to steer the evolution
in a coarse-to-fine manner and, thereby, facilitate faster initial
convergence, we employ a coarse-to-fine approach. Initially we
constrain the mutations to the affine transformation parameters:
base-node position (translation values) (¢,,#,), model orienta-
tion angle 8, and scale values (s, s, ) (Fig. 7, top). Since our ini-
tial shape is the mean CC (obtained by setting all weights, cxqis
in (2), to zero), it can be expected to provide a reasonably strong
fitness value when an acceptable position, orientation, and scale
are set. In essence, we eliminate the possibility of getting a low
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Fig. 7. Segmenting an anatomical structure amounts to finding the optimal set
of shape parameters. (Top) In our GA implementation (Section II-D1), we rep-
resent each shape as a chromosome with genes encoding affine and statistical
shape deformation parameters. Affine transformation parameters are those en-
coding the global rotation, scale, and position of the shape. Statistical shape
deformation parameters are those representing weights for a particular defor-
mation d, location 7, and scale s. As noted in Fig. 5, Section II-D2, endmost
locations have only a restricted scale. (Middle) Mutation (Section II-D3) is per-
formed by altering some weights of the HRPCA. (Bottom) Crossover amounts
to swapping a set of weights between two individuals.

score for a good location, scale and orientation, simply because
of a bad random shape mutation.

With an adequate location, scale, and orientation obtained,
we allow the mutations to begin including shape deformations
(Fig. 7, middle). Dynamic mutation of a single gene amounts to
altering the corresponding weight by sampling it from a uniform
random distribution under the constraint that the total weight
lies within £3 standard deviations of the corresponding mode
of variation (square root of the explained variance obtained in
HRPCA). Modifying a weight will change the medial profiles
and hence the reconstructed shape boundary (Section II-A).

During the initial phases of the evolution, every member of
the population undergoes a random deformation with a global
scale, and at random amplitudes set in multiples of the corre-
sponding standard deviations, thus resulting in a new shape. The
initial constraint to global deformations is well-suited for our
statistical deformations as localized deformations (say bulging
the splenium in Fig. 4) will not help until an acceptable global fit
is obtained. Consequently, after no noticeable change in popula-
tion fitness occurs, we allow the deformations to begin varying
in both position and scale to include at first larger deforma-
tions (those corresponding to an entire anatomical region and,
hence, a primary area of variation), and then smaller deforma-
tions which amount to small variations in local regions (Fig. 8).
This process is outlined in algorithm Algorithm 1, where the
Evolve function is sequentially called with decreasing scale.

In essence, GA use crossover to combine the information
from two existing “parents” into a single “offspring” that con-
tains genes from each parent. We used uniform crossover, which
makes an independent random decision for each gene where-
under both parents have an equal probability of making the con-
tribution (Fig. 7, bottom and Fig. 9).

4) Selection: Genetic algorithms require a method of de-
termining which members of a generation will reproduce, and
which will survive. We use roulette wheel selection to randomly
select members for reproduction. Our goal is to ensure that the
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Fig. 8. Examples of three sequentially performed mutations on four different
members of the population. The scale of the mutation is decreased, progressing
from left-to-right top-to-bottom, from affine, to global scale, to medium scale,
and finally small scale. Note that the magnitude of each deformation is entirely
random, and only the range over which the deformation operates is decreasing.
In all images, the red shape was mutated into the green, and then green was
mutated into blue.

Fig. 9. Example crossover operations. Each image shows an overlay plot of
the two parents and the resulting offspring. The figure shows parents in red and
blue, with offspring in green. Note how the offspring carries shape properties
from both parents and thus appears somewhat “in between” the two parents.

fittest members of the population have the highest probability of
selection in proportion to how much their fitness values domi-
nate the rest of populous. Each member ¢ of a population P has
a probability of selection equal to

(Fit(i) — min Fit(k’)>

kel

> (Fit(j) ~ min Fit( k)) (6)

jer keP

Pselection(li') =

where Fit(:) is the fitness function of the member i
(Section II-B), and ini%l Fit (k) is the minimum fitness value of
e T

the population. The normalization (subtracting of the minimum
fitness value and dividing by the summation) in (6) is per-
formed to ensure valid probabilities for even negative valued
fitness functions. We experimented with different methods for
determining probabilities from negative fitness functions, and
noted only negligible impact on our results. We also employ
an “elitist” strategy under-which the best member of the pop-
ulation is always maintained, and the weakest of the set are
replaced by the new individuals resulting from the crossover
operation. A set number of crossover operations are performed
during each iteration of the genetic algorithm. We empirically
set the number of crossover operations per iteration to 9 for all
results, with different experimental values yielding negligible
impact.

III. RESULTS AND DISCUSSIONS

We demonstrate our work through its application to CC
segmentation in mid-sagittal brain magnetic resonance images
(MRI). The CC is a bundle of white matter fibre connecting the
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Fig. 10. Example segmentations using GA-HRPCA. (left) Finding the pose for one example image, showing ten evenly sampled members from the population, in
terms of fitness. Red indicates the fittest model moving linearly to green as the worst of the ten. (right) Three example segmentation (six rows) results progressing
left to right, showing fittest individual after population initialization (left), global deformations (next two), and local deformations (last two). Odd image rows
show a cropped plot overlaid on the MRI, with the medial axis highlighted in red. Cropping is only for visualization purposes, and all results are produced on full
images. Even image rows show color images with the red channel set equal to the ground truth segmentation, the green channel the GA-HRPCA segmentation, and
all zeros for the blue channel, i.e., green for true-negatives, yellow for true-positives, red for false-negatives, and green for false-positives. Below each example

segmentation, error € is shown.
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Fig. 11. Plot of fitness of the best individual versus generation number for the three sample MRI images from Fig. 10, for 24 different runs per image. The slope
of the curve demonstrates a rapid increase in fitness as the CC is located and the shape model heavily deformed (first 100 generations) and a more gradual increase

as the shape model is manipulated to an increasingly fine degree.

left and right brain hemispheres, and whose cross sectional area
and shape correlate with neurological diseases such as multiple
sclerosis and schizophrenia [62]-[64]. The vast amount of
data acquired in clinical studies of these diseases motivates the
necessity of a reliable CC segmentation algorithm.

We conduct all of our experiments on a set of 50 mid-sagittal
magnetic resonance images [65], presenting both qualitative and
quantitative results of the fully-automatic segmentation of the
CC using our GA driven, statistically-constrained deformable
models. All experiments are performed using leave-one-out val-
idation for training the shape and intensity priors. In order to dis-
count pose problems for some of the methods tested, all of the
data has been affinely registered. We do, however, still search
over pose in our GA-HRPCA method. As our tested energy
functions are all affine invariant, it should be clear that including
or not including the affine registration step for novel images
does not change the results for GA-HRPCA. The affine registra-
tion step does, however, allow us to obtain globally optimal so-
lutions to the method in [9], which we will use for comparison.

For clarity, we divide our experiments into two sets: those
dealing with the strict validation of GA-HRPCA in its ability
to segment the CC; and those exploring the aforementioned

trade-off between energy function and shape space fidelity, and
convexity. All error results in each set are computed using the
Jaccard distance: £ = 1 — (|AutonManual|)/|AutoUmanual|,
where ¢ = 0 represents the ideal segmentation, |z| denotes the
area of z, and Auto and Mannal denote the automatic segmen-
tation and the manual expert delineation, respectively [66].

A. Experiment Set A: Validating GA-HRPCA

We run a total of 500 evolution iterations per image, which
takes about 8.5 min per image on a 2 GHz AMD Opteron,
implemented in MATLAB (2010a, The MathWorks, Natick,
MA). The most expensive operation is the crossover operation
since, as previously mentioned, there are a larger number of de-
pendent variables that must be copied between the models. As
already noted, in order to speed up convergence, we employ
a coarse-to-fine approach where deformations progress from
larger to increasingly smaller scales. Again, the basic idea is
that initially there is little need for fine, small scale model ad-
justments since the model may not be in the right position at
all. This process is depicted in Figs. 10 and 11. Notice that al-
though the finer scale deformations represent a small amount of
the global shape variance, they allow a significant reduction in
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Fig. 12. Example segmentations performed using GA-HRPCA Fit, — B. Six different images are shown, progressing from least-to-most segmentation error
under evenly spaced samples. Note how even the worst segmentation is still a plausible CC segmentation. Top row shows segmentations overlaid on cropped
MRI, with ¢ underneath. Bottom row shows color images with the red channel set equal to the ground truth segmentation, the green channel the GA-HRPCA
segmentation, and all zeros for the blue channel, i.e., green for true-negatives, yellow for true-positives, red for false-negatives, and green for false-positives.

TABLE 1
ERROR RESULTS FOR OUR PROPOSED GA-HRPCA. RESULTS FOR ALL BUT THE LAST THREE COLUMNS ARE FIRST AVERAGED ACROSS
ALL RUNS OF EACH IMAGE, AND THEN STATISTICS ARE COMPUTED ACROSS THOSE VALUES FOR 50 IMAGES

Method | mean ¢ mediane mine maxe std. dev. ¢ | mean std. dev. ¢  max std. dev. ¢  std. dev. of std. dev. ¢
GA-HRPCA F'it1 0.176 0.161 0.081 0.360 0.060 0.022 0.073 0.012
GA-HRPCA Fito — A 0.211 0.197  0.093 0.495 0.071 0.023 0.118 0.023
GA-HRPCA Fito — B 0.202 0.192 0.116 0.347 0.055 N/A N/A N/A
GA-HRPCA Fit = —¢ 0.031 0.029  0.018 0.052 0.008 0.006 0.010 0.002

error by reducing the localized errors in the fitting that remained
after the global fit (second image in each row in Fig. 10).

We conducted three main experiments with GA-HRPCA.
Since GA are randomized algorithms and may not always
produce the same result, we run the algorithm 24 times per
image. Our first experiment was performed using Fitq, (3). We
learn the optimal w for Fit; and Fit, using a method based on
[67], [68]. The optimal weights for Fit; where w; = 0.0090,
we = 0.1101, w3 = 0.8809, w4 = 0. Note that Fy, ..., Fy are
strictly positive for positive valued images, and therefore each
term in Fity is normalized between 0 and 1. Setting ws = 0
means that through training we learned F; was misleading
the fitness function, and was unable to accurately predict the
standard deviation of the CC. Our second experiment was
performed using Fit; in (5), where the optimal weights for
Fits were: wy; = 0.0145, wo = 0.9707, wz3 = 0.0148. We
note that for Fits, wy > w; does not imply that one term has
vastly more influence than the other because their scales are
not normalized. From here on we refer to this experiment with
Fito as Fito — A. Our third experiment was also performed
using Fity, but we used the fittest result from all 24 runs for
each image. In essence, we increase the population size of the
GA by a factor of 24. We refer to this experiment with Fito
as Fits — B. The same experiment was conducted using F'ity
without any noticeable improvement, and we defer discussion
until the end of this section. To give a visual impression of
the segmentation error we present some results of Fity — B
in Fig. 12, evenly sampled from least to most error. We note
that even the worst result, far-right, is still a very plausible CC
segmentation.

For point of interest, we also conducted a fourth experiment to
validate that our GA-HRPCA shape model can fit each ground
truth segmentation without error. Simply put, we segmented the
ground truth segmentations directly, using Fit = —e. The av-
erage error was indeed ¢ ~ 0, validating that the GA-HRPCA
model can accurately segment CC data, given an ideal energy
function.

~
~

Results for our three main experiments are shown in Table I.
Since GA are randomized, and we segment each image 24 times,
we first compute expected error values for each image by aver-
aging the error results from all 24 runs. The 50 resulting ex-
pected error values can then be used to compute statistics in ex-
pected error across images, as is done in Table I. However, in the
last three columns of Table I, the standard deviation (std. dev.)
is calculated across all 24 runs, and then statistics (mean, max,
and std. dev.) are calculated over the 50 images to demonstrate
that even though GA are a randomized method, the average std.
dev. is still low (i.e., for a given image, there is little change
in its error between runs). These numbers cannot be computed
for Fit, — B because there is effectively only one run of that
method. Notice that the std. dev. is about twice as large across
images than within each image, for example 0.060 versus 0.022
for Fitq. This indicates that the variation in error as a result of
GA-HPRCA being a randomized algorithm is small in compar-
ison to the variation caused by how accurately the energy func-
tion itself reflects the desired image properties. From that we
conclude that in order to improve segmentation results, a new
energy function should be sought as opposed to attempting to
improve the optimizer or, in our case, tweak the GA. Note that
we specifically say energy function here, not shape space, be-
cause we have already shown the HRPCA shape model can fit
any of the ground truth CCs (Fit = —¢).

There is, however, an outlying case where the std. dev. across
numerous runs of the GA for a specific image is larger than
normal for Fito — A (at 0.118 it lies at over 4 std. dev. from the
mean of 0.023). This explains the significant reduction in max-
imal error obtained when moving from Fito— A to Fito — B. The
increase in accuracy indicates that some local optima were ob-
tained in Fity — A, but can be surpassed with a more exhaustive
search. This raises the question of whether we are better off with
guaranteed global optima from convex functions, or possibly
local optima from our GA-HRPCA method. In Section IV we
conduct a few experiments with global and nonglobal methods
to explore this question.



MCINTOSH AND HAMARNEH: MEDIAL-BASED DEFORMABLE MODELS IN NONCONVEX SHAPE-SPACES FOR MEDICAL IMAGE SEGMENTATION 45

Fig. 13. Visualization of Geocuts and RW seeding percentages. Images demonstrate the increasing degree of constraint, in the form of additional seed points,
required to prevent these simple functionals from producing highly erroneous segmentations. Top row, seeds with seeding percentage listed (See text for details).
Middle row (a)—(d), Geocuts segmentations for corresponding seed percentages. Bottom row (e)—(h), RW segmentations. Notice leakage into fornix dip (below
the CC) in both methods, due to lack of shape information. As the constraints get tighter, the possible set of segmentations shrinks to exclude the fornix.

It is interesting to note that the minimal error increases from
Fito — A to Fito — B. This is because in one case improving
fitness leads to increased segmentation error, £, implying the
fitness does not directly correlate with accuracy. Though it may
seem an odd result, this is not uncommon for both convex or
nonconvex functions used in practice for segmentation.

Comparing our two potential fitness functions, Fit; and Fito,
Table I shows that Fit; obtained superior results to Fito — A
and Fits — DB. Interestingly, Fit; did not noticeably benefit
from a more exhaustive search. We believe Fit;’s better per-
formance stems from its simpler assumption of an exponential
relationship for intensity having fewer parameters to estimate
and, therefore, being more resilient to noise than the potentially
over-fit learned likelihoods in Fits. The maximal std. dev. and
std. dev. of std. dev. are also much lower for Fit;, and this ex-
plains why a similar reduction in error was not observed for Fitq
when conducting a more exhaustive search.

B. Experiment Set B: Fidelity Versus Convexity

We segment the same set of 50 CC images under a few pop-

ular frameworks.

1) Geodesic active contours (GAC) [40]: Gradient descent
performed on a nonconvex level-set-based deformable
model with no shape prior. The energy functional itself
is convex, and is modeled by the second term in (5),
h{z)|Vq(z)|. Nonconvexity is induced by the level-set
shape representation (i.e., nonconvex domain).

2) Geocuts [13]: A globally optimal solution to the GAC en-
ergy using graph cuts.

3) Random Walker (RW) [15]: A submodular (convex) graph-
based formulation with a globally optimal solution and no
shape information.

4) Cremers 2008 [9]: A globally optimal segmentation
method using Fitg, (5), with a global shape prior? imple-
mented via PCA (i.e., convex, implicit, global statistics
instead of nonconvex, explicit, localized ones).

We note that although Geocuts and RW do not have explicit
shape priors they still impose a specific form of shape con-
straints; the seed points function as hard constraints in both
methods that shrink the set of possible segmentations and thus
form an allowable shape space, albeit a user created one. It
is important to note that as Geocuts and RW are interactive
methods, and our method is fully-automatic, we are not vali-
dating against them, but rather using them to explore the results
of minimizing convex functions with varying degrees of shape
constraints. For exploration, we choose to use random seeds
drawn from the ground truth foreground and background, and
we report the percentage (%) of pixels used as seeds in each of
our experiements (Fig. 13). For example, a 1% seeding means
that, on average, one seed is placed in every 10 x 10 pixel re-
gion of the image. The user could draw better seeds, i.e., fewer
seeds that would also produce less segmentation error. How-
ever, this is essentially providing a greater constraint (fewer
seeds in number, higher in tightness, i.e., more restricted shape
space). We also note that although Geocuts and RW do not
have weights between competing terms, they each have an in-
herit parameter. The Geocuts method has the free parameter p
inh = 1/1+4|VI|?, and RW has the / parameter which controls
the mapping from intensity differences to edge weights (see [15]
for details). We ran each method over a large set of parameter
values. Thus for each method, we have optimized its free param-
eters to minimize differences in accuracy stemming from a lack

2This changes the third term slightly, but both will end up being Gaussian
priors centered on the mean shape, with learned variation from PCA.
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TABLE 11
FIDELITY VERSUS OPTIMIZABILITY. SEE TEXT FOR DETAILS
Method mean median min max  std. dev.
£ £ € € 1>
GAC [40] 0.478 0.433 0.094 1.000 0.297
Geocuts [13] 0% seeding 0.375 0.370 0.094 0981 0.232
Geocuts [13] 5% seeding 0.182 0.171 0.089 0.346 0.061
Geocuts [13] 10% seeding | 0.160 0.149 0.086  0.309 0.057
RW [15] 0% seeding 0.844 0.933 0.288  0.970 0.170
RW [15] 5% seeding 0.165 0.152 0.106 0.407 0.055
RW [15] 10% seeding 0.132 0.117 0.070  0.343 0.057
Cremers 2008 [9] 0.376 0.319 0.158  0.895 0.186
GA-HRPCA Fity 0.176 0.161 0.081 0.360 0.060
GA-HRPCA Fito — A 0.211 0.197 0.093 0495 0.071
GA-HRPCA Fit; — B 0.202 0.192 0.116  0.347 0.055

of parameter tuning, and instead highlight the best results that
each method can obtain. To that same end, we initialize GAC
with the ground truth segmentation, thereby placing it under
optimal conditions. For comparison purposes that will become
clear shortly, we also minimize the GAC energy function using
GA-HRPCA, i.e., Fits with wy = 0, ws = 1, w3 = 0, we de-
note this method as GAC-GA-HRPCA.

Our reasons for choosing the above methods are to compare
and contrast the consequences of each competing method’s
trade-offs with the trade-offs present in GA-HRPCA. These
trade-offs are highlighted in Table II, where the optimizability,
shape flexibility, and shape fidelity are measured. Note that
for Geocuts and RW we report multiple entries (rows) each
using a different seeding percentage. This enables us to explore
how the energy functions behave under increasing amounts of
constraint.

Shape flexibility measures the method’s ability to fit any
valid CC. To measure flexibility, we run each method on the
ground truth segmentations directly, and measure the average
error using . Low values indicate low error, and therefore high
flexibility in that the method had no problem segmenting all 50
valid CCs. High values here are due to the shape space being
too restrictive to accommodate the shape variability in the
target CC. As one expects, methods without shape restrictions
(GAC, Geocuts, and RW) have perfect flexibility, since they
can segment any shape.

Shape fidelity, measures the methods ability to constrain the
shape to only valid members of the anatomy, and is estimated
as error, under measurement ¢, in segmenting novel images.
We say estimated because, as reported, shape fidelity implicitly
includes energy function error, and is thus an approximation.
However, when comparing fidelity between equal energy func-
tions under different constraints, it is clear that changes in accu-
racy must be entirely a result of the solver or the constraints, as
the energy function itself remains fixed. A perfect scoreise = 0
in both shape columns.

To balance the comparison, we also include the level of
manual constraints required, as otherwise fully-manual seg-
mentation would be the best possible method according to the
table. Manual constraints are rated on a scale from 0 to 10, 0
being no manual intervention, and 10 being the most of any
method surveyed here. These ratings correspond directly to
the percentage of the image that needed to be seeded for each
image, as seeding required direct knowledge of the ground
truth segmentation. Notice that for manual methods, increasing
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fidelity requires increasing manual intervention. In automatic
methods, increasing flexibility and fidelity comes at a loss
of optimality, as nonconvex shape-spaces are required. We
provide a more detailed review of these results below.

Examining the fidelity column of Table II in particular,
we notice that the convex methods score poorly unless they
are heavily constrained with manual intervention (i.e., high
seeding percentage for Geocuts and RW). The high error of
GAC, in combination with the fact that we use the ground
truth as the initialization, implies directly that a simple convex
functional, under few optimization constraints, yields a very
high segmentation error. Simply put, there are too many er-
roneous segmentations with lower energy than the ground
truth. This is, of course, expected. Notice, however, that with
minimal constraints Geocuts yields almost as high a segmen-
tation error as GAC. Again, this is not surprising; the global
optima include many non-CC edges, while the local optima
can get stuck before reaching increasingly erroneous segmen-
tations. Had we initialized GAC randomly instead of using
the ground truth segmentation, its error would have been far
higher. Adding more constraints to Geocuts demonstrates that
under appropriate constraints a global optimum to a convex
function can yield good results. However, as presented in
Fig. 13, the constraints need to get rather tight before erroneous
segmentations are eliminated. Naturally, a region-based energy
function, as is used in RW, suffers the same fate. We have thus
far reached a rather expected result, global optima to simple
energy functionals can yield good segmentations, but they
require significant constraints (the seeding percentage has to
be high). As manual constraints are undesirable, automatic
constraints are preferable.

Tight shape constraints can be automated through the use of
shape prior information, and statistically shape-constrained en-
ergy functionals can be solved, as with Cremers 2008. How-
ever, in order to introduce a shape constraint that is convex,
i.e., can be globally optimized, the constraint is made simple
(global-in-scale PCA). It is especially interesting to compare
the results from Cremers 2008 with GA-HRPCA. The Cremers
2008 row of results in Table IT compares the same energy func-
tion, with the same weights, w, to our GA-HRPCA method in
Fite — A and Fity — B. We believe the Cremers 2008 error is
high because not only is the shape space unable to address the
variability present in the data (i.e., low shape flexibility), but
numerous non-CC shapes are still allowable and have lower en-
ergy than other, better segmentations (i.e., low shape fidelity).
Similar discussions apply when comparing Geocuts to GAC and
GAC-GA-HRPCA, since all of the methods use the same energy
functional. Under appropriate constraints GAC has low error,
and therefore high fidelity, and our method is able to automati-
cally enforce those constraints. We also note that rerunning Cre-
mers 2008 with an increasing number of PCA variation modes
had negligible impact on the results, because while using more
modes increases shape space flexibility, it also reduces fidelity.
More specifically, with more modes of variation, the convex,
implicit, global shape space can include the ground truth seg-
mentation and also other more erroneous segmentations, stem-
ming from the fact that the true underlying shape space is not
Gaussian (imagine fitting an ellipse to the letter “S,” to include
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TABLE III
ERROR COMPARISON BETWEEN TESTED METHODS FOR 50 IMAGES

optimizability  shape flexibility  shape fidelity manual automatic
Method . .
€ € constraints  constraints
RW [15] 10% seeding Global 0 0.132 10 N
Geocuts [13] 10% seeding Global 0 0.160 10 N
RW [15] 5% seeding Global 0 0.165 5 N
Geocuts [13] 5% seeding Global 0 0.182 5 N
RW [15] 0% seeding Global 0 0.844 0 N
Geocuts [13] 0% seeding Global 0 0.375 0 N
GAC [40] Local 0 0.478 0 N
GAC-GA-HRPCA Local 0.03 0.270 0 8
Cremers 2008 [V] Global 0.14 0.376 0 Y
GA-HRPCA Fity Local 0.03 0.176 0 Y

the entire letter much of the space outside the letter must also
be included).

There is, thus, a trade-off present in all choices. Neither lo-
cally optimal nor globally optimal methods without shape in-
formation seem well-suited to fully-automatic segmentation of
the CC. Shape information can be added, and the solution kept
global, but the shape information must be kept convex, which
may not accurately fit the desired shape space, without simulta-
neously allowing erroneous shapes. Alternatively, with HRPCA
a more expressive shape constraint can be automatically built,
but it cannot be solved optimally and thus necessitates GA in
order to minimize sensitivity to initialization. A comprehensive
set of results is presented in Table III.

Notice that the standard deviation between images for each
tested method, last column of Table III, is in general much
greater than the standard deviation across different runs of the
same image for our GA-HRPCA method (Table I, column 7,
mean std. dev. ). This implies that one can expect a greater
variation in accuracy by applying a given method to a new
image, than from rerunning our GA on a specific image.

IV. CONCLUSION

We have developed a novel segmentation technique by ex-
ploring the main concerns associated with both traditional and
statistically-based deformable models. By using GA to address
the initialization and local minima problems associated with
traditional energy-minimization techniques, we propose an al-
ternative to convex optimization methods [9], [13], [15]-[17].
In doing so, we trade guaranteed global optimality for a shape
space that more accurately fits the true allowable shape do-
main (localized, medial-based shape statistics), i.e., higher flexi-
bility and fidelity. Using the same energy functional, we showed
a significant improvement in accuracy over the globally opti-
mized, convex, global, implicit PCA shape space, Cremers 2008
method. Consequently, in answer to our question posed in the in-
troduction: Is it worth sacrificing the complexity of the energy
functional, and thereby reducing its ability to address image
variability, in exchange for global optimality, or can more com-
plex functions and shape spaces be utilized with an approxi-
mate optimization method and achieve superior accuracy? In
our application the sacrifice is not worth it. It is better to trade
convexity with guaranteed global optimality for a more expres-
sive functional and shape-space with GA-based optimization
that achieves close to optimal solutions. We therefore believe

research into finding energy functions and shape spaces with
high fidelity, with a de-emphasis on convexity, is a very impor-
tant area of future research. While it is true that global solu-
tions to any such functions would be desired, our results demon-
strate that convexly approximating the nonconvex shape-space
in the application of CC segmentation causes a higher error than
approximating the global optima of the nonconvex space via
GA. We imagine the difference will only increase for structures
with more complex shape deformations between members of
the population, as these structures will form increasingly non-
convex shape spaces.

Furthermore, as its well known that pose introduces an in-
herent nonconvexity in shape-model-based deformable models,
for example [9], we provide a method that directly handles the
pose problem. In essence, the basic idea with GA is to avoid
choosing one pose over another until there is enough evidence
suggesting one pose is vastly superior. For example, suppose
the energy function had two local optima with different pose
but similar shape; a binary image containing a target shape, and
a second similar structure with a different pose. Equation (6) en-
sures that our method would keep approximately half of its pop-
ulation at each pose initially, since population members under
each pose would have equal probability of replacement. Our
GA would then start shifting the bulk of the population towards
whichever object better satisfies the fitness function once shape
deformations were allowed. This is exemplified by Fig. 10, as
numerous false pose configurations have similar response to the
fitness function. However, the pose that corresponds with the
CC has a much higher degree of fitness and so it quickly over-
takes the focus of the search.

We have demonstrated how GA can be combined with con-
strained shape deformations to effectively explore the search
space of a complex energy functional, thereby incorporating
prior-knowledge into the solution while retaining multiple si-
multaneous searches of the space. In essence, we have con-
strained the members of the GA population to lie within the al-
lowable shape domain, thus greatly reducing the search space
traditionally associated with deformable models, but without
sacrificing fidelity to the target anatomical shape space through
global PCA and the inherent convex approximations.

Though other works have used GA to drive deformable
models [44]-[46], [48], [51], [52], [54], to the best of our
knowledge, no works have combined GA with statistical-based
deformations in a way that yields intuitively constrained defor-
mations (bends, bulges, and stretches) that render the results
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Algorithm 1 GA for HRPCA

Require: A set of images, I, an HRPCA matrix, M, a fitness function F'it, and GA variables:

1: Population size, PopSzze = 32.

2: Number of crossovers-per—evolution, CrossNum = 9.

3: Maximum number of standard deviations to deform, MxStdDev = 2.
4

: Lower- and Upper-bounds on the position of the reference node, 1, (Ming, Miny) and (Maxs, Max,). Always set such that the extent of the mean

shape model lies within the image bounds.
5: Number of modes of variation to consider (for each d, [, s), k = 5.

6: Population, P, with members denoted P (i) and base-node position for 73( ): (Mmz,Mmy) < (P(i).tz, P(i).ty) < (Maxy, Maxy); model

orientation angle 0 < P(4).0 < 7r; scale (0.6,0.6) < (P(i).8z,P(7).s
7: Number of iterations allowed without improvement, Changelter = 40
8: Maximum number of iterations allowed, MaxIter = 500.
9: The best population member seen so far, best, with fitness best. fit.

y) <

(1.4,1.4); and HRPCA weights P(7).c.

> Search only for top candidates in position, orientation, and scale.

> Perform global deformations. There are 4 X k X (N — s+ 1) + 5 = 25 free variables at this stage.

> Replace the worst member of the population with the best.
> Keep track of how many iterations since fitness last improved.

> While best. fit is improving and cnt < MaxIter, perform crossovers and mutations.

> Replaces the least-fit individuals.

10: procedure GA-HRPCA

11: Randomly initialize P, from a uniform distribution with P.cc = 0.

12: P,best = UpdateBest(P,best,0)

13: ent =1

14: P.best,cnt = Evolve(P(i).a=0,cnt)

15: P.,best,cnt = Evolve(s = N,cnt)

16: P,best,cnt = Evolve(s = 37,cnt)> Perform medium scale deformations. There are 4 x k X (N — s+ 1) + 5 = 1285 free variables at this stage.
17: P,best,cnt = Evolve(s = 18,cnt)> Perform fine scale deformations. There are now 4 X k X (N — s+ 1) +5 = 1665 free variables at this stage.
18: P.best,cnt = Evolve(s = 11,cnt)> Perform finer scale deformations. There are now 4 X k x (N — s+ 1) + 5 = 1805 free variables at this stage.
19: return best

20: end procedure

21: procedure UPDATEBEST(P,best,changed)

22: Sort P(7) in ascending order according to F'it (7).

23: if Fit(PopSize) > best.fit then

24: best = P(PopSize) and best. fit = Fit(PopSize)

25: changed = 0

26: else

27: P(1) = best

28: changed = changed + 1

29: end if

30: return P,best,changed

31: end procedure

32: procedure EVOLVE(Constraints,cnt)

33: changed = 0

34: while (changed < Changelter) AND (cnt < MaxlIter) do

35: for i = 1 to CrossNum do

36: Select parents (a, b) with probability of selection Pgejection (@) and Psejection (b)
37: Replace P (i) with crossover on P(a), P(b).

38: end for

39: P,best,changed = UpdateBest(P,best,changed)

40: for i = 1 to PopSize do

41: Mutate P (%), only modifying P (7).« with scale, s, described by Constraints.
42: end for

43: P,best,changed = UpdateBest(P,best,changed)

44: ent =cnt + 1

45: end while

46 return P,best,cnt

47: end procedure

more interpretable by clinicians and enable regional statistical
analysis [18].

Our method can handle a variety of classical energy terms [9],
[40], [69]. Other terms can be easily added related to texture,
color or other image features. There is no requisite that the terms
be convex or even differentiable; they simply need to properly
reflect the characteristics of the appearance of the target object
in the image data. Not requiring terms to be differentiable is an
interesting side benefit of using GA.

Our method is also extendable to other segmentation prob-
lems. Specifically, given a training set of shapes for a different
anatomical structure, one can perform skeletonization [70]
followed by medial profile extraction and, subsequently,
HRPCA. More complex topologies than the single medial-axis
structure used in our experiments would be an interesting and

natural extension to our method. The largest challenge would
be learning the underlying medial-structure, but once learned
we believe there would be very little modification required to
the GA-HRPCA algorithm. One potential modification would
be to fit the primary medial-axis first, then extend down to
the branches in a coarse-to-fine approach similar that used to
explore different scales in Algorithm 1.

We are working on extending these ideas to 3-D where the
genes of the population become the 3-D shape representation’s
parameters [71]. However, it remains to be explored how much
added complexity must be introduced to address complicated
3-D objects with possibly varying topology using a medial rep-
resentation, and whether a medial based shape representation
will remain the ideal choice for an evolutionary computing
strategy with localized deformations in 3-D. Another interesting
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avenue is the extension to multilabel segmentation, where GA
could be used to model numerous, interacting, simultaneously
evolving populations, each representing a different anatomical
structure.
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