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Bilateral Filtering of Diffusion Tensor
Magnetic Resonance Images

Ghassan Hamarneh and Judith Hradsky

Abstract—We extend the well-known scalar image bilateral
filtering technique to diffusion tensor magnetic resonance images
(DTMRI). The scalar version of bilateral image filtering is ex-
tended to perform edge-preserving smoothing of DT field data.
The bilateral DT filtering is performed in the Log-Euclidean
framework which guarantees valid output tensors. Smoothing is
achieved by weighted averaging of neighboring tensors. Analogous
to bilateral filtering of scalar images, the weights are chosen to be
inversely proportional to two distance measures: The geometrical
Euclidean distance between the spatial locations of tensors and
the dissimilarity of tensors. We describe the noniterative DT
smoothing equation in closed form and show how interpolation
of DT data is treated as a special case of bilateral filtering where
only spatial distance is used. We evaluate different recent DT
tensor dissimilarity metrics including the Log-Euclidean, the
similarity-invariant Log-Euclidean, the square root of the J-di-
vergence, and the distance scaled mutual diffusion coefficient. We
present qualitative and quantitative smoothing and interpolation
results and show their effect on segmentation, for both synthetic
DT field data, as well as real cardiac and brain DTMRI data.

Index Terms—Bilateral filtering, diffusion tensor magnetic reso-
nance imaging (DTMRI), interpolation, smoothing.

I. INTRODUCTION

DIFFUSION is the process by which molecules are trans-
ported from one part of a medium to another. The flux of

diffusing molecules is a result of their random Brownian motion
in concentration gradients and is described by Fick’s law. Diffu-
sion tensor magnetic resonance imaging (DTMRI) records the
diffusion characteristics of water molecules along fiber tracts in
vivo and is becoming increasingly valuable for assessing the ef-
fects of disease progression and treatment evaluation on fiber
connectivity and diffusion properties [1]–[3]. In DTMRI, typ-
ically each voxel of the 3-D image is assigned a rank three,
second order diffusion tensor forming a 3-D tensor field. Each
tensor is expressed as a 3 3 symmetric, positive semi-definite
(PSD) matrix (with nonnegative eigenvalues). Each tensor is the
covariance matrix of a tri-variate Gaussian probability density
function of water molecule displacement (in , , and direc-
tions) at each lattice point in the image.
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The general classes of medical image processing and anal-
ysis algorithms performed on scalar medical images (e.g., fil-
tering, segmentation, registration and visualization of X-ray CT,
T1-weighted MRI, ultrasound, and others) need to be extended
to DTMRI tensor fields in order to glean quantitative and quali-
tative information, potentially improving computer aided diag-
nosis, follow up of treatment and disease progression, and sta-
tistical analysis of structural and functional variability. In the
following paragraphs we review important contributions in pro-
cessing, segmentation, registration, and visualization of tensor
field data.

The primary goal of processing is to reduce the noise in the
DTMRI data that occurs due to various imaging acquisition arti-
facts. There exist numerous techniques for image processing of
scalar fields; an essential task in any image processing pipeline.
However, only a few methods have been recently extended to
perform basic processing and reduce noise in diffusion tensor
image data; for example median filtering, morphological opera-
tions, interpolation, and anisotropic edge preserving smoothing
[4]–[8].

Identifying and delineating regions of interest (ROI) in
image data is necessary for performing subsequent quantitative
analysis and qualitative visualization. Segmentation methods
typically rely on a) identifying nearby voxels with similar diffu-
sion properties and grouping them into one coherent structure,
b) identifying edges in the DTMRI and linking them to form
separating boundaries between neighboring structures, and
c) incorporating prior knowledge about the shape characteris-
tics of the different target structures to segment. These intuitive
ideas are very well understood for the scalar case, but have only
recently been the focus of research for tensor fields [9]–[20].

To facilitate viewing and interrogating DTMRI segmentation
and visualization results within the context of other medical
imaging modalities (e.g., structural MRI), the data sets must be
properly fused by bringing them into proper spatial alignment.
Image registration is also needed for quantitative and qualitative
longitudinal analysis tasks in which DTMRI data of the same
subject at different times must be compared [21]–[24].

Given the tensor field data structure many standard visu-
alization techniques can not be directly applied [3], [25]. A
simple approach is to first calculate scalar quantities from
the tensor fields, for example apparent diffusion coefficient
(ADC), relative anisotropy (RA), fractional anisotropy (FA),
and volume ratio, and then use available visualization soft-
ware implementing standard algorithms, including multiplanar
reconstruction using orthographic and oblique slices, volume
rendering using ray casting or maximum intensity projection,
and iso-surface rendering. Although this approach is simple
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it is generally not recommended, as most of the information
in the tensors will be lost. As DTs can be described by three
eigenvectors and three strictly positive eigenvalues, an alter-
native straightforward way of visualizing DT fields is via 3-D
ellipsoids whose orientations are given by the eigenvectors
and the length of their semi-axes by the eigenvalues. Given
some visual ambiguities of the ellipsoidal representation, an
extended superquadrics approach was proposed [26]. Although
very insightful, these glyph-type approaches are not sufficient
to accomplish the important goal of visualizing fiber tracts;
therefore, advanced tractography visualization tools such as
stream tubes were developed [27], [28].

It is also worthwhile mentioning that different software
tools are being developed to perform some of the tasks men-
tioned above (such as BioTensor [29], DoDTI [30], and others
[31]–[36]). However, there remains a substantial amount of
research to be performed to develop libraries for DT processing,
segmentation, registration, and visualization, at par with what
is available for scalar images.

None of the previously proposed methods or available soft-
ware provides an algorithm for performing bilateral filtering on
DTMRI data. In this paper,1 we extend the well-known scalar
image bilateral filtering technique to DTMRI. We propose a
bilateral diffusion tensor filtering algorithm, which carries the
same intuitive ideas as of its scalar field counterpart: similar
and proximate data are given higher weights. Towards this
goal, diffusion tensors must be averaged appropriately without
producing invalid tensors, and similarity between tensor values
must be calculated in a meaningful way. In order to realize
this extension, we make use of two major recent advancements
in the field of DTMRI processing, namely the Log-Euclidean
framework for diffusion tensor calculus and diffusion tensor
dissimilarity measures. We further show how DT interpolation
is treated as a special case of bilateral filtering where only
spatial distance is used.

We evaluate different alternative DT dissimilarity metrics
including the Log-Euclidean, the similarity-invariant Log-Eu-
clidean, the square root of the J-divergence, and the distance
scaled mutual diffusion coefficient [38], [10], [39]. The closest
published work to ours is that of Westin and Knutson [8].
The filtering they proposed uses normalized convolution and
does not use tensor dissimilarity metrics. Further, they do not
weight neighbors based on geometric and tensor distance. This
previous work also lacks qualitative results.

The remainder of the paper is organized as follows. Fol-
lowing a brief review of bilateral filtering for scalar images
in Section II-A, we motivate the need for a special treatment
for DTMRI data. We then propose the closed form solution
for bilateral filtering of DT fields and describe its reliance
on the Log-Euclidean framework and the tensor dissimilarity
measures (Sections II-B and II-C). In Section III, we first
briefly describe the clinical context of our work, then present
qualitative and quantitative smoothing and interpolation on
synthetic as well as real (cardiac and brain) DTMRI images.
We demonstrate the performance of the proposed methods
with different choices of free parameters as well as alternative

1This work is based on a previous conference presentations [37].

tensor dissimilarity measures. We also present the effect of
bilateral DT filtering on an extension of “livewire” to DTMRI.
We summarize and draw conclusions in Section IV.

II. BILATERAL FILTERING OF DTMRI

A. Bilateral Filtering of Scalar Images

Bilateral filtering smoothes image data while preserving
edges by means of a weighted averaging of nearby image
values [40]. For an input image , the filtered output image

is defined as follows:

(1)

(2)

where is inversely proportional to the spatial distance be-
tween the neighborhood center and a nearby location , and

is proportional to the photometric similarity (e.g.,
in grey level values) between the image function at and . This
essentially means that image values with closer spatial and pho-
tometric proximity contribute more to the output filtered pixel,
by having a higher weight in a weighted-average implementa-
tion.2

For DTMRI data, calculating the spatial proximity (Eu-
clidean distance) of tensors in the image domain clearly
remains the same as in the scalar case. However, as described
above, bilateral filtering also relies on calculating a measure
of similarity between the data values at neighboring pixels.
For scalar images, the difference between the intensity of two
pixels can be simply obtained as the absolute difference (using
simple subtraction). However, since for DTMRI the values
at pixels are DTs (PSD matrices, not scalars), an appropriate
dissimilarity metric between DTs must be calculated. Such
metrics must simultaneously consider the difference in the mag-
nitudes and directions of the diffusion and, therefore, respect
the non-Euclidean space of DTs. Calculating the difference
as the Euclidean distance, in 9-D space (3 3 DT matrix) or
6-D (given the matrix symmetry), of the original tensor entries,
makes the implicit assumption that the hyper-line connecting
such two tensors in 9-D (or 6-D) is a valid space of tensors,
which is incorrect. Similar argument can be made for averaging
tensors. For example, linear averaging of each DT component
separately suffers from a “swelling effect,” where DTs with the
same determinant will result in an average with a larger determi-
nant [42]. Although averaging each component of eigenvalues
independently will result in PSD matrices (weighted averaging
of nonnegative eigenvalues remains nonnegative), however, one
cannot ignore the directions of the eigen vectors. For example,
averaging two tensors, with identical eigenvalues and different
eigenvector orientations, via averaging only their eigen values
will result in a new tensor with exactly the same eigenvalues

2Trilateral filtering has been recently proposed to take texture of scalar inten-
sity images into account as well [41].
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but without any dependence on the original directions of the
eigenvectors of the original tensors.

In order to take the whole tensor into account, a proper tensor
dissimilarity metric must be used which simultaneously takes
into account all the six degrees of freedom in the DT using
appropriate metrics intrinsic to the space of PSD matrices.
Therefore, two important operations must be redefined for
tensor fields, namely, weighted-averaging of DTs and calcu-
lating tensor dissimilarity.

B. Weighted Averaging of Diffusion Tensors

Diffusion tensors do not form a vector space since they are
symmetric PSD matrices whose space is restricted to a convex
half-cone [43]. Therefore, special care needs to be taken when
performing calculations and statistics on diffusion tensors. For
example, simply subtracting two DTs in general gives an invalid
DT [44], [43]. Arsigny et al. recently proposed the Log-Eu-
clidean Riemannian framework allowing simple tensor compu-
tations in the domain of matrix logarithms [38]. Specifically, for
our proposed extension of bilateral smoothing to tensor fields,
we adopt the Log-Euclidean framework and define the weighted
average of tensors as

(3)

(4)

where is the tensor resulting from Log-Euclidean,
weighted averaging of tensors, , in the neighborhood
of , with corresponding weights . expm and logm denote
matrix exponential and logarithm, respectively. To perform DT
smoothing, (3) replaces each tensor at every location in the
image by a weighted average of neighboring tensors .
For example, = 9 for a 3 3 8-connected 2-D neighborhood,
and , for a 3 3 3 26-connected 3-D neighborhood.

The smoothing effect now clearly depends on the choice of
the weights, . A simple implementation of (equalweight)
averaging is achieved by setting . However,
this operation blurs interfaces between tissues of different
diffusion properties; e.g., white and gray matter in the brain.
This is where the bilateral filtering ideas are essential for
edge-preserving smoothing. Towards this end, to replace the
tensor at each pixel in the image, we define the weights to be
inversely proportional to the spatial distance and the tensor
dissimilarity between the neighboring tensors and the center
tensor, according to

(5)

where is the tensor dissimilarity between
and is the spatial Euclidean distance between
and . and are monotonically decreasing functions that
map the range of tensor-dissimilarity values and spatial dis-
tances, respectively, to the interval [0,1], yielding measures of
tensor similarity and spatial proximity, respectively. We used

for linear mapping and

for loga-
rithmic mapping). controls the relative emphasis on
spatial versus tensor distance.

C. Diffusion Tensor Dissimilarity

What remains is a proper definition of tensor dissim-
ilarity, , between two tensors, and .
The Frobenius norm, for example, , where

, would be a possible choice had
the diffusion tensors spanned a Euclidean space. However,
given the PSD nature of the diffusion tensors, such measure
of dissimilarity is inappropriate, as discussed and motivated
earlier (Section II-A).

We compare four recently proposed approaches for calcu-
lating tensor dissimilarity: The Log-Euclidean distance, the
similarity-invariant Log-Euclidean distance [38], the affine-in-
variant square root of the J-divergence [10], and the distance
scaled mutual diffusion coefficient [39], denoted respectively
as , and are given by

(6)

(7)

(8)

(9)

where denotes the -vector norm describes the
location of (see [39] for details), and is the size of the square
tensor, i.e., for 3-D diffusion.

D. Bilateral DTMRI Filtering and Interpolation

Applying (3) at each voxel in the DTMRI volume, with
weights as in (5) and with tensor distance as in (6)–(9), re-
sults in a closed-form, edge-preserving filtering extending
the original scalar bilateral filter to diffusion tensor data.
The proposed method is noniterative. Nevertheless, multiple
smoothing iterations can still be performed as is typical in
scalar image filtering algorithms. Further, we handle diffusion
tensor field interpolation as a special case of bilateral filtering
(3) as follows. We interpolate a tensor at any nongrid position
as the Log-Euclidean weighted sum of nearby tensors, ,
where the weights are inversely proportional to only the spatial
distance between the nongrid position and the locations, , of
the nearby tensors. This is intuitively and conveniently obtained
by setting in (5).

III. EXPERIMENTS AND RESULTS

The proposed DT bilateral filtering is used for preprocessing
of DTMRI data related to two long term clinical applications.
First, we are investigating the disease progression and treatment
in multiple sclerosis patients on interhemispheric fiber connec-
tivity and diffusion properties within different regions of the cal-
losum (CC) bridge [45], [46]. Second, we are studying the prop-
erties of the laminar cardiac fiber sheet in the myocardium from
DTMRI.
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Fig. 1. Smoothing of two synthetic tensor fields. (a) Original homogeneous tensor field. (d) Another original tensor field that contains an interface. (b), (e) Noisy
version of (a) and (d), respectively, while (c) and (f) show the smoothing results on (b) and (e). d ; � = 0:2;N = 8 are used as an example. The effect of
changing these parameters is shown in other figures.

In this section, we present qualitative and quantitative bilat-
eral filtering based smoothing and interpolation results of syn-
thetic diffusion tensor fields and real cardiac and brain DTMRI
data. We also demonstrate the effect of bilateral filtering on dif-
fusion tensor image segmentation.

A. Results on Synthetic Data

For validating our method (Sections III-A2 and III-A3), we
made use of two synthetic data sets. The first data set contains
a homogeneous DT field whereas the other contains a clear in-
terface between two regions with different diffusion properties
[Fig. 1(a) and (d)]. Noisy DTMRI images were produced by
adding random Gaussian noise independently to the three eigen
values (as in [4]), in addition to random rotation (in azimuth
and elevation) perturbing the three eigen vectors by the same
amount to retain orthogonality [Fig. 1(b) and (e)]. Example bi-
lateral smoothing results on the two data sets are shown for il-
lustration [Fig. 1(c) and (f)].

1) Comparing Bilateral Filtering and Simple Averaging:
In Fig. 2, we demonstrate the edge preserving quality of
the proposed bilateral filtering by comparing it to spatial
Log-Euclidean averaging that does not take tensor distance into
account. The figure shows that spatial-only averaging blurs
the interface between the two regions of different anisotropic
diffusion properties, resulting in more isotropic tensors near the
interface [Fig. 2(a)] compared to bilateral filtering [Fig. 2(b)].

To quantitatively examine the effect of smoothing on blurring
the interface between the regions of different diffusion prop-
erties, we evaluated two measures of diffusion anisotropy (FA
and RA) of tensor pixels along the interface. Since at either
side of the interface the diffusion was highly anisotropic [but
in different directions as shown in Fig. 1(d)], retaining high
anisotropy of the interface pixels means that less undesirable
blurring at the interface is achieved. Table I shows that when
using the proposed bilateral DT smoothing, higher FA and RA

Fig. 2. Comparison between equal-weight averaging and bilateral filtering re-
sults. The interface data set of Fig. 1 is filtered using (a) Log-Euclidean aver-
aging and (b) the proposed method (N = 9; � = 1; d ) after one iteration.
Note how the tensors at the interface become more isotropic in (a) compared to
(b). This is also demonstrated by averaging the RA and FA values for the tensors
in the two middle rows (Table I).

TABLE I
COMPARISON OF DIFFUSION ANISOTROPY MEASURES AT THE INTERFACE

PIXELS AFTER ALTERNATIVE SMOOTHING APPROACHES

are obtained (more anisotropic, i.e., less interface blurring) com-
pared to simple equal-weight Log-Euclidean averaging of ten-
sors. The reported FA and RA values are the average values of
the interface pixels (the two middle rows of Fig. 2).

In Fig. 3, we compare the error values when smoothing the in-
terface data using equal-weight Log-Euclidean averaging (that
does not take spatial distance nor tensor distance into account),
bilateral filtering with (taking only spatial distance into
account when calculating the weights), bilateral filtering with
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Fig. 3. Comparison between different alternative DT smoothing methods. The tensor field with an interface [Fig. 1(d)] is used. In (a), “None” denotes that no
smoothing is performed. “Ave.” denotes equal-weight Log-Euclidean averaging. “Spatial” denotes bilateral filtering with � = 0 (considering only spatial distance
but not tensor distance). For bars with � 6= 0, the value of � and the tensor dissimilarity measure are indicated (including the cases when � = 1, where only tensor
distance is considered). The vertical axis indicates error values (as explained in the text at the end of Section III-A1). (b) Red: Equal-weight averaging without
considering tensor or spatial distance. Blue: Weighted averaging according to spatial distance only (� = 0). Green: Bilateral filtering taking both spatial distance
and tensor distance into account (� = 0:5; d ). For all cases, N = 9. The error in all cases is calculated using d . The figure clearly shows that bilateral
filtering outperforms simple averaging. As the number of iterations increases, simple averaging blurs the interface significantly compared to bilateral filtering. Note
also how considering both spatial and tensor distances improves the results compared to utilizing only the spatial distance.

Fig. 4. Effect of � on denoising synthetic data. Mean error values shown are calculated by averaging all the tensor distances between corresponding pixels in the
denoised image and the original image. Mean and standard deviation of error are shown for different values of �. The first error entry (at “None”) represents the
error of the noisy image. The error results are measured using d for (a) the homogeneous tensor field [Figs. 1(b)] and for (b) the DT field with the interface
[Fig. 1(e)]. Note the decrease in error for a wide range of � (the error increased for � = 1 when using d ). Figs. 5 and 6 may be useful to relate these distances
to tensors differences.

(considering only tensor distance), and bilateral filtering
with other values (considering both spatial and tensor distance
when calculating the weights). The figure shows improved per-
formance (lower error values) of bilateral filtering over simple
equal-weight averaging.

In Fig. 3 and in subsequent quantitative experiments and val-
idation results, the error calculations are obtained by creating
15 noisy images, smoothing them with different values of
or over several iterations, and estimating the mean error and
standard derivation of the difference between the smoothed DT
field to the (known) noise-free original. The different tensor dis-
tance measures ( and ) and linear and log-
arithmic mapping functions and were evaluated. Almost
identical results are obtained when using different tensor dis-

tance measures for error calculations. The mapping functions
had little impact on the results. The error difference is calculated
by averaging all the tensor distances between corresponding
pixels in the denoised image and the original image.

2) Effect of Alpha on Bilateral DT-Smoothing: As mentioned
earlier controls the relative emphasis on spatial versus tensor
distance. The noisy images are smoothed using ranging from
0.0 to 1.0 in increments of 0.1 (Fig. 4). The overall observation
is a decrease in the error for , compared to the
error of the noisy tensor field. The error was less even for
for all distance measures except for , given its dependence
on the choice of and . Similar behavior was obtained over
several noise levels (clearly, with higher error values for stronger
noise).
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Fig. 5. Diffusion tensor distances. (a) Variety of DTs visualized using the common 3-D ellipsoidal glyph whose orientations are given by the eigenvectors and the
length of their semi-axes by the eigenvalues of the DT. (b) d and d (lower and upper triangle, respectively) distances between pairs of ellipsoids. The first
three DTs (1, 2, 3) are isotropic with � = 1; 2:5; 5. The next three pairs (4–5, 6–7, 8–9) have � = 5 or 2.5, and � = � = 1, and are oriented along x, y, and
z, respectively. The next four pairs (10–11, to 16–17) are 45 -rotated versions of tensors 4 to 9. The last three tensors are randomly selected real DTMRI tensors.

To interpret these results, it is insightful to provide an intu-
itive means of relating DT distance measures to differences in
diffusion properties (Figs. 5 and 6).

3) Effect of Number of Iterations on Bilateral DT-Smoothing:
For a given , the images were repeatedly smoothed (Fig. 7).
Note the tendency of the error to decrease as the number of
iterations is increased when smoothing the DT field without the
interface. Also note the significant drop in error within the first
few iterations for both data sets (with and without an interface;
Fig. 7). For the interface data, we note a slight increase in error
as more smoothing iterations are performed. This is expected
and is attributed to the eventual blurring of the interface with
excessive iterations.

In Fig. 7, we compare the effect of applying multiple
smoothing iterations for equal-weight Log-Euclidean av-
eraging and bilateral smoothing on the interface data set.
Although both methods of filtering reduce the error in the first
iteration, Fig. 7 clearly shows superior noise reduction for all
iterations when using the proposed bilateral DT filtering.

B. Comparing DT Dissimilarity Metrics

In order to evaluate the performance using different tensor
dissimilarity metrics within the Log-Euclidean weighted av-
eraging framework, and to validate that it is sensible to use
dissimilarity metrics other than those based on the Log-Eu-

clidean framework ( and ), namely and ,
for Log-Euclidean based weighted averaging, we performed
the following experiment. For each pair of tensors ( )
in Fig. 5, we performed Log-Euclidean weighted averaging
with weighting and weighting

[according to (3)]. Hence, we obtain an average tensor
for each case. We then measured the distances, using the

four different tensor dissimilarity metrics ( ,
and ), between and and between and . We then
demonstrated, through scatter plots and correlation coefficients,
that these distances to the average indeed correlate with the
assigned weights, regardless of the distance metric used within
the Log-Euclidean weighted averaging framework. The details
of the experiment and the results are reported in Fig. 8. Fig. 8
also shows the correlation between the different DT distance
metrics using the same pairs of tensors. Note that the is
removed from the comparison since its performance requires
the specification of a spatial location for each tensor, which is
not relevant in this comparison.

C. Smoothing Results on Real DTMRI Data

We applied the proposed bilateral DT smoothing algorithm on
real brain [Fig. 9(a)] and cardiac [Fig. 9(b)] DTMRI data. Ex-
amples of cardiac and brain DTMRI edge-preserving smoothing
results are presented in Figs. 10 and 11.
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Fig. 6. Diffusion tensor distances. (a) Same as in Fig. 5. (b) d and d (lower and upper triangle, respectively) distances between pairs of ellipsoids. For d ,
the coordinates x = (0; 0; 0) and x = (1; 1; 0) are used [see (9)].

Fig. 7. Effect of number of iterations on bilateral DT smoothing. This figure depicts the error values as the number of bilateral filtering iterations is increased,
from 1 to 19 iterations. Iteration 0 (at “None”) corresponds to the noisy image without filtering. The error is calculated as the average tensor distance between the
smoother and the original image. Note the sharp decrease in error in the first few iterations. In (a), the original image did not contain any clear boundaries, whereas
(b) contained a clear edge [similar to Fig. 1(e)]. We attribute the gradual increase in error after iteration 5 in (b) to the eventual blurring of the interface if excessive
smoothing iterations are performed. The error is measured using d ; � = 1, and N = 8.

D. Interpolation

Interpolation of cardiac and brain DTMRI data is presented
in Fig. 12. To quantitatively assess the interpolation, we com-
pared the original data with the result of interpolation using a
subsampled version of the original data. The error, calculated
as the average tensor distance, , over all voxels, was about

0.7 when every second DT was used to interpolate, compared to
1.41 with every sixth voxel. The corresponding values for
were 0.8 and 1.34.

E. Effect of Bilateral Filtering on Livewire Segmentation

We show examples of how bilateral DT filtering improves
segmentation. Segmentation improvement after bilateral DT
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Fig. 8. Comparing DT dissimilarity metrics. See text for details. (Top row) Given any pair of tensors (T ; T ) from Fig. 5, the Log-Euclidean weighted average,
�T , is calculated for each w = 0; 0:1; . . . ; 1 and 1 � w . Scatter plots and correlation coefficients, �, between the two ratios are presented. The first ratio,
(1 � w )=w , reflects the desired weighting between T and T . The second ratio, d (T ; �T )=d (T ; �T ), reflects the relative distances from each of the two
tensors to the calculated mean. Ideally, perfect correlation should be observed between these two ratios, � = 1. The three top figures show the scatter plots and
the calculated � when using each of the tensor dissimilarity metrics d ; d , and d (denoted with subscripts LE, LEI, and J, respectively). (Bottom row)
Scatter plots and correlation coefficients between the different tensor metrics for the same pairs of tensors.

Fig. 9. Real DTMRI (a) mid-sagittal brain slice and (b) axial heart slice. The two region highlighted with the smaller rectangles are used in subsequent figures
and examples.

filtering is manifested in two ways: a) less user interaction
produces results of comparable quality; or b) improved seg-
mentation quality is attained with the same amount of user
interaction. In particular, user interaction is quantified by
counting the number of livewire seed points. Towards this goal,
we used DT-Livewire [47]; an extension of livewire for scalar
and color images to DTMRI [48], [49]. The livewire defines
local cost between neighboring pixels in order to calculate
globally optimal paths. These paths delineate boundaries of

target structures between interactively-selected seed and target
points in the image. In addition to internal cost terms that en-
code path smoothness, external cost terms are encoded, which
favor paths (delineation) along boundaries with high gradient
magnitude, while minimizing change in gradient direction.
While internal terms need not be extended to deal with DTMRI
data, external terms do because they depend on image data.
Consequently, diffusion tensor gradient vector, at any lo-
cation , is defined by replacing the scalar finite difference
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Fig. 10. Bilateral smoothing of the corpus callosum in brain DTMRI. Original and smoothed corpus callosum shown in (a) and (c), respectively. (b), (d) Scaled
up regions of the original and smoothed data, respectively.

Fig. 11. Bilateral smoothing of the myocardium in cardiac DTMRI. Original and smoothed heart wall shown in (a) and (b), respectively. (c), (d) Scaled up regions
of the original and smoothed data, respectively.

(subtraction) approximation with central tensor dissimilarity
metrics, as follows:

(10)

where now operates on a diffusion tensor field and is
one of the tensor distance measures presented earlier [(6)–(9)].
In DT-Livewire, the full information in the tensors is utilized,
without being forced to operate on a single derived scalar image
such as ADC or RA [3]. The reader is referred to [48] for details
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Fig. 12. Interpolation examples of real brain and cardiac DTMRI data. (a), (c) Coarse brain and heart data; (b), (d) corresponding interpolation results.

Fig. 13. Effect of smoothing on DT-Livewire segmentation. In (a)–(c), a DT-Livewire is supplied with the same seed points (terminal points of the white livewire
contour). In (a), the DT-Livewire is operating on a noise-free synthetic DT field exhibiting two homogeneous regions (top and bottom halves) with different
diffusion properties. The livewire successfully latches along the DT interface. In (b), DT-Livewire is operating on a noisy version of (a) and the livewire contour
deviates from the correct interface. In (c), the DT field is smoothed using the proposed bilateral filtering (with d ; � = 0:2; N = 9, and 1 iteration), and an
improved DT-Livewire delineation result is obtained. The diffusion tensors are displayed as blue ellipses with eccentricity reflecting the ratio between the two
largest eigenvalues.

on the derivations of the scalar versions of external cost terms,
noting that instead of scalar gradients, tensor gradients are used
as in (10).

In Fig. 13, we demonstrate the effect of Bilateral DT filtering
on the performance of DT-Livewire segmentation, given the
same number and same location of seed points, while changing
the amount of noise in the DT image. DT-Livewire performs as
expected when no noise is introduced and manages to identify
the interface between two homogeneous regions with different
diffusion properties. The performance deteriorates when noise

is added to the image and improves again when applying bilat-
eral DT filtering to reduce the noise.

In Fig. 14, we apply DT-Livewire to the segmentation of the
endocardium from heart DTMRI. This example demonstrates
that livewire now operates on tensor data, as evidenced by the
livewire contour latching to inner heart wall between successive
seed points. This example also demonstrates bilateral smoothing
of DT fields and how it reduces the amount of seed points re-
quired to complete the livewire segmentation, compared to the
original noisy data.
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Fig. 14. Segmentation of the endocardium from heart DTMRI using DT-Livewire. DT-Livewire is applied to (a) the original noisy DTMRI slice and to (b) a
smoothed version of the DT data (Section II). Less number of user-selected seed points are required for segmentation when the data is smoothed. The DT-Livewire
contour is shown in red and seed points are shown as solid red circles. Diffusion tensors and backdrop are visualized as in earlier figures.

Fig. 15. Segmentation of the corpus callosum from brain DTMRI using DT-Livewire. DT-Livewire is applied to (a) the original noisy DTMRI slice and to (b) a
smoothed version of the DT data. Less number of user-selected seed points are required for perform segmentation when the data is smoothed (smoothing and
legend are as described in Fig. 14).

In Fig. 15, we segment the corpus callosum from brain
DTMRI using DT-Livewire. As in the previous example,
smoothing results are visualized and its effect on DT-Livewire
segmentation is demonstrated, namely reducing the number of
seed points the user needs to manually specify.

IV. CONCLUSION

DTMRI provides unique in vivo measurements of fibre struc-
ture in the body. The measurements are presented as 2-D or 3-D
images where each pixel or voxel holds a 3 3 matrix. There is a
strong interest in the biomedical image computing community
to process, visualize, and analyze this type of data in order to
extract clinically relevant information related to diagnosis and
therapy of cardiac, neurological, and other pathologies. How-
ever, the majority of existing techniques are designed to operate
on scalar fields (or RGB color images) and more work is needed
to provide a diverse set of algorithms and tools at par with what
is available for scalar images.

In this paper, we extended bilateral image filtering to dif-
fusion tensor field data. Making use of the Log-Euclidean
framework and tensor dissimilarity metrics. We defined diffu-
sion tensor interpolation as a special case of bilateral tensor
field filtering. Quantitative and qualitative results showed that
the DT bilateral filtering is successful in preserving diffusion
tensor interfaces. The results also showed that the performance
of square root of the J-divergence distance is comparable to the
Log-Euclidean distances, and that the distance scaled mutual
diffusion coefficient can only be used in cases where the spatial

locations of tensors are known, which limits its applicability.
We also showed several examples demonstrating how bilateral
DT smoothing reduced the number of manual seeding required
when performing Livewire segmentation.

Future work includes extending other classical scalar image
processing and analysis algorithms to operate on 3-D DT fields,
the segmentation of multiple DT images related to specific clin-
ical applications (e.g., multiple sclerosis) and examining rela-
tionships between fiber properties in segmented regions and dis-
ease progression or treatment evaluation.
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