
Segmentation of Complex Objects with Non-Spherical
Topologies from Volumetric Medical Images using 3D

Livewire

Miranda Poona, Ghassan Hamarnehb, Rafeef Abugharbieha

aBiomedical Signal and Image Computing Lab, University of British Columbia, Canada
bMedical Image Analysis Lab, Simon Fraser University, Canada

ABSTRACT
Segmentation of 3D data is one of the most challenging tasks in medical image analysis. While reliable au-
tomatic methods are typically preferred, their success is often hindered by poor image quality and significant
variations in anatomy. Recent years have thus seen an increasing interest in the development of semi-automated
segmentation methods that combine computational tools with intuitive, minimal user interaction. In an earlier
work, we introduced a highly-automated technique for medical image segmentation, where a 3D extension of the
traditional 2D Livewire was proposed. In this paper, we present an enhanced and more powerful 3D Livewire-
based segmentation approach with new features designed to primarily enable the handling of complex object
topologies that are common in biological structures. The point ordering algorithm we proposed earlier, which
automatically pairs up seedpoints in 3D, is improved in this work such that multiple sets of points are allowed
to simultaneously exist. Point sets can now be automatically merged and split to accommodate for the presence
of concavities, protrusions, and non-spherical topologies. The robustness of the method is further improved by
extending the ‘turtle algorithm’, presented earlier, by using a turtle-path pruning step. Tests on both synthetic
and real medical images demonstrate the efficiency, reproducibility, accuracy, and robustness of the proposed
approach. Among the examples illustrated is the segmentation of the left and right ventricles from a T1-weighted
MRI scan, where an average task time reduction of 84.7% was achieved when compared to a user performing 2D
Livewire segmentation on every slice.

Keywords: segmentation, other (3D Livewire, semi-automatic segmentation, user-interaction)

1. INTRODUCTION
In medical image processing, segmentation is vitally important for quantifying and visualizing 3-dimensional
(3D) biological structures. The two most common approaches are fully-automated segmentation and manual
tracing. Fully-automated segmentation tools work best when calibrated for very specific image properties. How-
ever, biological structures are typically affected by significant variations due to subject diversity and pathology.
Automated methods are also sensitive to parameterization and may not produce correct results due to lack of
human intervention. Manual tracing, on the other hand, is time consuming because delineation is required for
each 2D slice in a volume. Also, this method suffers from inter-operator variability.1 Due to these difficulties,
semi-automated methods have recently drawn interest as a way to facilitate computer-based segmentation of a
3D object of interest using minimal human interaction. However, these techniques are too restrictive on the
object’s shape.2–5 Basic groundwork has been proposed to extend 2D Livewire6 to 3D by utilizing 2D Livewire
contours to automatically generate additional seedpoints in orthogonal orientations.5 However, medical images
often contain objects with complex 3D shapes (e.g. deep concavities and protrusions and non-spherical topolo-
gies), which none of the earlier Livewire extensions can handle.2–5 In this paper, we present an enhanced robust
3D Livewire-based segmentation algorithm that is capable of handling arbitrarily complex 3D object geometry
and topology. An interactive and intuitive segmentation tool based on the proposed framework has been devel-
oped. The tool allows for easy transition between 2D and 3D Livewire modes, concurrent viewing of contours
in all three orthogonal orientations, efficient on the fly correction of user mistakes, and 3D visualization of the
segmentation results.

The rest of this paper is organized as follows: Sections 2.1 and 2.2 provide an overview of the 2D and 3D
Livewire extension technique on which our method is based. Our algorithm modifications and improvements are
discussed in sections 2.3-2.5. Next, accuracy, reproducibility, and efficiency results are given in section 3.

hamarneh
Typewritten Text
See new software: http://www.turtleseg.org

2. METHODS

The proposed improved Livewire algorithm is based on previous work by Falcao et al7 and Hamarneh et al .5 The
user begins the segmentation process by performing 2D Livewire segmentations on slices in any two orthogonal
orientations. These 2D contours are then used to determine the Livewire seedpoints to be used in the third
orthogonal orientation. This is achieved by determining all intersection points between the available contours
and an arbitrary unseen orthogonal slice. These points are connected and arranged in two dimensions. This
resulting ‘seedpoint map’ is then used to determine the ordering of all seedpoints, thus mimicking a user-guided
(manual) Livewire segmentation but on a new slice orientation not visited by the user. Since these new seed points
are a subset of the contours seen and approved by the user, they are therefore a suitable choice of seedpoints for
guiding the Livewire segmentation in unseen slices. In the proposed enhanced scheme, user-generated contours
that are circumscribed inside another contour are automatically flagged with this information and these flags are
used to split and merge sections of the map. By doing so, multiple contours can be processed for each unseen
slice. The result is that objects with non-spherical topologies such as a vertebra (toroidal topology due to the
spinal canal) are processed correctly. In real medical image data, intersection points found as described above
may occupy consecutive voxels on a line and form clusters rather than isolated points. A new pre-processing
pruning step and an improved turtle algorithm for ordering the seedpoints were designed to overcome this issue,
which substantially increased the method’s robustness.

We first present an overview of 2D Livewire in section 2.1. Next, the basic idea of using orthogonal contours to
generate Livewire seedpoints is discussed in section 2.2. Modifications of the above method to increase robustness
and to enable the handling of arbitrary object topology is then provided in sections 2.3 and 2.4. Our technique
was developed into an intuitive user interface; we will present some of the features of this software tool in section
2.5.

2.1. 2D Livewire

While our proposed approach segments 3D objects, it does use 2D Livewire (in orthogonal orientations) to
compute each segmentation contour. The original Livewire technique6 was not significantly altered. In any
2D slice S(q) of a volume, where q = (x, y), edge and smoothness terms were used to create a local cost map
C(p, q) of the original image (equation 1). Here, p=(x’,y’) represents a neighboring pixel to pixel q. In our
implementation, the gradient magnitude cost CG(q), gradient direction cost CGD(p, q), Canny edge detection
cost CC(q), Laplacian of Gaussian (LoG) cost CLoG(q), and Euclidean distance (smoothness) cost Cd(p, q) were
used. Each term is then weighted by wG, wGD, wC , wLoG, and wd respectively, as follows:

C(p, q) = wCCC(q) + wLoGCLoG(q) + wGCG(q) + wGDCGD(p, q) + wdCd(p, q) , (1)

where CG(q) is defined as

CG(q) = 1− 1
max(G)

√(
dS(x, y)

dx

)2

+
(

dS(x, y)
dy

)2
∣∣∣∣∣∣
(x,y)=q

. (2)

max(G) denotes the largest gradient magnitude found in the image. The gradient direction cost is then

CGD(p) =
1
π

acos

(
S′

x(p)
G(p)

S′
x(q)

G(q)
+

S′
y(p)

G(p)
S′

y(q)
G(q)

)
, (3)

where S′
x(x, y) and S′

y(x, y) are the partial derivatives of S(x, y) with respect to x and y, and G(p) and G(q)
denote the gradient magnitude (not gradient cost) of the image at pixel p and q respectively. The LoG cost of
the image is defined as

CLoG(q) = 1− (LoGkernal(x, y) ∗ S) |(x,y)=q , (4)

where S is the original image and the LoG kernal is defined as

LoGkernal(x, y) = − 1
πσ4

(
1− x2 + y2

2σ2

)
e−

x2+y2

2σ2 . (5)

With a seedpoint located at pixel q on the slice, a cost map M(q) is created by determining the minimal
accumulated path cost from pixel q to all other pixels on the slice. This uses the graph search algorithm
proposed by Barrett and Mortenson.6 By repeating this operation, the minimal-cost path connecting several
sparsely separated seedpoints on the object boundary that delineates the object of interest is found. The number
of seedpoints needed to accurately segment the object depends on the image quality and object size and shape.
A simple extension of this scheme to 3D is to iterate this process for each slice of the volume.

2.2. Basic 3D Livewire Extension

Building on the ideas of Falcao,7 the general framework for extending Livewire to 3D was proposed by Hamarneh.5

Initially, the user performs 2D Livewire on select slices in any two orthogonal orientations (yz and xz, yz and xy,
xz and xy). An automatic Livewire segmentation can then be performed on a slice in the third orientation: xy,
xz, or yz respectively. To achieve this, the intersection points between 2D Livewire contours and the unvisited
orthogonal slice are determined and used as seedpoints for a fully automatic Livewire operation. For example, if
2D Livewire is used to create two contours Cyz and Cxy on arbitrary yz and xy slices, then given a slice Sx,y0,z,
in the xz orientation, the intersection points Ix,y0,z between Cyz and Sx,y0,z, and Jx,y0,z between Cxy and Sx,y0,z

can be calculated using

Ix,y0,z ⇐ Cyz

⋂
Sx,y0,z Jx,y0,z ⇐ Cxy

⋂
Sx,y0,z. (6)

Similarly, equations 7 and 8 define the intersection points I and J on slice S if different orientation combi-
nations are chosen.

Ix,y,z0 ⇐ Cyz

⋂
Sx,y,z0 Jx,y,z0 ⇐ Cxy

⋂
Sx,y,z0 (7)

Ix0,y,z ⇐ Cyz

⋂
Sx0,y,z Jx0,y,z ⇐ Cxy

⋂
Sx0,y,z (8)

In order to mimic a user-guided 2D Livewire segmentation task in an automatic fashion, the seedpoints, I
and J , need to be ordered either clockwise or counterclockwise in the 2D space of slice S. This is similar to the

Figure 1. Example seedpoint map showing three separate contours (red, green and blue) to be computed on the same
unvisited 2D slice. Arrows indicate ordering of seedpoints (boxed) along the turtle path (1’s and 2’s). The red and green
contours make up the outer and inner contours of a toroidal object. The blue contour is considered a separate object on
this slice.

seedpoint order in which a user would manually segment the object with manual 2D Livewire. To accomplish
this, seedpoints on the 2D space which belong to the same user-guided Livewire contour subset are paired and
connected by lines (tracks). Since there are seedpoint contributions from two orthogonal orientations, these
tracks will themselves be orthogonal on slice S. Figure 1 shows how these seedpoints are connected into a map.

To process this map, an L-systems ‘turtle’ algorithm is used. Starting at an arbitrary seedpoint or anchor,
the turtle traverses the orthogonal tracks on the turtle map such that it can only move forward and turn left
at path intersections. If it encounters another seedpoint, it will reverse direction. As the map is traversed, the
sequence in which the seedpoints are visited determines their order (Figure 2). Lastly, this ordered seedpoint
list is used by the 2D Livewire algorithm to determine the segmentation contour on this unvisited slice.

2.3. Intersection Point Pruning
Ideally, a 2D contour would intersect with an unvisited orthogonal slice at an even number of locations, as
described in earlier work.2,5 However, objects with cusps can cause singular intersection points to exist as well.
Also, while a user-guided contour will always be orthogonal to the slice in question, contiguous colinear contour
pixels may intersect with this slice. In the extreme example of a cube, a user-guided contour (a square) may be
orthogonal to an unseen slice, but their intersection may comprise the entire square side of the contour. This
results in a set of intersection points that span multiple contiguous voxel locations.

The problem of contiguous intersection points was treated in a different implementation of 3D Livewire, where
two parallel reference frames projected onto the problematic slice was used to correct this problem.2 Our method
automatically discards any extraneous points by analyzing only the intersection point groupings and locations
on a given slice. To discard these extraneous points, a pre-processing pruning operation is performed. Rather
than treating intersection points individually, our technique assumes intersection points appear in cluster(s) or
occupy consecutive pixel locations such as in Figure 3. Since the intersection of two slices will always be a line,
the set of intersection points found between a user-guided Livewire contour and the slice being processed will
also be along a line. These colinear points are first sorted in ascending pixel location order. Traversing this
list in increasing order, cluster boundaries are easily determined by their position values found on the original
image: non-consecutive pixel location values signify the start or end of clusters. Knowing where clusters start
and end allows us to prune the unnecessary points in between. The result is an even number of intersection
points with no contiguousness. An exception to the rule is when only one cluster is found, which corresponds
to a cusp (singular point). In this case, the start and end of the cluster are kept and the middle points are
discarded. However, if an odd number of clusters (greater than 1) is found, then it does not seem possible to
determine which cluster(s) are cusps without analyzing information from adjacent slices or texture information.

(a) Slice of object with spherical topology (b) Slice of object with non-spherical topology

Figure 2. Two examples of turtle maps used to order seedpoints on an unvisited slice. Seedpoints are numbered, and
‘turtle tracks’ are denoted using dashed lines. Slices of objects with spherical topology, (a), will not result in circumscribed
contours. Circumscribed contours of toroidal objects, (b), must be processed differently since these contours do not
encompass the object of interest.

With the extraneous contiguous points removed, the ideal case of having even intersection occurrences is
reached. This allows for each automatically processed slice to be independent of all other parallel slices. There-
fore, shape and topology changes (e.g. branches, cusps, saddle points) not observed in adjacent slices are
preserved.

2.4. Handling Arbitrary Topology

Biological diversity and pathology often give rise to extremely complex objects with deep concavities, protrusions,
non-spherical topologies, and discontinuity (e.g. due to tissue atrophy). While the determination of intersection
points between user-guided contours and an orthogonal unvisited slice is straightforward, complex topologies
directly affect the creation of the turtle map, and consequently, the ordering of these points. For purely convex
objects (e.g. sphere), it is guaranteed that there will only be one or two clusters of seedpoints; thus, a turtle map
can be easily generated using the technique described in our previously proposed framework.5 For objects with
concavities or protrusions (e.g. U-shaped tube), there may be situations where a slice will appear to capture two
objects. Here, our approach will process each structure separately in a given point map, thus all the parts will
be segmented correctly. Similarly, if the object of interest is comprised of two disjoint parts, then each part will
be segmented separately as our approach does not assume connectivity between seedpoints on the turtle map
unless explicitly joined by turtle tracks. What this implies is that even though a volume may contain multiple
objects that are not related to each other, they can be segmented at the same time with no interference. An
example of this is shown in Figure 5, where both ventricles, although structurally disjoint, are segmented in the
same binary output mask.

Objects with non-spherical topology (e.g. torus) pose the biggest problem for previous Livewire implementa-
tions. In order to correctly segment these types of objects, during the user-guided Livewire process, our method
first identifies all contours that are circumscribed within another. To do this, pairwise comparisons are performed
for all user-guided contours on a given slice. Let C1 and C2 represent two contours on the same image slice that
are subjected to a pairwise comparison. They are first converted to binary masks MC1(x, y) and MC2(x, y)
respectively, where

MA(x, y) =
{

1 if (x, y) is inside contour A
0 otherwise . (9)

If MC1(x, y)
⋂

MC2(x, y) = MC1(x, y), then C1 is wholly situated inside C2, and if MC1(x, y)
⋂

MC2(x, y) =
MC2(x, y), then C2 is wholly situated inside C1. This step is critical because these ‘inner’ contours delineate
pixels that do not encompass the object of interest, but rather a hole in the object. Due to this, these inner
contours and their derived seedpoints are flagged as ‘negative’, whereas the contours and seedpoints that actually

Figure 3. A user-steered 2D Livewire contour (blue dots) shown on an image slice during segmentation. An orthogonal
unvisited slice intersects with this slice (green band). The red circles indicate clustering of the intersection points which is
problematic but handled by our proposed scheme. Arrows indicate the two remaining intersection points after pruning.

delineate the object are flagged as ‘positive’. Although all intersection points, regardless of their classification,
are anchor points on the turtle map, negative seedpoints do not create turtle tracks. Instead, they in effect
negate a section of the otherwise longer track line, correctly splitting the turtle map into two distinct parts. An
example is shown in Figure 2(b), where seedpoints 2i and 4i negate the otherwise longer turtle track between
seedpoints 4 and 10. This process results in a central cavity, depicted in Figures 1 and 2, which now correctly
represents the object. Although all the seedpoints in Figure 1 are connected by tracks, the turtle algorithm
will always process the outer contour first due to the turtle’s pre-defined movement restrictions (section 2.2).
After these points are processed and subsequently disregarded, the inner anchor points will then be processed.
This particular algorithm’s use is limited to the handling of non-spherical topologies such as a toroid, but it can
be used in conjunction with the different object shape cases shown above. The combinations of these different
topologies are representative of most if not all anatomical shapes.

2.5. Implementation and Visualization

This proposed framework was developed in MATLAB and offers the standard concurrent orthogonal views of a
volume as shown in Figure 4. As an overlay on top of the image data, user-guided contours are clearly demarcated
in all views, regardless of their orientation. One criticism of the original framework5 was that the slices used
for user-guided contours had to be carefully selected otherwise the segmentation will fail.2 By displaying these

Figure 4. Screen-capture of the proposed segmentation tool’s graphical user interface during the segmentation of the
left and right ventricles. Completed 2D contours, regardless of their orientation, are displayed in green for the three
orthogonal views. This provides feedback on the accuracy and effect of these contours throughout the segmentation task.
Yellow lines indicate the current slice indices of the other two orientations.

contours in this manner, our application gives users a clear idea of which areas have been segmented and which
areas exhibit more topological features. In our findings, these feature-rich areas, if segmented correctly by the
user, usually allow for higher accuracy. Also, this software feature is very useful for visually judging the accuracy
of the delineation result. Additionally, our user interface is able to display a ‘point cloud’ representation as well
as a surface rendering of the object of interest after the 3D Livewire procedure is completed.

In our developed tool, the 2D Livewire component supports additional features such as point deletion and
contour closing. During this user-guided 2D Livewire stage, if the user selects a seedpoint erroneously, he/she
can revert the segmentation process to an earlier state, similar to the ‘undo’ command found in many common
applications. Also, in earlier versions of Livewire, the contour had to be finished or closed by having the user
select the initial seedpoint again; however, in high resolution images, this is often difficult and problems such as
unclosed contours or contour overlapping can easily occur. Here, the tool automatically and accurately closes
the contour as the last step.

While our technique is extremely flexible and robust, errors are bound to occur due to human error and poor
image quality. Our tool offers an undo operation described above, as well as the ability for users to remove entire
contours for re-computing. From the rendered result, users can quickly identify problematic areas and increase
the segmentation accuracy by providing additional user-guided contours in these areas and re-running the 3D
Livewire algorithm. For minor errors, users can overwrite the automatically generated contour(s) using the 2D
Livewire procedure.

3. RESULTS

The proposed method was applied to a variety of synthetic images and real medical image data to demonstrate
its capabilities. The application’s performance during these tasks was quantified based on the three main recom-
mended criteria for semi-automatic segmentation.8 These criteria are reproducibility, efficiency, and accuracy,
and they are discussed in sections 3.1-3.2. A basic example is the segmentation of a mask of a left caudate
nucleus (Figure 5(a)). While not difficult to segment, it does highlight the need and importance of placing con-
tours at ‘critical’ locations within slices that demonstrate the highest and most complex shape characteristics.
For instance, while user-guided contours are needed to capture the body shape of the caudate nucleus, extra
contour(s) at the nucleus tail ensures the 3D Livewire’s ability to segment these areas properly.

Another segmentation example is a synthetic torus under high levels of noise (SNR = 0dB), as shown in
Figure 5(d). This object is an example of toroidal topology. Here, the planes perpendicular to the axis of the
torus were chosen for segmentation by our 3D algorithm because this highlights our technique’s ability to segment
image slices with negative spaces (holes) inside. For this scenario, eight user-guided 2D Livewires are needed
to provide the seedpoints required for the 3D algorithm. Other orientations may require only six user-guided
contours. Figure 2 depicts how the turtle map looks like for a slice near the middle of a torus.

Lastly, the left and right ventricles of a T1-weighted MRI scan of a human brain are segmented using our
method (Figure 5(g)). Here, additional contours are required due to the ventricles’ shape complexity and less
than ideal image quality. User-guided Livewire contours were done for the sagittal and axial orientation, and
the 3D Livewire algorithm was applied to the coronal orientation.

3.1. Reproducibility

Since our 3D Livewire method is deterministic and produces identical results given the same input contours,
we measured reproducibility with different user-guided contours and seedpoints as input. This simulates the
interaction of real users to our application because not all operators will choose the same slices nor will they
choose the same locations for seedpoints. The orientation of the 3D segmentation and the actual human operator
were kept constant. Since reproducibility does not compare segmentations to the absolute truth, the resulting
binary masks were subjected to pairwise Dice similarity tests and a similarity coefficient was found using:

CDice =
2volsim

2volsim + volA + volB
. (10)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. (a) Rendering of the left-caudate mask. (b) 3D plot of user-guided Livewire input (red) and automatically
generated contours (light blue) of the left-caudate mask. (c) Rendering of the segmented left-caudate mask. (d) Rendering
of a synthetic noise-free torus. (e) Views of the torus subjected to noise with SNR of 0dB. Green markers denote the
presence of user-guided Livewire contours. (f) Rendering of the torus segmentation result. The roughness is due to the
high level of simulated noise. (g) Views of a T1-weighted MRI scan of a brain. Green markers denote the presence
of user-guided Livewire contours. (h) 3D plot of the left and right ventricles: user-guided Livewire input is in red and
automatically generated contours are in light blue. (i) Rendering of both segmented ventricles as separate objects. Both
ventricles were segmented during the same task.

CDice is the Dice similarity coefficient, which is a measure of voxel agreement. volsim is the sum of the voxels
at the intersection between trial A and trial B, and volA and volB represent the sum of the voxels in trials A and
B respectively. The Dice similarity coefficients were then averaged over all trials (table 1). In binary images, the
reproducibility rate is high because the exact locations of the user-guided contours are not as important due to
the high gradient properties of the data.

Table 1. Summary of the average reproducibility and accuracy results of our proposed method. Reproducibility is
represented by the Dice similarity coefficient, and expressed as a percentage

of Trials Reproducibility % Avg. Accuracy %

Left-caudate Mask 5 98.7 98.5

Torus (SNR=0dB) 5 93.2 73.4

Left + right ventricles 3 93.4 n/a

3.2. Accuracy

Accuracy is simply defined here as the voxel agreement between our technique’s segmentation result with either
the original synthetic data or a mask that is generated using manual tracing by an expert. Here, the caudate
segmentation result is compared to the original noise-free data, and the torus segmentation result is compared
to the noiseless image. Since the left-caudate mask was pre-segmented, the accuracy of its segmentation was
naturally high. In the torus segmentation example, the heavy noise applied to the image corrupted much of the
object’s outer edge; however, we were still able to recover a large portion of the torus. Table 1 summarizes our
averaged results over multiple trials.

3.3. Efficiency

Efficiency was calculated by comparing the time required for our technique to segment all slices of an orientation
to the time needed for performing 2D Livewire on each slice. Due to poor image quality or user mistakes, contour
errors may occur with 3D Livewire; thus, the time it takes to correct them is included in the time measurements as
well. Trials for each task were performed and their task times were averaged prior to comparison (table 2). Total
processing time naturally increased for volumes with high shape complexity. This is because more user-guided
Livewire contours are needed to fully characterize the object and connect the various turtle tracks together
into valid maps. As the number of user-guided contours increases, so does the total amount of intersection
points found for each unseen slice. Since each seedpoint must ultimately be subjected to the computationally-
expensive graph search algorithm during the Livewire processing step, computation time grows. However, this
higher processing time is counterbalanced by the fact that manual tracing of complex objects requires more user
attention and segmentation time for an accurate delineation. Our results show that our method is able to achieve
these complex segmentation tasks in roughly 20% of the time it takes to delineate all slices using 2D Livewire.

4. CONCLUSIONS

We presented a new powerful highly-automated 3D segmentation technique that extends and enhances our 3D
Livewire-based semi-automated segmentation technique that was previously proposed.5 This enhanced algo-
rithm is capable of handling arbitrary object shapes, including object concavities, protrusions, and non-spherical
topology, and is robust to handling real medical images. Moreover, we have shown that this method results in a
high degree of segmentation reproducibility, task time reduction, and accuracy.

Development of this framework is ongoing. Enhancing accuracy and robustness are the primary focus, and
techniques to automatically refine the generated contours are being explored. Also, the algorithm is being further
modified to be more tolerant to errors attributed to user-mistakes. Lastly, efficiency is being improved so that
real-time, on-the-fly segmentation capabilities can be added to our application.

Table 2. Summary of segmentation times required to delineate the examples of the left-caudate mask, the noisy torus,
and the left and right ventricles. Also, the task time reduction of our proposed method compared to performing 2D
Livewire on each slice is provided.

of Trials Avg. user interac-
tion time with our
tool (s)

Avg. automatic
processing time of
our tool (s)

Avg. time required
for manual correc-
tions (s)

Caudate mask 5 128 22 80

Torus(SNR=0dB) 5 82 13 19

L+R ventricles 3 537 75 42

of Trials Avg. total time
using our tool (s)

Avg. task time
using 2D Livewire
for all slices (s)

Fraction of time
needed compared
to 2D Livewire

Caudate mask 5 230 1265 18.2 %

Torus(SNR=0dB) 5 114 523 21.8 %

L+R ventricles 3 654 4267 15.3 %

5. ACKNOWLEDGEMENTS

The medical data presented in this paper was provided by Dr. Martin McKeown of the Department of Medicine
at the University of British Columbia, Vancouver.

REFERENCES
1. J. Rajapakse and F. Kruggel, “Segmentation of MR images with intensity inhomogeneities,” Image and

Vision Computing 16, pp. 165–180, 1998.
2. K. Lu and W. Higgins, “Improved 3D live-wire method with application to 3D CT chest image analysis,”

Proceedings of SPIE Medical Imaging: Image Processing 6144, pp. 189–203, 2006.
3. R. Saboo, J. Rosenman, and S. Pizer, “Geointerp: Contour interpolation with geodesic snakes,” The Insight

Jounal , July 2006.
4. A. Souza, J. Udupa, G. Grevera, D. O. Y. Sun, N. Suri, and S. M, “Iterative live wire and live snake:

New user-steered 3D image segmentation paradigms,” Proceedings of SPIE Medical Imaging: Physiology,
Function, and Structure from Medical Images 6144, pp. 1159–1165, March 2006.

5. G. Hamarneh, J. Yang, C. McIntosh, and M. Langille, “3D live-wire-based semi-automatic segmentation of
medical images,” Proceedings of SPIE Medical Imaging: Image Processing 5747, pp. 1597–1603, 2005.

6. W. Barrett and E. Mortensen, “Interactive live-wire boundary extraction,” Medical Image Analysis 1,
pp. 331–341, 1997.

7. A. Falcao and J. Udupa, “Segmentation of 3D objects using live wire,” Proceedings of SPIE Medical Imaging:
Image Processing 3034, pp. 228–235, 1997.

8. S. Olabarriga and A. Smeulders, “Interaction in the segmentation of medical images: A survey,” Medical
Image Analysis 5, pp. 127–142, 2001.

