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Abstract

A method for visualizing high dimensional medical image data is proposed. The method operates
on images in which each pixel contains a high dimensional vector, e.g. a time activity curve (TAC) in
a dynamic positron emission tomography (dPET) image, or a tensor, as is the case in diffusion tensor
magnetic resonance images (DTMRI). A nonlinear mapping reduces the dimensionality of the data to
achieve two goals: Distance preservation and embedding into a perceptual color space. We use multi-
dimensional scaling distance preserving mapping to render similar pixels (e.g. DT or TAC pixels) with
perceptually similar colors. The 3D CIELAB perceptual color space is adopted as the range of the distance
preserving mapping, with a final similarity transform mapping colors to a maximum gamut size. Similarity
between pixels is determined analytically as geodesics on the manifold of pixels or approximated using
manifold learning techniques. In particular, dissimilarity between DTMRI pixels is evaluated via a Log-
Euclidean Riemannian metric respecting the manifold of the rank 3, 2nd order positive semi-definite DTs.
Dissimilarity between TACs is approximated via ISOMAP. We demonstrate our approach via artificial high-
dimensional data, as well as clinical DTMRI and dPET images. Our results demonstrate the effectiveness
of our approach in capturing, in a perceptually meaningful way, important structures in the data.

Keywords: High dimensional data, visualization, color, nonlinear dimensionality reduction, multi-
dimensional scaling, diffusion tensor magnetic resonance imaging (DTMRI), dynamic positron emission
tomography (dPET).

I. INTRODUCTION AND MOTIVATION

High-dimensional data is becoming more prevalent in general. In medical imaging applications, in
particular, the popularity of high-dimensional data is due to several reasons. Advances in acquisition
hardware, such as faster electronics and more sensitive sensors, e.g. Gamma cameras, allow collection
of more anatomical and functional data samples without increasing patient scan-time. Image acquisition
manufacturers are now even designing hybrid imaging machines incorporating multiple modalities, e.g.
hybrid single-photon emission and x-ray computed tomography (SPECT/CT) cameras. Further, multiple
medical imaging modalities are also being spatially aligned, using medical image registration algorithms,
and fused together providing complementary information about the underlying structures and biological
processes within, e.g. T1-weighted, T2-weighted, and Positron Density magnetic resonance imaging
(T1/T2/PD-MRI) is fused with functional MRI (f-MRI). Furthermore, hyper (or multi)-spectral or multi-
energy imaging is becoming more common because it reveals more clinically useful information, as in,
for example, the use of tracers or pharmaceuticals with dual or multiple isotopes in molecular imaging.
The ability to capture and reconstruct dynamic behaviors/kinematics of tracers in tissues is resulting in
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time activity curves (TAC) capturing photon counts recorded at each pixel, e.g. dynamic positron emission
tomography (dPET) and d-SPECT. Additionally, new imaging protocols and modalities are designed from
the outset to capture more exquisite data about the living body, such as brain white matter or cardiac muscle
fiber organization obtained from diffusion tensor MRI (DTMRI) or high angular resolution diffusion
imaging (HARDI). This explosion in the capabilities of medical imaging is, in turn, resulting in higher
dimensional pixels and more complex spatial fields.

For patient-specific diagnosis or therapy, as well as for statistical population-based medical studies,
there is a pressing need to efficiently interpret and analyze such data having increasing dimensionality
and resolution. More specifically, there is a need for accurate, repeatable, and fast medical image analysis
and interpretation algorithms. Medical image segmentation, which partitions an image into (two or
more) different regions, is typically a necessary precursor to performing higher level representation and
understanding of shapes and images. Segmentation methods typically rely on (i) identifying pixels with
similar properties (e.g. CT pixel intensity in Hounsfield Units, DT, or TAC) and grouping them into
homogenous regions; (ii) identifying local regions of pixel dissimilarities, or edges, and linking them to
form separating boundaries between regions; and (iii) incorporating some form of prior knowledge of
the different structural or functional regions to be segmented (e.g. prior knowledge of shape, appearance,
spatial relationships, or temporal dynamics, as well as expert or domain-based knowledge). There are
numerous techniques that attempt to automate this important segmentation step at the crux of the medical
image interpretation task, including region-based approaches (e.g. seed-based region growing), graph-
theoretic methods (e.g. graph cuts, random walker, intelligent scissors), pattern-recognition approaches
(clustering and classification), atlas- or registration-based techniques, energy-minimizing methods (e.g.
parametric or level-sets based deformable models) [24]. The criteria of a correct segmentation are not
universal, although (i-iii) are typically incorporated in these algorithms in different forms.

The majority, if not all, of existing segmentation methods and subsequent interpretation methods rely on
and are sensitive to user-initialized seeds, contours, or gestures, setting of low level parameters, and/or on
an expert validated set of training data. Existing segmentation algorithms are yet to achieve full automation
while producing completely correct results, and hence cannot be relied upon in clinical settings without
user intervention. The fact remains that clinicians and radiologists continue to interpret medical images
by relying largely on visual assessment, in which image partitioning and pixel grouping still relies on
pixel dis/similarities and prior or expert domain knowledge, i.e. i-iii above. However, the segmentation is
carried out largely in an implicit, subconscious way in “the expert’s brain”, in a way that is still not well
understood, but known to benefit greatly from years of medical training and experience. Therefore, it is
important to provide clinicians and radiologists with a medical image display or visualization system that
is faithful to the underlying structural or functional data. The expert’s image interpretation or diagnosis
must not be affected by artificial manifestations of the visualization system, e.g. using inappropriate pseudo
coloring or other rendering effects, that may either camouflage delicate information (false negatives, e.g.
missing a tumor) or artificially introduce information (false positives) thereby misguiding their analysis.

In this work, we address these issues by proposing a high-dimensional medical image data visualization
approach that (a) is faithful to the underlying medical image data; (b) respects models of human perception;
and (c) relies on the essential information needed for segmentation (i-iii above: pixel dis/similarity and
domain expertise). More specifically, in our method, we display high-dimensional medical image data to
the domain expert as color images. The transformation of the high-dimensional data to human perception
is facilitated via a nonlinear mapping that reduces the dimensionality of the data to three color channels
in a way that preserves distances between pairs of pixels on high-dimensional manifolds and at the same
time ensures data embedding into a perceptual color space.
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II. RELATED WORK

There exist numerous approaches for visualization of medical images and high-dimensional data and
a complete survey is beyond the scope of this paper. We focus our review of the state of the art on
approaches related to using color to visualize medical or general high-dimensional data. In [42], Wong
and Bergeron surveyed multidimensional multivariate visualization techniques prior to 1997; their survey
did not address medical image visualization in particular. In [18], Keim explored the formal basis and
design decisions for the visualization of high-dimensional data using pixel-oriented visualization, which
describes how pixel data is arranged and rendered on the screen.

Several methods have used color to visualize high-dimensional data by forming color channel responses
through a linear projection of the original data onto basis functions. In [14], hyper-spectral data was
rendered through projection on bases that reflect, through color-matching functions [43], what the human
visual system would perceive had it been able to cover the range of the hyper-spectral data. Jacobson
et al. proposed a method to design fixed, as in human vision, basis functions [15]. As early as 1973 [27],
different methods were proposed that rely on representing the three color channels through the first three
main data variation modes obtained through principal component analysis (PCA) [38]. Other methods
relied on PCA in conjunction with wavelet methods, for example, by performing PCA on wavelet sub-
bands to enhance edges at specific levels of detail [11] or to perform wavelet-based denoising followed
by PCA [17]. As an alternative to PCA, independent component analysis (ICA) was performed as a
means to reduce the dimensionality of the high-dimensional data into three color channels [40], [7].
Other approaches for high-dimensional visualization relied on providing iconic representation for each
data point [9] or multi-colored texture elements [12]. In [37], the mapping, from high-dimensional pixel
data to 3D color, which maximizes the mutual information between the original hyper-spectral bands and
the color channels was used. In [10], Fang et al. used multi-dimensional scaling (MDS) as an alternative,
nonlinear approach to dimensionality reduction [3]. In their approach, however, high-dimensional pixels,
representing samples of temporal activity, are mapped to 2D in a way that preserves weighted distances
between pixel locations and pixel dissimilarity. The 2D embedding is then used as a widget for specifying
transfer functions for volume rendering.

To the best of our knowledge, works most related to our algorithmic approach are those of Rasche et al.
and Brun et al. In [26], [25], color images (the higher-dimensional data in their case), are reduced for color
deficient, mono- and di-chromats displays. In their paper they highlighted the importance of preserving
contrast and maintaining luminance consistency. They based their method on the premise that perceived
color difference between any pair of colors should be proportional to their perceived gray difference. An
MDS-inspired objective function capturing this relationship was formulated and solved via constrained
majorization [26]. In [4], a method for visualizing DTMRI fiber “traces” was proposed, in which a set of
fiber traces is mapped to lower dimensional Euclidean space using Laplacian eigenmaps. The mapping
was such that similar traces (defined as those with similar endpoints) were mapped to similar points in
low-dimensional RGB color space. In contrast, our proposed method is not specific to color images or
fibre traces, but rather to generic high-dimensional image fields, with a focus in this paper on medical
image data (DTMRI and dPET, in particular). More importantly, we map the high-dimensional data, in
a nonlinear, distance preserving way, into 3D perceptual color space and not to 1D or 2D and not to
RGB. Further, we utilize any available knowledge of the manifold structure of the underlying pixels,
e.g. diffusion tensors dissimilarity between pixels is evaluated via a Log-Euclidean Riemannian metric
respecting the manifold of the rank 3, second order positive semi-definite DTs. When such knowledge
about the manifold structure is absent, we resort to manifold learning techniques to capture dissimilarity
between high-dimensional pixels.
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III. METHOD

A. Overview

Our objective is to present clinicians with images that are displayed and perceived in a way that best
reflects the underlying medical image data. Given our focus on high-dimensional medical image data (e.g.
DTMRI or dPET), where the pixel dimensionality is larger than the three color dimensions, we need to
employ dimensionality reduction. Our goal is that after dimensionality reduction, pixels with similar DT or
TAC pixels should be rendered with colors that are perceived similarly, and vice versa. More generally, we
wish to display image pixels to the user such that pixels with similar high-dimensional data are rendered
using perceptually similar colors (and different pixels using perceptually different colors). This raises two
questions: (i) how to measure pixel dissimilarity and (ii) how to map pixels (with known dissimilarities)
to perceptually meaningful colors. Our method addresses these two issues as follows. First, we assume
that the high-dimensional pixel values are samples from an underlying manifold endowed with a distance
metric. The manifolds are either learned (using manifold learning techniques, e.g. ISOMAP [36] and
Locally Linear Embedding (LLE) [29]), or derived analytically, or approximated, based on the knowledge
of the underlying data. Dissimilarity between any two high-dimensional pixels is measured as the geodesic
distance between the two corresponding points on the manifold. We evaluate the similarity between DT
pixels, in particular, via the Log-Euclidean Riemannian metric, which respects the rank 3 manifold of the
DTs. For dPET, we use ISOMAP to learn the underlying manifold and approximate the distance between
two TACs. Second, given known distance or dissimilarity between any pair of data points, we rely on a
distance preserving mapping into perceptual color space. We use MDS for distance-preserving mapping
in order to render similar DT or TAC pixels with perceptually similar colors. The 3D CIELAB perceptual
color space is adopted as the range of the MDS mapping. A final rotation, scaling, and translation is still
available without changing relative distance, and such a similarity transform is chosen so as to maximize
the color gamut volume occupied.

B. High-dimensional Medical Image Data

We focus on 2D or 3D fields of N pixels, i.e. each N -pixel image is represented as f(x) : x ∈
Rd → Rn, where d is the spatial dimension 2 or 3, with x = (x, y) or x = (x, y, z), respectively, and
n is the dimensionality of the pixel data. At each location a vector f(x) = [f1(x), f2(x), · · · , fn(x)]
is sampled. Note that the intrinsic dimensionality ñ of the data can not be greater than n, i.e. ñ ≤ n.
For cases when n = 1, 2, or 3, then one, two or three color channels can be used without the need for
nonlinear dimensionality reduction. For DTMRI data in particular, n = 6 and f(x) : x ∈ Rd → R6, since
DTs are symmetric 3 matrices with 6 unique elements. Further, DTs must be positive semi-definite (with
nonnegative eigenvalues) since they are interpreted as covariance matrices of 3D Gaussian probability
density functions (PDF). The PDF models the probability of a water molecule diffusing to a particular
location in 3D in a given time due to the underlying Brownian motion of molecules [33], [2]. This positive
semi-definiteness, in turn, results in DTs being restricted to a convex half cone in 6D [23]. Therefore,
dissimilarity between diffusion tensors must be calculated in a way that respects this underlying manifold.

C. Dissimilarity between high-dimensional Medical Image Data: Manifold Learning and Distance Metrics

An important issue in dealing with high-dimensional data is how to measure dissimilarity between
observations. We distinguish between two primary cases: (a) The space of n-D observations forms a
vector (linear) space and (b) when the space is nonlinear. In the vector space case Lp norms such as
L1 (Manhattan), L2 (Euclidean) or related Chebyshev distance (Chessboard distance) can be used. In
the nonlinear case, the observed variables do not form a vector space but rather their allowable values
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are governed by nonlinear relationships forming an ñ-D subspace within the embedding n-D space, with
intrinsic dimensionality ñ ≤ n. For example, in molecular dynamic imaging applications, such as dPET, the
TAC dimensionality n could be, say, 50 (i.e. 50 time samples). Nevertheless, in molecular imaging studies
it is assumed that the underlying biological process can be modeled by a few kinetic parameters (e.g. 4 in
a 2-compartment model) describing the partial differential equation of tracer transport, tissue perfusion,
or tracer binding [5]. In the nonlinear case, we distinguish between two subclasses: (b1) The geodesic
distance on the nonlinear manifold (or dissimilarity between data points) can be calculated analytically
or approximated. In the case of DTMRI, for example, the distance on the manifold of PSD matrices is
well defined and can be approximated numerically [1], [44], [41], [19]. In dPET, the dissimilarity may
be formulated to reflect difference in functional behavior, through difference between kinetic parameters
or system response or using other TAC dissimilarity metrics [10]. (b2) The underlying manifold and
geodesic distance (or dissimilarity between points) are unknown, but many data samples are available. In
this case, methods for learning the manifold structure are needed in order to allow for estimating geodesic
distances and dissimilarity metrics. Given the locally Euclidean property of a manifold, the geodesic
distances between two distant data points on the manifold can be approximated by the smallest possible
aggregate of Euclidean hops between pairs of neighboring data points that connect the two distant points
from start to finish (i.e. geodesic distance approximated by the shortest path made up of small Euclidean
hops). This common approach requires the construction of a graph whose vertices represent the high-
dimensional sample points and whose edge weights are equal to the Euclidean distance between the two
high-dimensional points connected by the edge [36].

Given the set of N high-dimensional, n-D, pixels, such as some or all of the pixels of a DTMRI or
a dPET image, the treatment of any of the above cases (a, b1, or b2) results in an N × N symmetric
distance matrix D whose (i, j)th entry Dij : Rn ×Rn → R+ stores the geodesic distance between the
two values f(xi) at pixel i and f(xj) at pixel j, i.e. Dij = dgeodesic(f(xi), f(xj))

D. Distance Preserving Dimensionality Reduction into Color Spaces

Given our goal of rendering pixels with similar high-dimensional data using similar colors (e.g. pixels
capturing similar diffusion or metabolic processes, in DTMRI or dPET, respectively), and given the typical
3-channel representation of color spaces, the dimensionality of the data at each pixel must be reduced to
3D in such a way that the distances Dij between all pairs of pixels is preserved (as much as possible)
in such a dimensionality reduction. Clearly, linear (such as PCA or ICA [22], [6]), or even nonlinear,
dimensionality reduction techniques that are not designed from the outset to preserve distance will be a poor
choice towards achieving the aforementioned objective. The problem of performing a distance-preserving,
nonlinear transformation of high-dimensional data points to lower dimension can be formulated as an
optimization problem seeking transformation parameters and/or the new lower-dimensional representation
of the data points such that the discrepancy between pairs of distances will be minimized. MDS is a well
known approach that does exactly this [3]. We provide MDS with the N high-dimensional pixels, the
geodesic distance matrix Dij or an approximation thereof, and the target dimensionality: 3, to obtain N
new pixels each of dimensionality 3. Each pixel can now be rendered in color, where the dissimilarity
between colors (be it measured in RGB, HSV, or other color spaces) is equal (as much as possible) to the
dissimilarity between the original pixel data. Our goal, however, is not only to render pixels with color,
but rather to have equal differences between pixels be perceived as equally different. For this we resort
to performing dimensionality reduction into a 3D perceptual color space.
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E. Distance-Preserving Dimensionality Reduction into a Perceptually-Uniform Color Space
To map high-dimensional pixels (such DTMRI or dPET pixels) into 3 dimensional color pixels, to

preserve the pair-wise dissimilarity between pixels during such mapping, and to achieve a perceptual
stimulus in observers (such as clinicians and radiologists), we must choose a perceptually uniform color
space as the 3D range (target) of such a mapping. In a perceptually uniform color space, changes in color
by a certain amount in that color space produce a change in the visual stimulus that is almost proportional
to that amount. Hence, pairs of pixels with dissimilarities Dij will be mapped to colors with perceptual
difference proportional to Dij . Therefore, pixels with similar high-dimensional data will be perceived (in
color) similarly: our original objective. We choose the CIELAB perceptually uniform color space as the
range of the mapping [43]. Given a DTMRI image, for example, with N pixels, with dissimilarity between
pairs of pixels measured using an appropriate DT dissimilarity metric dgeodesic(Ti, Tj) = Dij , where
f(xi) = Ti is a diffusion tensor, the mapping from 6D (dimensionality of the extrinsic or ambient space
of DTs) to CIELAB’s 3D color space will result in corresponding pairs of pixels assigned colors separated
by kDij , where k is a proportionality constant, i.e. perceived as similarly or as differently according to
the value of Dij . Clearly, the range of dissimilarity values between pairs of high-dimensional pixels in
an image may be arbitrarily different than the range of possible Euclidean distances in the CIELAB color
gamut. Therefore, a color normalization step must be performed.

Typically, CIELAB color difference thresholds are dependent on the desired application and thresholds
for perceptibility judgments are significantly lower than thresholds for acceptability judgments. To correlate
with human visual performance, differences in color are defined in terms of Euclidean distance in CIELAB
(or L∗a∗b∗) units. A CIELAB residual, or ∆E∗ab, corresponds approximately to human judgements of
perceptual difference, where CIELAB errors of 2 or 3 represent just noticeable color differences detectable
by humans [35]. A difference of 1 ∆E∗ab is sometimes the tolerance used for accepting or rejecting color
tolerances in e.g. the dying of colored fabrics. Here we are interested in using this perception-based
measure to delineate difference in medical data. Since there is a standard transform from CIELAB to
color, we can indeed display colors according to their discriminability and perceptual distance.

F. Perceptual Color Normalization
Given the difference between the range of Dij values and the range of possible distances in the CIELAB

gamut, a color normalization step is performed to isotropically scale the 3D points to new 3D points that,
ideally, neither lie outside the CIELAB gamut nor leave parts of the gamut unutilized. The isotropy in
the scaling is essential so as to preserve the relative distances between pairs of points. Isotropic scaling
is not the only 3D-3D transformation that can be performed on 3D points that will preserve the relative
pair-wise distances: translations and rotations in 3D can also be performed. Therefore, we formulate the
normalization of the 3D points in the perceptual color space more generally as follows: We seek the 3D
isotropic scaling, translation, and rotation transformation that best utilizes the CIELAB gamut. There can
be several ways to formulate an objective function to capture this general criterion. The approach we adopt
is to specify three key data points (e.g. three DTs) and specify which colors these three samples should
be approximately transformed to. This, actually, is related to the Procrustes alignment or the absolute
orientation problem for two sets of points, which can be solved analytically in closed form to find the
rotation, translation, and isotropic scaling that, when applied to transform one set of points, will yield the
smallest sum of squared distances between corresponding points [39].

G. Algorithm
To summarize the proposed method, algorithm 1 highlights the steps of our algorithms for rendering

images with high-dimensional pixels such that pixels with similar physical characteristics (e.g. brownian
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motion or diffusion or tracer dynamics) are perceived in color similarly.

Algorithm 1 Perceptual Visualization of High Dimensional Data
Input:
• {f(xi)}Ni=1, where f(xi) : xi ∈ Rd → [f1(xi), f2(xi), · · · , fn(xi)] ∈ Rn, i.e. N n-D pixels

forming a d-dimensional image; d=2 for 2D images with xi = (xi, yi) or d=3 for 3D images with
xi = (xi, yi, zi).

• {(f(xi), C(xi)}Pi=1, P ≥ 3, i.e. at least 3 colors C(xi) = [c1(xi), c2(xi), c3(xi)] (e.g. in RGB
space C(xi) = [R(xi), G(xi), B(xi)]) associated with three different pixel values f(xi),
i = 1, · · · , P, P ≥ 3. Without loss of generality, we assume these are the first P elements in
{f(xi)}Ni=1.

• Optionally, dgeodesic(f(xi), f(xj)) : Rn ×Rn → R+; a helper function that calculates the
geodesic distance (or a meaningful dissimilarity metric) between a pair of data points. For two DT
pixels we use the LogEuclidean distance metric [1],
Dij = dTLE

(T1, T2) =
√
trace((logm(T1))− (logm(T2)))2, where T1 and T2 are two DTs and

logm is the matrix logarithm, which is defined via the decomposition T = UΛU t as
logm(T ) = Udiag(log(diag(Λ)))U t.

Output:
• {C(xi)}Ni=1, where C(xi) : xi ∈ Rd → [c1(xi), c2(xi), c3(xi)] ∈ R3, i.e. N 3-D pixels forming a
d-dimensional color (e.g. RGB) image, such that perceptual color distance
dperceptual(C(xi), C(xj)) ∝ dgeodesic(f(xi), f(xj))∀i, j ∈ {1, 2, · · · , N}, i.e. differences between
pixel values are mapped to proportional differences in perception or visual stimulus.

Procedure:
• Step 1. If Dij = dgeodesic(f(xi), f(xj)) is known (e.g. dTLE

for DTs) go to Step 4.
• Step 2. Calculate dEuclidean(f(xi), f(xj)) = |f(xi)− f(xj)|2 ∀i, j ∈ 1, 2, · · · , N s.t. f(xi) is

connected to f(xj) in n-D. One of two connectedness criteria is applied: (i) |f(xi)− f(xj)|2 ≤ ε
(ε-ISOMAP); (ii) f(xi) is connected to its K-closest (using |.|2) neighbors (K-ISOMAP) [36].
This generates a graph G(V,E) whose N vertices correspond to f(xi) and edges connect vertices
that satisfy the connectedness criteria and are weighted by dEuclidean.

• Step 3. Approximate Dij = dgeodesic(f(xi), f(xj)) as the shortest path on the weighted graph
(e.g. using Dijkstra’s algorithm).

• Step 4. Calculate {g(xi)}Ni=1, where g(xi) : f(xi) ∈ Rn → [g1(xi), g2(xi), g3(xi)] ∈ R3, such
that d(g(xi), g(xj)) = dgeodesic(f(xi), f(xj))∀i, j ∈ {1, 2, · · · , N}, or make the difference as
small as possible, i.e. perform Dij distance-preserving dimensionality reduction to 3D using MDS
[3]. The {f(xi)}Pi=1 samples (second input above) are now mapped to {g(xi)}Pi=1 in 3D. All
resulting g(xi) points are in perceptually uniform CIELAB 3D space, however they have arbitrary
scale, rotation, and translation.

continued on the next page...

H. Polynomial Regression for Non-Linear Dimensionality Reduction
MDS (and ISOMAP which utilizes MDS) operates on a dissimilarity matrix D of dimensions equal to

N ×N (where N is the number of pixels in the image). Given that N can be large when operating on 2D
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or 3D images (e.g. a small 1003 volume or a large 10002 2D image will result in a 1, 000, 000×1, 000, 000
dissimilarity matrix), it is important to address the issues of MDS complexity. The time complexity of
MDS can be reduced to O(NlogN) [16], but at the price of increasing the space complexity to O(N2)
for the matrix of pre-computed distance values. Since this matrix is generally non-sparse, main memory
size becomes a limiting issue. Therefore, we adopt a practical approach to performing MDS dimensional
reduction as follows. Firstly, we run MDS on a random subsample of the high dimensional (e.g. diffusion
tensor) data. Then, we calculate the mapping according to Algorithm 1 for this subsample only. Afterwards,
we use the resulting mapping from high-dimensional n-D to 3-D and formulate a polynomial regression fit
over this smaller data set. Finally, we apply the resulting regression from n-D to 3-D to all n-D pixel data
points. In practice, we use a degree-2 polynomial (with no constant term). In Section IV, we demonstrate
the effectiveness of this approach, by reducing the computation time while still achieving an accurate
mapping on all pixels.

• Step 5. Convert C(xi) (second input above) to CIELAB coordinates (e.g. RGB to CIELAB). Note
that, generally, {g(xi)}Pi=1 will not coincide with {C(xi)}Pi=1 as desired.

• Step 6. Transform {g(xi)}Pi=1 using rotation R = USV t, isotropic scaling c = 1
σ2

C
trace(D × S),

and translation t = µg − cR, which are calculated such that {g(xi)}Pi=1 are as close as close

as possible to the corresponding {C(xi)}Pi=1, where [39]: µC = 1
P

P∑
i=1

C(x)i, µg = 1
P

P∑
i=1

g(xi),

σ2
C = 1

P

P∑
i=1

‖C(xi)− µC‖2, Σ = 1
P

P∑
i=1

(g(xi)− µg) (C(xi)− µC)t, Σ = UDV t, S ={
I , det(Σ) ≥ 0

diag(1, 1, ..., 1,−1) , det(Σ) < 0 .

IV. RESULTS

We begin our results by evaluating the accuracy of the polynomial regression approximation. Then, we
test our method on hand-crafted synthetic images with 3 dimensional pixel data sampled from a variety
of underlying distributions. We then apply our method to DTMRI brain and heart data with 6 dimensional
pixels (positive semi-definite 3× 3 matrix), and to dynamic PET brain image data with a 27-dimensional
time activity curve at each pixel.

A. Evaluation of Polynomial Regression

Figure 1 shows the disparity between the low-D representation obtained from running MDS on the full
set of diffusion tensors versus the low-D representation obtained by running MDS on a random subsample
of the tensors to learn a polynomial regression mapping from 6-D to 3-D, with interpolation generating
3D co-ordinates for the full set of tensors (Section III-H). We measure disparity as the L2 norm of the
pairwise tensor distances in 3D, after running MDS, minus the pairwise tensor distances in 3D after
interpolation. We used 1173 tensors from a mid-sagittal image of the corpus callosum (CC) (see Figure
7), and measure the disparity between all possible pairs of tensors. We see from Figure 1(a) that utilizing
about 25% of the data provides a reasonable balance between accuracy and data size, in that the largest
gain in accuracy is achieved going from sampling at 15% of the data to just above 20%. Figure 1(b)
demonstrates that the regression approach does adequately well in representing a full MDS analysis.
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Fig. 1. Evaluation of polynomial regression. (a) Error obtained by approximating MDS on the whole data set by polynomial
regression on a subset of the data. (b) Scatter plot of distances approximated via polynomial regression vs. the original tensor
distances. The 1:1 line is shown along the diagonal. A sample size of 25% of the total number of pixels is employed in the
approximation.

B. Synthetic data with pixel dimensionality 3

We begin with simple synthetic image data. We created a 60 × 30-pixel 2D image divided into two
regions: upper and lower halves, U and L, each of size 30×30. Each pixel is a 3-dimensional vector. Four
types of images were synthesized to produce different distributions of the 3D pixels (Figure 2): (i) U and
L 3D pixel vectors are sampled from two different 3D Gaussian distributions with different means and
anisotropic covariance matrices, with the axes of maximal variation extending parallel to the first extrinsic
dimension (Figure 2(a)); (ii) Same as (i) but with an oblique axis of maximal variation (Figure 2(b)); (iii)
the U and L pixels are sampled from two Gaussian distributions that together form a nonlinear space of
samples in 3D (Figure 2(c)); and (iv) the 3D vectors of the image pixels form a “Swiss roll” in 3D, where
one half of the swiss roll corresponds to L pixels and the other half to U pixels (Figure 2(d)). We show
in Figure 3 the results of different approaches to coloring this synthetic data. There are two issues to be
examined here: (i) How the images change as the method of mapping from data space to color space
is changed ; (ii) How the images change as the color space being mapped to is changed. As expected,
when the data is linearly separable PCA methods are able to display the main variability of the data.
We find that CIELAB colors do not provide any convincing advantage in these cases. However, for the
more complicated synthetic example of the swiss roll data, only manifold learning provides an acceptable
degree of visual separation between the two classes. Moreover, in our method difference is represented as
color keyed to perceptual difference so the bottom-right image, displaying the highest visual separation
of complexly interwoven data, provides convincing evidence justifying the suitability of the proposed
approach.

C. Simulated DTMRI

Medical doctors typically resort to viewing scalar images derived from the DTMRI field. One common
scalar field is a Fractional Anisotropy (FA) image. At each pixel in the DT image, the FA is proportional
to the amount of anisotropy in DT at that pixel. FA is a function of the eigenvalues λi, i = 1..3, of the DT

and is defined as FA =
√

3/2
√∑3

i=1 (λi − λ) 2/
√∑3

i=1 λ
2
i , where λ̄ is the Mean Diffusivity (MD),
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Fig. 2. Different types of synthetic data with pixel dimensionality 3 used to populate the upper (U) and lower (L) halves of
the image. Blue x’s correspond to U pixels and green squares to L pixels. (a) Data sampled from two Gaussians whose principal
directions of variability align with the first extrinsic dimension. (b) Data sampled from two Gaussians whose principal direction of
variability does not align with any of the extrinsic dimensions. (c) Data sampled from two Gaussians forming a nonlinear subspace.
(d) Data sampled from a nonlinear Swiss roll.

1/3
∑3
i=1 λi. MD is another scalar field derived from DTMRI data that is typically used to explore DT

data in clinical practice and constitutes an average measure of diffusion at a particular DT pixel. Clearly,
scalar images are not able to capture the variability of tensors in 6D. The simulated DT image in Figure
4 is designed to highlight this situation. In Figure 4(right), our method clearly shows perceptual changes
in color along different directions in the image, and indeed the simulated tensors do change in those
directions. However, the same DT field visualized via the commonly used FA and MD maps in Figure
4(left and middle) is insensitive to the change in DTs that occurs as we move vertically in the image
(constant value in any column in the FA or MD maps).

A second synthetic DTMRI data set is presented in Figure 5. Here, our coloring method clearly shows
a gradual transition in the DTs as we move vertically in the image, with the top half different from the
lower half. The FA map shows changes in one half of the image but fails to discriminate between tensors
in the top half vs. the bottom half. The MD, on the other hand, is completely oblivious to the change in
tensors.
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(a) Gaussians, variability aligns with extrinsic

(b) Gaussians, variability does not align with extrinsic

(c) Gaussians, non-linear

(d) Swiss roll

Fig. 3. Coloring the 3D pixels using different approaches. The four rows from top to bottom correspond to the four cases in Figure
2. The four columns correspond to coloring using (from left to right): (i) Extrinsic dimensions as RGB; (ii) Principal components
as RGB; (iii) Principal components as CIELAB; and (iv) Intrinsic dimensions as CIELAB (i.e. our approach).
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(a) MD (b) FA (c) Our Method

Fig. 4. First synthetic DTMRI example (see text in section IV-C for details). The FA and MD images capture changes along
the horizontal direction but fail to capture changes along the vertical direction. Our approach captures changes in DT along both
directions.

(a) MD (b) FA (c) Our Method

Fig. 5. Second synthetic DTMRI example (see text in section IV-C for details). Although the FA image captures changes in DT
along the vertical direction, it fails to distinguish between the top and bottom halves of the image. MD fails to capture any change.
Our method is able to distinguish between the top and bottom halves.

D. Real Brain and Heart DTMRI

Here we present results of experiments on real DTMRI data. 2D slices from 3D DTMRI volumes are
used. In the first example, we focus on the CC in the brain (Figure 6). In Figure 7, we show a close up
of the visualization of of the CC region in a mid-sagittal 2D slice. Note that using our coloring method,
the CC body appears whitish and the fornix appears with a brownish hue indicating a difference in the
underlying diffusion tensors. In contrast, it is difficult to see any difference between the colors of the
fornix and the CC body in the structural MRI (Figure 6). Similarly, in the MD and FA images, the
coloring of two regions is almost indistinguishable. Figure 8 shows additional examples showing how
our coloring approach reveals differences and renders them in a perceptually accurate way compared to
traditional MD and FA visualization. In Figure 9, we compare MD, FA and our method of coloring high
dimensional images applied to 2D short axis cardiac DTMRI slices. Note how the colors change reflecting
the myocardial sheet organization (the transmural rotation from the endocardial to the epicardial surface
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[21], [31]).
No false-coloring applied to either MD or FA will rectify this disadvantage since equal grayscales will

simply map to equal colors, thus failing to disambiguate regions which our method clearly shows.

 
Fig. 6. Corpus callosum (CC) anatomy referred to in elsewhere in the paper.

(a) MD (b) FA (c) Our Method

Fig. 7. Close up on the CC. Not how the fornix appears with the same color as the CC body when either MD or FA are used.
Using our method, the fornix appears with a different (brown-ish) color, where as the CC body appears whitish.

E. Real DTMRI image with simulated pathology

Several clinical works have demonstrated that different pathologies, such as tumor progression and
growth, multiple sclerosis lesions, and high grade gliomas are manifested as changes in diffusion tensor
properties [30], [34], [8], [20], [32]. We performed the next experiment to mimic the existence of pathology
in brain DTMRI. The DTs in a particular region of interest (ROI) in the CC between the rostrum and
genu (Figure 6) were manipulated to simulate a pathological condition (Figure 10). More specifically, the
tensors in that ROI are rotated and then the eigenvalues of the DT are modified such that both MD and
FA remain the same. Figure 10(a) shows the CC rendered with our method compared to displays using
FA and MD maps, before the simulation of pathology. In Figure 10(b), the simulated pathology is clearly
shown in the rendering with our method whereas, as expected, the FA and MD maps remain completely
unchanged.
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Fig. 8. Other examples of brain DTMRI visualization (sagittal and axial views). Each row represents one image. The columns
represent different methods for coloring, from left to right: MD, FA, and our approach.
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Fig. 9. Visualization of cardiac DTMRI slices. Short axis slices from two data sets are shown (the two rows). From left to right,
we show MD, FA and our approach to exploring the DTMRI data.

(a) Before

(b) After

Fig. 10. Simulating pathology within a real DTMRI image. (a) before pathology simulation, (b) after. Left to right: MD, FA, and
our method. The pathology is clearly visible (in red) using our method.
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F. Dynamic PET

In dPET, a time activity curve is collected at each pixel. The time activity is typically sampled non-
uniformly. In the first frames, the sampling interval is shorter to account for more rapidly changing tracer
dynamics. This results in a lower photon count and, therefore, a lower signal to noise ratio (SNR). In
later frames, the tracer dynamics stabilize and longer sampling intervals are used, so that more photon
counts are collected yielding higher SNR [13]. Therefore, clinicians often examine the last PET frame of a
dynamic study. This can be misleading because the activity in the last frame can be the same for different
tissues with very different dynamic behavior (i.e. they just happen to have similar value for activation in
the last frame). The same is argued for the integral under the time activity curve; clinicians sometimes
look at a static scalar field with these integral values at each pixel. However, vastly different curves can
have similar integrals, and hence displaying these scalar fields can also be misleading. To better illustrate
the point, in 11(d), we examine an axial brain dPET slice with a time activity curve of dimensionality 27
at each pixel. We quantify the number of pairs of neighboring pixels that are erroneously visualized with
a similar color when the scalar TAC integral is used for visualization (i.e. the change in the TAC integral
is less than a threshold Tscalar), whereas visualizing them using our method shows perceptual difference
between pixels (larger than Tperceptual) as a result of the difference in their underlying 27-D TACs. To
further illustrate how our method can improve over the standard visualization techniques for dPET, we
provide additional examples.

Figure 12 shows an ROI in another dPET slice (Image 1), comparing the results of four visualization
methods: the last time frame; a sum-over-frames; a mapping of Principal Component (PC) weights to
RGB; and finally, a mapping of PC weights to CIELAB. As before, visualizing neither the last frame, nor
a sum-over-frames conveys the full variability of the data. Using PCA allows us to map the 27-D data to
a 3-D color spaces (RGB and CIELAB), but as the data is non-linear in origin, PCA is not ideally suited
for this task. Though both color images technically represent the same degree of variability, as they are
both 3D color spaces, only in the CIELAB image does the visual difference in colors correspond to the
underlying differences. In Figure 13, manifold learning is used instead of a linear mapping (PCA). For
comparison, we examined learning both 2D and 3D manifolds, with 3D manifolds providing the better
results. As expected, utilizing a 2D-manifold produces less information than does using a 3D-manifold,
and more details are discernible. Figures 14 and 15 show similar results on another dPET slice (Image 2).
Note how our approach not only highlights the putamen in the brain but also shows different tracer uptake
properties within the putamen itself (reddish in the medial part of the putamen changing laterally to white
in Figure 15(d)).

V. CONCLUSIONS

CIELAB is a 3-dimensional color metric based on Weber’s law, that provides an approximately uniform
color-distance measure. Here we perform dimensionality reduction with a view to having high-dimensional
distances properly mapped to color, while at the same time utilizing the CIELAB space to best advantage.
The key idea of our method is to visualize similar data points using perceptually similar colors. The
dissimilarity between data points is measured as the geodesic distance on the underlying manifold, with
the manifold either known analytically (as in DTMRI) or learned (as in dPET data). To map the high
dimensional data into color, a nonlinear mapping is calculated in such a way that distance between data
points is preserved as much as possible when transforming the data into a perceptually uniform 3D color
space. We tested our method on synthetic data and simulated and real medical image (DTMRI and dPET)
data.

We foresee no obstacles in using our method for other (non-medical) high dimensional data field
visualization, e.g. geospatial data. We also anticipate added value if, in addition to 3 dimensional color,



17

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 3200

3400

3600

3800

4000

4200

4400

4600

4800

(a) Sum of time activity

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(b) our method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

100

120

140

160

180

200

220

ac
tiv

ity

time sample

(c) TACs

50
45

40
35

30
25

20
15

10
5 0.3

0.27
0.24

0.21
0.18

0.15
0.12

0.09
0.06

0.03
0

0

500

1000

1500

2000

2500

 

Tperceptual
Tscalar

 

N
um

be
r 

of
 p

ix
el

 p
ai

rs

0

500

1000

1500

2000

2500

(d) pixel count

Fig. 11. Misleading dPET visualization. (a) ROI of a dPET image with the sum of time activity visualized at each pixel. (b) The
same ROI visualized using our method. (c) The distribution of TACs in this ROI (each TAC contains n=27 time samples). (d) The
number of neighboring pixel pairs (p, q) of which sub-figure (a) generates misleading visualization. The number of pixels are those
that satisfy the following criteria: The difference in the summation of activity (values in (a)) is smaller than threshold Tscalar and
at the same time the CIELAB distance between p and q is larger than Tperceptual.
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(a) Last time frame of a 27-frame dPET image.

(b) Last frame (c) Sum-over-frames (d) PC as RGB (e) PC as CIELAB

Fig. 12. Real dPET brain image. Linear results of dPET Image 1. The last frame of a dPET image (top row), and a zoomed in
region of the image (bottom row) displayed using four alternative methods.

(a) (b) (c) (d)

Fig. 13. Intrinsic results of PET Image 1, where the n-D manifold is learned via ISOMAP, learning either a 2D- or 3D-manifold.
The initial distance metric given to ISOMAP is simply the Euclidean distance between PET samples treated as vectors. (a) Intrinsic
learned 2D-manifold as RGB. (b) Intrinsic 2D-manifold as CIELAB. (c) Intrinsic learned 3D-manifold as RGB. (d) Intrinsic 3D-
manifold as CIELAB.
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(a) Last time frame of a 27-frame dPET image.

(b) Last frame (c) Sum-over-frames (d) PC as RGB (e) PC as CIELAB

Fig. 14. Linear results of dPET Image 2. The last frame of a dPET image (top row), and a zoomed in region of the image (bottom
row) displayed using four alternative methods.

(a) (b) (c) (d)

Fig. 15. Intrinsic results of PET Image 2, where the n-D manifold is learned via ISOMAP, learning either a 2D- or 3D-manifold.
The initial distance metric given to ISOMAP is simply the Euclidean distance between PET samples treated as vectors. (a) Intrinsic
learned 2D-manifold as RGB. (b) Intrinsic 2D-manifold as CIELAB. (c) Intrinsic learned 3D-manifold as RGB. (d) Intrinsic 3D-
manifold as CIELAB.
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opacity is also used in the visualization. More powerful visualization may also be obtained if the colors
extracted at each data using our method are used to color different types of glyphs.

One of the important next steps of our work is to collaborate closely with doctors or radiologists to
assess the objective clinical value of our approach.
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