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Abstract
Image segmentation is often performed via the minimization of an energy func-

tion over a domain of possible segmentations. The effectiveness and applicability
of such methods depends greatly on the properties of the energy function and its
domain, and on what information can be encoded by it. Here we propose an energy
function that achieves several important goals. Specifically, our energy function is
convex and incorporates shape prior information while simultaneously generat-
ing a probabilistic segmentation for multiple regions. Our energy function repre-
sents multi-region probabilistic segmentations as elements of a vector space using
the isometric log-ratio (ILR) transformation. To our knowledge, these four goals
(convex, with shape priors, multi-region, and probabilistic) do not exist together in
any other method, and this is the first time ILR is used in an image segmentation
method. We provide examples demonstrating the usefulness of these features.

1 Introduction
Image segmentation is a fundamental task in computer vision, and many segmentation
algorithms can be formulated as energy minimization problems. These energy func-
tions encode a wide variety of information designed to increase the accuracy of the
segmentation.

In this paper, we will focus on constructing an energy function that achieves four
important goals. We will show how our choice of segmentation representation allows
us to achieve these goals simultaneously. The four goals are:

1. To make our energy function convex. Even if a nonconvex energy function can
provide good results in practice, it can still give poor results with certain ini-
tializations, rendering the method difficult to evaluate and less robust. Convex
energy functions are not as sensitive to initialization and can often be minimized
more quickly than nonconvex energies.



2. To incorporate a shape prior into our energy function. Energy functions with
shape priors allow for more accurate segmentation of regions that are not readily
described using image information alone, and allow the segmentation of images
that would otherwise be too noisy. Statistical analysis of training data, for exam-
ple principal component analysis (PCA), is often performed on training data to
obtain a prior distribution of the shape space. Enforcing the shape prior can be
done by restricting segmentations to the span of the modes of greatest variance
in the training data [8].

3. To enable our energy function to encode multi-region segmentations. An en-
ergy function that explicitly handles multi-region segmentation is important, as
many energy functions designed for binary segmentation do not extend well to
multi-region segmentation due to the added complexity. Explicitly multi-region
algorithms capture interactions between regions easily [19, 3].

4. To enable our energy function to encode probabilistic segmentations. Proba-
bilistic segmentations contain more information than crisp (non-probabilistic)
segmentations, and by analyzing both the absolute probabilities and their rela-
tive values, we gain a richer statistical understanding of the variability and uncer-
tainty in region boundaries. We note that probabilistic segmentations are more
than just relaxed 0− 1 segmentations; they should have some statisitcal ground-
ing [11, 25, 21].

We note that pose estimation is another important goal in image segmentation, but
it is not included in the above goals due to the fact that including pose parameters
into an energy function while maintaining convexity is an unsolved problem. Thus, to
maintain convexity, our energy functional does not minimize pose parameters explic-
itly. However, we do discuss a method for pose estimation, if convexity is not enforced,
in Sec. 2.3.

The work required for minimization varies greatly between energy functions. How
successfully information can be encoded in an energy function and how optimally it
can be minimized depends on how segmentations are represented, as this determines
the domain of the energy function. A key step in developing our method is the use
of a segmentation representation encoding a multi-region probabilistic segmentation
as an element of a vector space. To provide context, we will discuss some existing
segmentation representations and how the methods that use them relate to the goals
(convex, with shape prior, multi-region, and probabilistic). All of the methods surveyed
below include some but not all of these goals (Table 1).

A segmentation’s boundary can be specified explicitly using parametic representa-
tions [14, 6]. There are difficulties in extending this type of representation to handle
multiple regions, topological adaptability, or higher dimensions. These drawbacks have
sparked research on level-set representations [17, 16], a popular example of which is
signed distance maps (SDMs). SDMs have two main drawbacks: SDMs are not closed
under linear combinations, which creates difficulties when trying to perform statisti-
cal analysis [20]; and energy functions over SDMs are generally not convex mainly
because the constraints enforcing unity gradient magnitude are nonconvex [7].
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Table 1: A comparison of certain features of popular algorithms and our proposed
algorithm.

Features

Methods Convex Shape Multi- Probab-
Energy Prior Region ilistic

[4]
√

X X
√ ∗

[13]
√

X
√ † X

[23]
√ √ ‡ X X

[24] X
√ √

X
[19, 3, 9]

√
X

√
X

[15, 18, 26]
√

X
√ √ ∗

[22]
√ √ ‡ √

X
[20] X

√ √ √

[11]
√

X
√ √

[8]
√ √

X
√

Our Method
√ √ √ √

∗ Relaxed 0-1 segmentations could be informally treated as probabilities.
† Allows only limited regional interaction terms.
‡ Only applicable to restricted classes of shapes.

A characteristic function is an alternative segmentation representation which as-
signs every region an integer from 0 to (D − 1), where D is the number of regions,
and assigns one of those numbers to each pixel. These often lead to nonconvex discrete
constraints that make global optimization difficult [4]. Techniques to globally optimize
these representations via relaxation have been introduced [4, 3]; however, these meth-
ods do not include shape priors. Further, the resulting relaxed segmentations do not
have the statistical basis to be considered probabilities.

The success of constraint relaxation suggests using continuous representations, e.g.
assigning a vector of regional probabilities to each point in the image. In [11], Grady’s
random walker algorithm (RW) uses a probabilistic segmentation of this nature in a
convex, multi-region method, but no ways of enforcing a shape prior for RW while
maintaining its convexity are known. In [20], Pohl et al. transform SDMs to probabil-
ity maps, thereby allowing the construction of a statistical shape prior. The resulting
energy’s convexity is not guaranteed, however. In [8], Cremers et al. incorporate a
statistical shape prior into a convex energy function that generates a probabilistic seg-
mentation; however, no extension of this scheme to multi-region segmentation has been
presented.

In this paper, we achieve the four goals (convexity, shape prior, multi-region, and
probabilistic) by using a new representation of a segmentation based on performing
the isometric log-ratio (ILR) [10, 5] transformation on the multi-regional probabilities,
bijectively mapping a probabilistic segmentation to a point in a vector space of real
numbers. This mapping removes the need for constraints to guarantee a valid seg-
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mentation [8] (with the probabilities at each pixel summing to unity). We will train
multi-region probabilistic shape priors in the vector space provided by ILR and, using
those, we will define a convex energy function that captures image and shape prior in-
formation. As summarized above and in Table 1, we do not know of any other methods
that achieve these four goals without significant restrictions on the type of shape prior.

2 Method
We start in Sec. 2.1 with a review of the method from Cremers et al. [8], as we will
later extend this convex method to multi-region segmentation and remove the need for
constraints in the optimization process. To do this, we use an alternate representation
of a segmentation involving ILR, described in Sec. 2.2. We then describe our proposed
method in Sec. 2.3.

2.1 Convex binary segmentation with shape prior
Following [8], we will define a convex energy functional as the sum of convex terms :

E(q) = EEdge(q) + ERegion(q) + EShape(q) . (1)

A binary segmentation is represented by a function q : Ω → [0, 1] that maps points
on the image domain Ω to probabilities. This probabilistic representation makes it so
that convex combinations of segmentations are still functions from Ω to [0, 1], and thus
correspond to valid segmentations.

To define a shape energy term, we need to construct a shape prior. Still following
[8], given a set of training segmentations {q1, . . . , qm}, a shape prior is constructed
by finding the mean of the training data, q0, and performing PCA to find the data’s
eigenmodes. Segmentations are represented by introducing a new dependent variable,
α, to q such that q(x, α) = q0(x) + Ψ(x)α, where x ∈ Ω, Ψ is a matrix with the K
eigenmodes of greatest variance as its columns, and α ∈ RK weights the eigenmodes.

Writing E as a function of α, it will still be convex since q(x, α) is linear in α.
Many works focus on developing convex EEdge and ERegion terms, either directly
over probabilities or as relaxations of crisp terms. As developing novel energy terms
is not the goal of this work, we refer the reader to some such works [15, 18, 26] for
example terms. We use an EShape of the form:

EShape(α) = αTΛ−1α , (2)

where Λ is chosen to provide a Mahalanobis type energy term, penalizing the eigen-
mode weights α according to the corresponding variances. Since all terms are convex,
with EShape(α) being strictly convex, E(α) will have a unique global minimum when
it is optimized, i.e.

αmin = min
α
E(α) , (3)

then the corresponding segmentation is expressed as

qmin = q0 + Ψαmin . (4)
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However, qmin must be restricted to the range [0, 1], and thus (3) requires constraints.
Specifically, α is constrained to the convex domain {α|q(x, α) ∈ [0, 1] for all x ∈ Ω}.

If we can represent probabilistic segmentations by elements of a vector space and
then define energies over this vector space, then we will not need explicit constraints
on our energy minimization, as any element of the vector space will correspond to a
valid segmentation. We will do this by mapping probabilities in the range [0, 1] to
real numbers using the ILR transform [10, 5]. We note ILR is defined for probability
vectors of any length, allowing us to easily handle multiple regions. Thus our main
improvements to the above method are the extension to multi-region segmentation and
the removal of constraints from the optimization.

2.2 Multi-region probabilistic segmentation representation using
ILR

In this section, we will describe a method for representing an arbitraryD region proba-
bilistic segmentation as an element of a vector space. In the next section we will discuss
the application of this representation to convex multi-region probabilistic segmentation
with shape prior.

We represent the probabilistic segmentation of an image intoD regions as a vector-
valued function over Ω using the ILR transform [10, 5]. We use the ILR transform
because it has several desirable properties: the transformed probabilities form a vector
space; it is an isomorphism between the probability simplex and vectors of real num-
bers; and it is symmetric between regions. We note that while the LogOdds transform
[20] maps probabilities to a vector space, it is not an isomorphism. We will see that
using an isomorphic transform like ILR allows us to construct energy functionals in the
transformed space whose meanings we can relate intuitively back to properties of the
probabilities.

We define SD to be the simplex of all D-length probability vectors. SD is a D − 1
dimensional inner product space [10, 1] with an inner product defined as

〈p, q〉a =

D∑
d=1

log

(
pd

µg(p)

)
log

(
qd

µg(q)

)
, (5)

where p, q ∈ SD and µg(v) is the component-wise geometric mean of a vector v. This
inner product, known as the Aitchison inner product [1], can also be used to define the
Aitchison distance metric on SD:

da(p,q) =

[
D∑
d=1

(
log

pd
µg(p)

− log
qd

µg(q)

)2
] 1

2

. (6)

We represent the ILR transformation (including the background) by a function
φD−1 : SD → RD−1. Using the Aitchison inner product and following Egozcue
et al. [10], we define an orthonormal basis, BE , over the simplex SD, where BE =
{e1, . . . , eD−1} with ei ∈ SD ∀ i, such that 〈ei, ej〉a = 1 if i = j and 0 otherwise. We
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use

ei,j =
1

Z
exp



√

1
i(i+1) if j ≤ i

−
√

i
i+1 if j = i+ 1

0 o.w.


 (7)

where Z ensures ei sums to 1.
φD−1 is the Aitchison-based projection onto BE :

φD−1(p) = [〈p, e1〉a, . . . , 〈p, eD−1〉a] ∈ RD−1 . (8)

It is shown in [10] that the Aitchison distance between p1 and p2 equals the Euclidean
distance between φD−1(p1) and φD−1(p2), i.e. the transformation is isometric.

We use the convention that if q : Ω→ SD is a vector-valued function representing
a D-region probabilistic segmentation then η = φD−1(q) : Ω → RD−1. We note
that since φD−1 is bijective, η is a vector-valued function that corresponds to a unique
multi-region probabilistic segmentation. We will refer to the space of all segmentations
represented this way as η-space.

2.3 Convex energies with shape prior in ILR space
We define an energy as a functional of η similar to (1):

E(η) = EEdge(η) + ERegion(η) + EShape(η) . (9)

Unlike (1), this energy supports multi-region segmentation. We will assume E and all
of its components are convex.

As our final probabilistic segmentation will be q = φ−1
D−1(η), it is important to

examine how q is affected by the minimization of E(η). We gain insight into the rela-
tionship between q and η by looking at a convex energy functionalE(η) as a functional
E∗(q):

E∗(q) = E(φD−1(q)) = E(η) (10)

where E∗ is the pullback of E by φD−1. As the range of φD−1 is SD, the functional
E∗ is only defined for functions that range over SD. Theorems 1 and 2 below show that
E∗ is quasi-convex in q. Thus the global minima of E∗(q) could be found directly, but
we will instead take the approach of minimizing the convex E(η) and then using φ−1

D−1

to find a global minima of E∗(q). The following theorems demonstrate that finding
a global minima of E(η) is equivalent to finding a global minima of E∗(q), and thus
minimizing E(η) gives an optimal segmentation.

Theorem 1. If E∗(q) has a critical point at q1, then E(η) has a critical point at
η1 = φ1(q1).

Proof. Proof by contradiction: Since q∗ is a critical point of E∗, then there exists no
function g such that

E∗(q∗ + εqg) < E∗(q∗) , (11)

6



0 0.5 1
0

20

40

q

E
*

−5 0 5
0

20

40

η

E

Figure 1: An example of how if η = φ1(q) and E(η) is convex in η, then the domain of
E∗(q) = E(φ1(q)) is restricted to functions taking values in [0, 1]. E∗ is quasi-convex in q,
thus E∗ can be globally minimized with no constraints required.

for any εq sufficiently close to 0. Now assume η∗ is not a critical point of E(η). Then
there exists some function f such that

E(η∗ + εf) < E(η∗) , (12)

for any ε sufficiently close to 0. Let J(η) be the Jacobian of φ−1
D−1, then using the linear

approximation of φ−1
D−1 and little o notation,

φ−1
D−1(η∗ + εf) = φ−1

D−1(η∗) + εJ(η∗)f + o(‖εf‖) (13)

= q∗ + εJ(η∗)f + o(ε) . (14)

Now

E∗(q∗) = E(η∗) (15)
> E(η∗ + εf) (16)

= E∗(φ−1
D−1(η∗ + εf)) (17)

= E∗(q∗ + εJ(η∗)f + o(ε)) . (18)

Since φ−1
D−1 is a smooth mapping from RD−1 to SD, the absolute value of all compo-

nents of J(η) are bounded as long as η does not approach ±∞. Thus we can define a
function g and a constant εq such that

εqg = εJ(η∗)f + o(ε) , (19)

and then we can make εq arbitrarily small by making ε smaller. Thus we have found
a function g that satisfies (11), and thus derived a contradiction. Thus η∗ must be a
critical point of E(η).

Theorem 2. Let Hmin be the set of global minima of E(η),

Hmin = {η1|E(η1) = min
η
E(η)} . (20)
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Then Gmin = φ−1
1 (Hmin) satisfies

Gmin ⊆ {q1|E∗(q1) = min
q
E∗(q)} , (21)

that is, Gmin is a subset of all global minima of E∗(q).

Proof. Proof by contradiction. Assume

qmin = argmin
q

E∗(q) , (22)

and for some q1 ∈ Gmin,

E∗(qmin) < E∗(q1) . (23)

Let η1 = φD−1(q1) and ηmin = φD−1(qmin). Then

E∗(qmin) < E∗(q1) (24)
E(φD−1(qmin)) < E(φD−1(q1)) (25)

E(ηmin) < E(η1) , (26)

but this is a contradiction since η1 ∈ Hmin and thus

η1 = argmin
η

E(η)⇒ E(ηmin) ≥ E1(η1) , (27)

and thus

q1 ∈ Gmin ⇒ q1 = argmin
q

E∗(q) . (28)

Theorems 1 and 2 imply that wherever E∗(q) has a critical point, it must be a
global minimum, and by finding a global minimum of E(η) and applying φ−1

D−1, we
find a global minimum of E∗(q). However, E∗(q) is not guaranteed to have positive
second derivative everywhere, and thus it is only guaranteed to be quasi-convex. Fig.
1 shows how a specific example of E and E∗ relate.

As in Sec. 2.1, to define our shape energy term, we will construct a shape prior
using PCA. Given a set of probabilistic training segmentations, we will create segmen-
tations in η-space, {η1, . . . , ηm}, by applying φD−1. Since φD−1 is not defined for
probability vectors that include 0’s or 1’s, 0’s and 1’s are replaced in the multi-region
training data with ε and (1 − (D − 1)ε), respectively. We then perform PCA on this
training data. As we are performing PCA on all of the regions simultaneously, PCA
will capture not only the variations of individual regions but the interactions between
regions (i.e. the joint probabilities).

PCA yields the mean of {η1, . . . , ηm}, η0, and a matrix Γ who’s columns are their
K eigenmodes of greatest variance. As with q(x, α) in Sec. 2.1, we will enforce
the shape prior by introducing a new dependent variable, γ, to η such that η(x, γ) =
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η0(x) + Γ(x)γ, where x ∈ Ω and γ weights the eigenmodes. For any fixed γ, η(x, γ)
represents a probabilistic segmentation. We redefine E as a (convex) function of γ.

Examples of convex energy terms in η space are easily constructed due to the iso-
morphic nature of the ILR transform. EEdge terms usually involve the difference in q
between neighboring pixels, so replacing q with η should give a useful EEdge based
on Aitchison instead of Euclidean distance. We do not explore edge terms in depth,
however, as we found EShape provided adequate regularization in our results. As a
convex ERegion(γ), we use:

ERegion =

∫
x∈Ω

da(p(x), q(x))2dx , (29)

where p : Ω → [0, 1] are the regional intensity prior probabilities. The Maha-
lanobis type energy term used in (2) can be used here as a strictly convex example
of EShape(γ).

We minimize the energy function:

γmin = min
γ
E(γ) , (30)

and take as our probabilistic segmentation

qmin = φ−1
D−1(η0 + Γγmin) . (31)

In this method, we are performing PCA on functions ranging over RD−1, so the
minimum of our energy function is guaranteed to correspond to a valid segmentation
and our energy function can be optimized without constraints. As our ERegion and
EShape are derived from training data, both of these terms can be viewed as negative
log-likelihoods of Gaussian priors over η derived from the shape analysis and regional
intensity profiles, respectively. E(γ) is a strictly convex energy function that includes
a shape prior and can be globally minimized without constraints to give a multi-region
probabilistic segmentation; therefore, this segmentation approach is the first technique
to realize the four stated goals.

If we wish to estimate pose, we note that since η is a function from Ω ⊂ Rd
to RD−1, we can express a rigid body transformation as η′(x) = η(Rx + t), where
x ∈ Ω, R is a rotation matrix, and t is a translation vector. If u is a pose parameter
(translation distance or rotation angle), we can update it by calculating the derivative

∂E

∂u
= (∇ηE) ·

(
∂η

∂u

)
, (32)

and then performing gradient descent. Thus pose estimation can be included by itera-
tively solving (30) and then updating the pose parameters for the resulting segmenta-
tion. To do this, we would have to sacrifice the overall convexity of our method, so we
often rely on affine pre-registration of novel images to provide adequate alignment.

3 Results
When testing our algorithm, we focus on two things: showing it provides accurate
segmentations of images, and showing how our four goals make our energy robust
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Image GT Seg. Training Data Examples

Figure 2: (Color Figure) Segmentation of synthetic images. For each of the three rows we
see from left to right: the original image, its ground truth segmentation, the segmentation our
method generated, and three examples of the training data. These figures show the shape prior
overcoming occlusion, noise, and regions with similar intensity profiles. We note that blurred
areas of the probabilistic segmentations (near region boundaries or occluded areas) correspond
to areas of greater uncertainty (cf. Figure 6).

and useful. We compare the results achieved by our method, which satisfies the four
aforementioned goals, to other methods that fail to satisfy one or more of these four
goals (Table 1). We show how turning off the shape prior greatly reduces the accuracy
of the segmentation . We show the benefits of multi-region segmentation over a binary
method like [8]. We compare to LogOdds [20] to demonstrate the benefits of having a
convex method while retaining the remaining 3 goals. We also demonstrate the benefits
of a probabilistic segmentations.

While a PCA-based shape space won’t contain the exact ground truth, we can
project the ground truth onto the shape space to find the best possible result. This
lets us differentiate error in the energy from error in the shape space. Specifically, if
qgt is the ground truth and qproj is its projection onto the shape space, referred to as
the projected ground truth, then

qproj = φ−1
D−1(η0 + ΓΓT (φD−1(qgt)− η0)) . (33)

In the following, we demonstrate our method using both synthetic and real exam-
ples. We begin with the synthetic images seen in Figure 2. A shape model is trained
using 1000 training segmentations from similar images and finding their K = 500
largest variance eigenmodes. Some examples of the training segmentations are shown.
These synthetic images show how our shape prior can overcome occlusion, noise, and
regions with similar intensity profiles.

We demonstrate the usefulness of our goals when segmenting real data. We took
20 magnetic resonance imaging (MRI) slices of size 60×160 of different brains, along
with crisp expert segmentations of the images into D = 4 regions: white matter, gray
matter, cerebrospinal fluid (CSF), and background. These slices were affinely regis-
tered to create 20 aligned 2D images and their corresponding ground truth segmen-
tations. Following [12], we address the problem of limited training ground truths by
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Image Ground Truth Projected GT Seg. w/o
Shape Priors

Seg. with
Shape Priors

Figure 3: (Color Figure) Examples of our segmentation algorithm applied to axial brain slice
images. We see the shape prior greatly improves the segmentation. In most color figures of
brain images seen here, red corresponds to CSF, green to gray matter, blue to white matter,
and black to background. In gray scale images, lighter shades correspond to higher intensi-
ties/probabilities/entropies.

deforming each of these images 200 times to varying degrees to create 4000 training
samples. This will increase the size of the shape space, allowing more images to be ac-
curately segmented. When an image was segmented, it and all 200 images derived by
deforming it were removed from the training data (i.e. cross validation). TheK = 500
largest variance eigenmodes of the training samples were used to create a shape model.
Since the training data is crisp, we convert it to η-space by creating probabilistic data
using the method described in Sec. 2.3 with ε = 1

100 .
We now demonstrate the power of shape priors in multi-region segmentations. The

fourth column in Fig. 3 shows the resulting multi-region (D = 4) segmentations of
3 of the 20 brain slices without shape prior, e.g. only satisfying the 3 other goals,
like RW [11]. For measuring accuracy, we use the Dice similarity coefficient (DSC)
between a segmentation (thresholded to crisp, and averaged across regions) and its
ground truth (GT). The average DSC of all 20 of the segmentations without a shape
prior was 0.5226 ± 0.1411. The DSC was greatly improved by the inclusion of the
shape prior, to 0.8273± 0.0345. This is close to the DSC of the optimal segmentation
in the shape space (the projected ground truth): 0.9029± 0.0136.

Handling occlusion is a natural way to demonstrate the power of a shape prior. Be-
cause of our shape prior, our segmentation algorithm is able to segment the ventricles
in Fig. 4 despite the fact that they are about partially occluded. Our algorithm approxi-
mates the shape of the left ventricle based on the shape of the right ventricle due to the
lateral symmetry encoded in the shape prior.

Extending this concept to multi-region segmentations, we show how the shape prior
encodes region interactions, which is not possible with binary segmentation methods
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Figure 4: (Color Figure) The segmentation of both an image and the same image partially ob-
structed, demonstrating the usefulness of our shape prior. The DSC of the segmentation without
and with the obstruction is 0.8114 and 0.7995, respectively. Thus, despite the obstruction, the
DSC only drops 1.5%. In 4d and 4h we note the increase in entropy under the obstruction (red
arrow), corresponding to uncertainty in our probabilistic segmentation. Note that while such a
glaring occlusion does not typically appear in MRI images, small artifacts and noise do. This
example is designed to make the effect of the shape prior obvious.

(a) Obs. Image (b) 2 Regions (c) 3 Regions (d) 4 Regions

(e) CSF: GT (f) 2 Regions
Dice = 0.6065

(g) 3 Regions
Dice = 0.6835

(h) 4 Regions
Dice = 0.7335

Figure 5: (Color Figure) An obstructed image is segmented into 2, 3, and 4 regions, showing
how multi-region interactions improve the segmentation of individual regions. The bottom row
shows the ground truth for the CSF and how the CSF’s segmentation improves as more regions
are included.
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(a) Image Inset (b) Close-up (c) Gradient (d) Ground Truth

(e) GT Projected (f) Int. Priors (g) Segmentation (h) Entropy

Figure 6: (Color Figure) Analysis of segmentation uncertainty. A close up of the CSF region
in the center of an image for the purposes of understanding the sources of the uncertainty in
the segmentation, shown by its entropy in the bottom right figure. We can infer the origin the
of entropy of the segmentation (6h) from the intensity priors (6f) and the projected ground truth
(6e). Areas of high intensity gradient (6c) create uncertainty in the intensity prior, and thus in the
segmentation. Areas where the ground truth (6d) and the projected ground truth differ indicate
features not representable by the shape prior, and again this affects the segmentation’s certainty.

like [8]. To demonstrate how this improves the segmentation, we take the extreme
example of completely obstructing the ventricles, and then segmenting the image into
2, 3, and 4 regions (Fig. 5). The segmentation of the obstructed ventricles becomes
more accurate as more regions are considered because the shapes of the other regions
correlate to the shape of the hidden region, improving the segmentation.

To demonstrate the usefulness of a probabilistic segmentation, we return to Fig. 4
and compare the segmentations obtained for the image in Fig. 4a and its obstructed
counterpart, the image in Fig. 4e. We see that in Fig. 4h the obstrusted area has a much
higher entropy (red arrows) than in Fig. 4d, where no obstruction existed.

To further demonstrate the usefulness of a probabilistic segmentation over a crisp
segmentation, we show how uncertainty in a probabilistic segmentation is related to
uncertainty in the intensity and shape priors. In Fig. 6, we have a close up of the
red-colored ventricles in the center of one of the brain slices. In Fig. 6h, we see that
the pixels along the bottom and inside boundaries of the ventricles have high entropy.
This is caused by the large gradient in the image intensity there (Fig. 6c) creating
uncertainty in the intensity prior. In Fig. 6h we see that the pixels corresponding to the
green regions on the outside of either of the ventricles also have high entropy. As the
segmentation in this area differs between the ground truth (Fig. 6d) and the projected
ground truth (Fig. 6e), we deduce that this feature is not easily represented in the
shape space, which creates greater uncertainty in the shape prior. Crisp segmentations
produced by [19, 3, 9, 22] are not be able to highlight these areas of uncertainty.

As our method is strictly convex, no initialization is required. To demonstrate the
advantages of the convexity of our energy, we show how different initializations affect
the results of a non-convex method that achieves our other goals, the LogOdds EM-
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Figure 7: (Color Figure) The results of segmenting a brain slice using the LogOdds method
from [20] with different initializations. The initialization consists of an initial probabilistic seg-
mentation in the shape space and an initial intensity inhomogeneity parameter for each pixel.
When given the optimal initialization (bottow row), a good segmentation is found, having a DSC
of 0.8337. However, when given an initialization of zeros (top row), the results are much worse,
with the resulting segmentation having a DSC of 0.6766. The minimization gets stuck in a local
minimum, as can often happen with non-convex energies. See the second row of Fig. 3 for our
method’s performance on this image (requiring no initialization).

based method from [20]. In Fig. 7, we segment the image from the second row of Fig. 3
using a shape space constructed from the same training data used for our method, again
with K = 500 eigenmodes. The projected GT in this LogOdds shape space has DSC
with the GT of 0.8741, less than the 0.9046 of the projected GT in our shape space.
This may be because converting the GT to an SDM and then back to probabilities using
LogOdds can create inaccuracies.

The LogOdds algorithm takes an element of the shape space and a set of inten-
sity inhomogeneity parameters per pixel as initialization. In the top row of Fig. 7, we
initialize with the mean shape and zeros for the inhomogeneity parameters, resulting
in a poor segmentation with a DSC of 0.6766 with the GT. However, if we use the
GT to find the optimal initialization, we see in the bottom row of Fig. 7 that the re-
sulting segmentation is quite good, with a DSC of 0.8337 with the GT. Given certain
initializations, it is possible for LogOdds to perform well here, but given a standard
initialization, the method gets stuck in local minima corresponding to a poor segmen-
tation. What initializations are “good” cannot necessarily be determined beforehand,
and thus local minima can always cause problems for non-convex methods. Such prob-
lems are avoided with a strictly convex method like ours, whose results are independent
of initialization.

Finally, in Fig. 8, we segment 3 of the vertebrae in an image of a spine. We
found K = 200 eigenmodes from 248 training segmentations. This is another prac-
tical demonstration for the use of a shape prior, as the regional intensity priors and
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Figure 8: (Color Figure) The segmentations of the vertebrae in the image of a spine. Note that
the regional intensities priors and edge terms are weak, so when the shape priors are eliminated
the segmentation is very poor. The images came from the U.S. National Library of Medicine
website at http://archive.nlm.nih.gov/proj/ftp/ftp.php and were accompa-
nied by expert segmentations used as the ground truths.

edge terms are very weak due to the low contrast and similar intensities between re-
gions. This is made clear when the segmentation performed without shape priors is
very different from the ground truth and the DSC drops from 0.8273 with shape priors
to 0.1336 without.

4 Conclusion
We have provided a unique and innovative method for image segmentation that, to
our knowledge, is the first to simultaneously achieve four important goals: convex,
with shape prior, multi-region, and probabilistic. We define a convex energy func-
tion that captures desirable features, like shape and regional priors, to ensure an accu-
rate segmentation. Our algorithm returns a meaningful probabilistic segmentation with
uncertainties that reflect the relative uncertainties inherent in the information used to
build the energy function. We extended our method to multi-region segmentation while
maintaining all of our previous qualities, thus achieving the stated goals. A remaining
challenge is to incorporate pose estimates into our method [8, 24] while maintaining
the four goals.

We have recently explored specific energy terms in ILR space for thigh muscle
segmentation [2], with good results. In the future we will look at other specific energy
terms for different tasks.
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