
BRAIN IMAGING MUMFORD-SHAH for 3D TENSOR FIELD

• Neuronal bundles form structural connections between various brain regions 
• Brain areas ‘communicate’ through these connections
• Connections’ abnormalities are indicative of brain diseases
• Water diffuses faster along the neuronal tracts and slower across them
• Diffusion weighted MRI measures diffusion rates along various directions
• Assuming Gaussian diffusion, we obtain a field of 3 × 3 positive definite 

matrices
• Main eigenvectors give main diffusion directions, thus neuronal tracts 

directions

MUMFORD-SHAH for 2D SCALAR FIELD

CONCLUSIONS and FUTURE WORK

• Managed to segment simple cases of synthetic data
• Aim to use better optimization algorithms than gradient descent 

to address the non-convexity issue
• Aim to then test the algorithm on brain images
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Given a positive definite 3 × 3 tensor (matrix) field 𝑇𝑇∗ on a 3D bounded domain Ω, with
• Spectral decomposition    𝑇𝑇∗ = 𝑉𝑉Λ∗𝑉𝑉𝑇𝑇

• Eigenvectors                      𝑉𝑉 = (𝑉𝑉1 𝑉𝑉2 𝑉𝑉3)
• Eigenvalues Λ∗ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝛼𝛼1∗, 𝛼𝛼2∗, 𝛼𝛼3∗

Let 𝜙𝜙 be a smooth function with 𝜙𝜙 = 0 level surface dividing Ω = Ω+ ∪ 𝜙𝜙 = 0 ∪ Ω−

Let 𝑇𝑇± be smooth approximations of  𝑇𝑇∗ on the respective regions Ω±, with 
• Spectral decompositions   𝑇𝑇± = 𝑈𝑈± Λ± 𝑈𝑈± 𝑇𝑇

• Eigenvectors                     U± = (𝑈𝑈1
± 𝑈𝑈2

± 𝑈𝑈3
±)

• Eigenvalues                       Λ± = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝛼𝛼1
±, 𝛼𝛼2

±, 𝛼𝛼3
± (with 𝛼𝛼𝑘𝑘

± = ∫Ω± 𝛼𝛼𝑘𝑘∗ 𝑑𝑑𝑑𝑑)

• Alignment measure  𝐴𝐴𝑘𝑘
± = 𝛼𝛼𝑘𝑘

± 𝛼𝛼𝑘𝑘
±𝑈𝑈𝑘𝑘

± − ∑𝑚𝑚=1
3 𝛼𝛼𝑚𝑚∗ 𝑈𝑈𝑘𝑘

± ⋅ 𝑉𝑉𝑚𝑚 𝑉𝑉𝑚𝑚

Let 𝐺𝐺𝑘𝑘
± = ∑𝑖𝑖=13 𝛻𝛻𝑈𝑈𝑖𝑖𝑖𝑖

± 𝛻𝛻𝑈𝑈𝑖𝑖𝑖𝑖
± 𝑇𝑇

be the structural tensor of vector 𝑈𝑈𝑘𝑘
± (note 𝑑𝑑𝑈𝑈𝑘𝑘

± = 𝑑𝑑𝑥𝑥𝑇𝑇𝐺𝐺𝑘𝑘
±𝑑𝑑𝑑𝑑), with

• Largest eigenvalue 𝜆𝜆𝑘𝑘
±

• Corresponding  eigenvector 𝜃𝜃𝑘𝑘
±

• Diffusion tensor 𝐷𝐷𝑘𝑘
± = 𝐻𝐻 𝜙𝜙 𝜃𝜃𝑘𝑘

± 𝜃𝜃𝑘𝑘
± 𝑇𝑇

(𝐻𝐻 Heaviside function )

Define the following energy functionals
• Fidelity           𝐸𝐸1 = ∫Ω± 𝑇𝑇𝑇𝑇 𝐵𝐵± (𝐵𝐵± 𝑇𝑇)𝑑𝑑𝑑𝑑 (where   𝐵𝐵± = 𝑇𝑇∗ − 𝑇𝑇±)

• Level surface area 𝐸𝐸2 = ∫Ω 𝛻𝛻𝐻𝐻 𝜙𝜙 𝑑𝑑𝑑𝑑

• Eigenvectors smoothness 𝐸𝐸3 = ∑𝑘𝑘=13 ∫Ω 𝜆𝜆𝑘𝑘
±𝐻𝐻 𝜙𝜙 𝑑𝑑𝑑𝑑

• Ortho-normality constrain   𝐸𝐸4 = ∫Ω𝐻𝐻 𝜙𝜙 ∑𝑝𝑝,𝑞𝑞=1
3 𝜂𝜂𝑝𝑝𝑝𝑝± 𝑈𝑈𝑝𝑝± ⋅ 𝑈𝑈𝑞𝑞± − 𝛿𝛿𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑

Resulting Euler-Lagrange evolution of  𝑈𝑈𝑘𝑘
± is  
𝜕𝜕𝑈𝑈𝑘𝑘

±

𝜕𝜕𝜕𝜕
= −𝐿𝐿𝑘𝑘

± + ∑𝑞𝑞=13 𝐿𝐿𝑞𝑞± ⋅ 𝑈𝑈𝑘𝑘
± 𝑈𝑈𝑞𝑞±

Here   𝐿𝐿𝑖𝑖𝑖𝑖
± = −𝜇𝜇𝛻𝛻 ⋅ 𝐷𝐷𝑘𝑘

±𝛻𝛻𝑈𝑈𝑖𝑖𝑖𝑖
± + 2𝜆𝜆𝐴𝐴𝑖𝑖𝑖𝑖

± 𝐻𝐻 𝜙𝜙 . The first term is a diffusion term along the main eigenvector 𝜃𝜃𝑘𝑘
± of  𝐺𝐺𝑘𝑘

± ,  
and  the second fidelity term tries to align the main eigenvectors of 𝑇𝑇∗ and 𝑇𝑇±

Resulting Euler-Lagrange evolution of  𝜙𝜙 is

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛿𝛿𝜖𝜖 𝜙𝜙 𝜈𝜈𝛻𝛻 ⋅
𝛻𝛻𝜙𝜙
𝛻𝛻𝜙𝜙

+ 𝜆𝜆 𝑑𝑑2 𝑇𝑇∗, 𝑇𝑇+ − 𝑑𝑑2 𝑇𝑇∗, 𝑇𝑇− + 𝜇𝜇 �
𝑘𝑘=1

3

𝜆𝜆𝑘𝑘+ −�
𝑘𝑘=1

3

𝜆𝜆𝑘𝑘−

+𝛿𝛿𝜖𝜖 𝜙𝜙 �
𝑝𝑝,𝑞𝑞=1

3

𝜆𝜆𝑝𝑝𝑝𝑝+ 𝑈𝑈𝑝𝑝+ ⋅ 𝑈𝑈𝑞𝑞+ − 𝛿𝛿𝑝𝑝𝑝𝑝 − �
𝑝𝑝,𝑞𝑞=1

3

𝜆𝜆𝑝𝑝𝑝𝑝− 𝑈𝑈𝑝𝑝− ⋅ 𝑈𝑈𝑞𝑞− − 𝛿𝛿𝑝𝑝𝑝𝑝

where 𝛿𝛿𝜖𝜖 𝜙𝜙 is the Dirac delta function. Here 𝜙𝜙 = 0 is evolved  to reduce the differences between 𝑇𝑇∗ and 𝑇𝑇± in each 
respective region Ω±, while maintaining a small gradient of the eigenvectors 𝑈𝑈𝑘𝑘

± away from the level surface. This is 
done while trying to reduce the irregularity and surface area of 𝜙𝜙 = 0

SIMULATIONS for SYNTHETIC DATA  

Bebart Janbek, Brian Booth, and Ghassan Hamarneh

Medical Image Analysis Lab, Computing Science, Simon Fraser University, Canada 

A Tensor Field Mumford-Shah Segmentation of Neural Pathways in DW-MRI

𝜙𝜙 divides into 3 regionsNon-smooth image 𝑇𝑇∗

Smooth 𝑇𝑇−|𝜙𝜙<0 ≈ 𝑇𝑇−|𝜙𝜙<0 Smooth 𝑇𝑇+|𝜙𝜙>0 ≈ 𝑇𝑇∗|𝜙𝜙>0

Initialize 𝜙𝜙

Segmented Image

Evolve & to minimize: 
, & Curve Length

Semi-annulus
main eigenvector following the 
annulus direction. Background 
is anisotropic with main 
eigenvector perpendicular to 
page. Horizontal cross-section 
shown

Fiber perpendicular to page
Main eigenvector pointing 
vertically. Background is 
anisotropic with main 
eigenvector pointing diagonally. 
Horizontal cross-section shown

Helix perpendicular to page
Main eigenvector following the helix direction. Background is 
isotropic. Horizontal cross-sections shown

Initialize 𝑇𝑇±
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