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Abstract

Object counting is an important computer vision application and
research topic, which typically involves enumerating the number of
objects in an image. Methodologies spanning a broad set of strategies
have been proposed for solving object counting problems. These meth-
ods have seen an increase in relevance with the recent emergence of
several highly successful deep learning techniques, which have led to sig-
nificant performance improvements on a growing number of annotated
counting benchmark datasets. However, despite the recent advancements
in deep learning and computer vision, object counting remains a chal-
lenging problem with several open research directions. Datasets often
contain objects that are highly occluded and which occur across a range
of scales and perspectives. Further, popular annotation strategies, like
density map annotations, suffer from annotator noise and inconsistency,
which creates a performance bottleneck. These annotation strategies also
have a high annotation burden, which leads to datasets that are very
small when compared to common benchmark datasets in domains like
image classification. Given both the significant progress and continued
challenges of object counting, this task continues to be an interesting
and ongoing research problem. This overview explores the historical con-
text of object counting methods, the fundamental methodologies driving
progress, the state of the art methods, and the significant open prob-
lems. In particular, we focus on recent trends that attempt to alleviate
the problem of the annotation burden for object counting problems.
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1 Introduction

Object counting is an important computer vision application and research
topic, which typically involves identifying every object within an image and
summarizing the number of those objects. Methodologies spanning a broad set
of strategies have been proposed for solving object counting problems. These
methods have seen an increase in relevance with the recent emergence of several
highly successful deep learning techniques, which have led to significant perfor-
mance improvements on a growing number of annotated counting benchmark
datasets. The demand for high performance object counting methods is moti-
vated by a diverse set of practical applications. For example, solutions to crowd
counting [1, 5–14] problems can be applied to large event management where
they provide a critical safety check by monitoring pedestrian density. Likewise,
vehicle counting [4, 15, 16] provides civil engineers and city planners with tools
for analyzing traffic patterns and street parking patterns. Object counting has
also been applied to ecological surveying [17], where the population levels of
animals like Penguins [2] and Steller Sea Lions [18] have been measured from
images. Other applications include yield assessment and growth forecasting in
agriculture via counting plant organs (such as fruits and leaves) [3, 19–21], and
biomedical applications such as cell counting [22–25].

However, despite the recent advancements in deep learning and com-
puter vision, object counting remains a challenging problem with several open

Fig. 1: Examples of objects from a diverse set of object counting task.
From left-to-right (both rows), the objects of interest are pedestrians [1], pen-
guins [2], apples [3], and parked vehicles [4]
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research directions. Object counting datasets often contain objects that are
highly occluded and which occur across a range of scales and perspectives. Fur-
ther, the popular annotation strategies, like density map annotations, suffer
from significant annotator noise and inconsistency, which creates a perfor-
mance bottleneck. These annotation strategies also have a very high annotation
burden, which leads to datasets that are extremely small when compared to
common benchmark datasets in domains like image classification.

Given the demand for high performance object counting method driven by
a broad range of applications, and given the challenging problems related to
object counting, we seek to provide an overview of the field which helps better
clarify these points. This overview explores the historical context of object
counting methods, the fundamental methodologies driving progress, the state
of the art methods, and the significant open problems. Further, we provide
a specific focus on recent trends that attempt to alleviate the problem of
the annotation burden for object counting problems. These methods can be
broadly categorized as object counting with limited data, which encompasses
several distinct methodologies.

2 Main Contribution

While there are several survey papers reviewing counting methods in the lit-
erature [26–30], these reviews exclusively focus on crowd counting where the
object of interest is pedestrians. Our survey does not limit the scope in this
way, and we opt to explore object counting across several object classes. The
surveys by the authors [30] and [29] are the most up-to-date review of crowd
counting methodologies. Their survey focuses on crowd counting methods,
and only very briefly explore self-, semi-, and weakly-supervised learning. We
explore object counting with limited data in greater detail, and focus on new
trends such as few-shot object counting. Overall, we present a survey that
offers a more broad look at object counting problems and which seeks to iden-
tify the major challenges in the field and the state of the art for counting with
limited data.

2.1 Search Strategy

To select papers for this survey, we searched through the databases
of several important machine learning and computer vision conferences.
Specifically, we searched the databases for CVPR, ECCV, ICCV, ICML,
ICLR, and NeurIPS using the following search query: (count*|crowd).
We only searched for publication records from between the years 2015
and 2022. We also searched Google Scholar using the search query:
(object counting|crowd counting|counting dataset). Beyond this, we
collected a set of seminal papers and papers that introduce datasets from
within the relevant literature returned by our search. These additional papers
are occasionally selected from outside of the set of conferences highlighted
above, and are selected based on the criteria that they show up in more than
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one publication or appear to be highly influential. To ensure quality and focus,
we exclude non peer-reviewed pre-prints found on arXiv, multi-view object
counting papers, and action counting papers. We focus exclusively on single
image 2D object counting problems. For surveys that explore pre-deep learning
era methods, we suggest the 2008 survey by Zhan et al. [31] on crowd analysis.
We also note that object localization, detection, and semantic segmentation
are tasks related to object counting. We discuss the major differences between
these tasks in section 4 and we explore why solutions to these problems are a
poor fit for the object counting task in section 5. However, since solutions to
these related problems are not strictly object counting methods, we exclude
them from this report. We refer an interested reader to review the follow-
ing recent surveys on object detection [32, 33], object localization [34], and
semantic segmentation [35].

2.2 Limitations and Coverage

While there exists a diverse set of object counting benchmark datasets span-
ning several object classes, a significant proportion of the literature has focused
exclusively on crowd counting problems. While several papers do evaluate on
multiple types of object counting datasets, it is simply not possible to give
equal weighting to all types of object counting applications while fairly sur-
veying the literature. Further, almost all surveyed methods focus on humans,
animals, or inanimate objects organized within natural scenes. A smaller pro-
portion do focus on other settings, such as cell counting and leaf counting.
However, the majority of papers selected for this review will be biased towards
humans in natural scenes.

3 Object Counting Applications

3.1 Medical Imaging

The object counting task has been periodically explored within the medical
image analysis research literature. Typically, object counting methodologies
are utilized for either tracking disease progression, or studying the underly-
ing mechanism of a disease. For example, detecting a change in the number
of unique Gad-enhancing lesions in a T1-weighted MRI scan is a useful met-
ric for tracking the progression of Multiple sclerosis [41–43]. Cell counting
has also emerged as an important and common biomedical application [22–
25, 39, 44, 45]. For example, there exists benchmark datasets for adipocyte
cells counting [25], bone marrow cell counting [39], and breast cancer tissue
cell counting [44] which are detailed in table 1. Synthetic cell counting datasets
have also been developed to aid in cell counting research [45]. Additionally,
automatic Acne vulgaris grading and lesion counting is an important applica-
tion for practitioners. Recent works have established the ACNE04 dataset [40],
also detailed in table 1. The number of lesions and the global grade are related
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Dataset Object Class Annotation Year Size Avg.

Count

UCSD [6] Person Dot Maps 2008 2,000 25
Mall [7] Person Dot Maps 2012 2,000 31
UCF CC 50 [10] Person Dot Maps 2013 50 1,279
WorldExpo’10 [8] Person Dot Maps 2016 3,980 50
ShanghaiTech Part A [1] Person Dot Maps 2016 482 501
ShanghaiTech Part B [1] Person Dot Maps 2016 716 123
CityUHK-X [36] Person Dot Maps 2017 3,191 33
UCF-QNRF [11] Person Dot Maps 2018 1,535 815
GCC (Synthetic) [12] Person Dot Maps 2019 15,212 501
JHU-CROWD++ [37] Person Dot Maps 2019 4,372 346
Crowd Surv [9] Person Dot Maps 2019 13,945 35
NWPU-Crowd [5] Person Dot Maps 2020 5,109 418
TRANCOS [16] Vehicle Dot Maps 2015 1,641 36
PKLot [38] Vehicle Bounding Box 2015 12,417 57
COWC (Aerial) [15] Vehicle Dot Maps 2016 - -
CARPK (Aerial) [4] Vehicle Bounding Box 2017 - -
Penguins [2] Penguins Dot Maps 2016 80,095 7
CVPPP [20] Leaves Dot Maps 2016 810 -
Maize Tassel Counting [19] Maize Tassels Dot Maps 2017 361 -
Minneapple [3] Apples Bounding Box 2020 1,001 41
Global Wheat Head [21] Wheat Heads Bounding Box 2021 6,422 43
Adipocyte Cells [25] Adipocyte Cells Dot Maps 2013 200 -
MBM Cells [39] Bone Marrow Cells Dot Maps 2015 44 -
Dublin Cell Counting [24] Any Cells Dot Maps 2018 177 34
ACNE04 [40] Acne Lesions Bounding Box 2019 1,457 13

Table 1: Non-exhaustive list of object counting datasets used throughout the
literature. Here, dot maps are listed as an annotation type. However, in prac-
tice, dot maps are often converted into density maps. The two are variations
of the same annotation output, and so we will typically refer only to density

maps when talking about how these annotations are used. Dataset statistics
are provided where they are made available.

quantities which can be used as a measure of acne severity. Given these exam-
ples, it is clear that object counting methodologies have a demonstrated value
within the medical image analysis research literature.

3.2 Plant Image Analysis

Object counting within the plant image analysis literature is a common task,
with two significant use cases. The first use case is yield forecasting, which
involves assessing the number of some plant organ, such as fruits or leaves,
and estimating the future yield of that plant. The MinneApple dataset [3] is
an example benchmark for this task, which involves the task of estimating
the number of apple fruit on a plant. Similarly, the Maize Tassels Counting
dataset [19] and the Global Wheat Head Detection dataset [21] are com-
mon benchmarks for assessing the number of maize tassels and wheat heads
in images respectively. Automatically counting the number of maize tassels
and wheat heads provides an important metric for yield forecasting. The sec-
ond use case of object counting in plant image analysis is plant phenotyping,
which is the task of estimating the genotype of a plant from its observable
characteristics, which includes quantifying the number of some plant organ.
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Plant biologists and breeders often attempt to characterize the effects of new
genotypes or breeding strategies at scale, and the rapid assessment of a plant
phenotype significantly reduces the burden of this task. The CVPPP Leaf
Counting dataset [20] is the most popular dataset for this task, and has existed
as a challenge dataset for several years. These applications highlight the value
of object counting methodologies in plant image analysis.

3.3 Crowd Counting

The vast majority of object counting methodologies have been developed for
the crowd counting problem. This task specifically looks at assessing the num-
ber of humans in dense crowds within natural scene. The popularity of object
counting methodologies specifically targeting the crowd counting problem is
likely due to the large number of available benchmark datasets. There are 11
popular benchmark datasets, as outlined in figure 1, with a large range of
object counts and resolutions. Included in this list is the UCSD dataset [6], the
Mall dataset [7], the WorldExpo’10 dataset [8], the ShanghaiTech datasets [1],
the Crowd Surv dataset [9], the UCF CC 50 dataset [10], the UCF-QNRF
dataset [11], the GCC dataset [12], the JHU-CROWD++ dataset [37], and the
NWPU-Crowd dataset [5]. As an application, crowd counting methodologies
can be applied to several important task. Crowd analysis and safety involves
assessing the number of people in the crowd at a large event, such as a concert,
and determining whether the number of people in the space is within a safe
threshold. Similarly, crowd counting methods can be used by civil engineers
for pedestrian analysis and city planning around pedestrian traffic. This high-
lights that the crowd counting research space is an activate area with several
motivating applications and several benchmark datasets for evaluation.

3.4 Traffic Analysis

Counting the number of vehicles is a common task that can provide civil
engineers with important information necessary for city planning. For example,
the TRANCOS dataset [16] is a popular benchmark dataset, which focuses on
fixed-camera based vehicle counting and highway traffic analysis. The CARPK
dataset is a large scale dataset [4] that focuses on drone-based counting of
vehicles in parking lots. The COWC dataset [15] is a satellite imagery based
vehicle counting dataset for assessing road side parking, business volume, etc.
Given these applications, it becomes obvious that there are a wide variety
of use cases where object counting methodologies can be applied to vehicle
counting.

3.5 Ecological Surveying

Object counting methods provide significant value in ecological surveying,
where methods for automatically assessing animal populations in images is
an important tool for ecologists. The most popular benchmark dataset for
ecological surveying is the Penguins dataset [2], which is a large dataset for
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Fig. 2: There are many popular object recognition tasks. While object local-
ization and object detection primarily focus on locating the image regions
containing objects from several classes, object counting focuses on simply
estimating the number of objects from a single class in dense scenes with.
While object counting does not explicitly require localizing objects, it has been
demonstrated that location based targets, such as density maps, improve per-
formance. Rightmost image modified from [1]

counting penguin populations in the wild. Due to arctic locations being chal-
lenging to access, methods that allow for remote penguin counting are highly
valued. Similarly, object counting has been explored for Seal population anal-
ysis [17, 18]. While the number of ecological surveying benchmark datasets is
small, the Penguins dataset [2] is the largest commonly used object counting
dataset available. These applications highlight the value of object counting
methods for ecological surveying.

4 Object Recognition

4.1 Object Recognition Tasks

Deep learning methodologies are defined by a dataset, a task, and a method. A
task is a well-defined formulation of some goal which is achieved by producing
an output signal from an input signal. One important category of computer
vision tasks are object recognition tasks, which describes a set of fundamen-
tal computer vision problems that involve detecting the presence of an object
within an image. While there are innumerable ways to define object recogni-
tion tasks, there are several well defined object recognition tasks that have
been highly explored within the computer vision literature. In this section, we
will first discuss these important object recognition tasks to better define the
research landscape. After, we will explore the details of the object counting
task.

Object classification refers to the fundamental task of determining if some
class of object exists within an image. More specifically, given an image:

x ∈ [[0, 255]]H×W×C



Springer Nature 2021 LATEX template

8 Counting Objects in Images using Deep Learning

and N object classes, the overall goal is to correctly predict one of N buckets
for each image x based on the identity of the object within the image. This task
has a long and rich history, with early applications including handwritten digit
classification [46]. More recent examples include the ImageNet dataset [47],
which involves classifying natural images into 1000 unique object categories.

Unlike object classification, which simply involves the categorization of
whole images, the object localization task involves detecting which image
regions specifically contain the object. This task specifically focuses on localiz-
ing a single object from a single object category within each image and involves
estimating the image co-ordinates,

(wminhmin, wminhmax, wmaxhmin, wmaxhmax)

which tightly bound the object within each image. Here, wmin is the minimum
column index, wmax is the maximum column index, hmax is the maximum row
index, and hmin is the minimum row index which bound the object within the
image with respect to the image origin. This box is commonly referred to as
a bounding box. The most prominent example application for this task is the
ImageNet Large Scale Visual Recognition Challenge [48], which established a
localization challenge based on the ImageNet dataset. The left-most image in
figure 2 gives an example of the object localization task.

While the object localization task involves estimating the coordinates of
a single object from a single class within an image, the object detection task
involves localizing one-or-more objects from one-or-more object classes within
an image. The object detection task essentially emerges as a more challeng-
ing version of the object localization task, as it requires a method that can
predict multiple bounding boxes across multiple classes given a single image.
The most popular benchmark datasets for object detection problems are the
PASCAL VOC dataset [49, 50] and the MS COCO [51]. The middle image
in figure 2 provides an example of the object detection task. There are many
additional well-defined object recognition tasks beyond those listed so far.
Instance segmentation [51], object keypoint detection [52], and pose estima-
tion [53] are just a few examples of additional tasks that fit within the category
of object recognition tasks. However, object classification, object localization,
and object detection are the most useful for juxtaposition against the object
counting problem.

4.2 The Object Counting Task

The object counting task is defined by the goal of quantifying the total number
of objects visible within an image. This task almost always involves counting
many instances of a single object class within a single image. Similar to the
object classification task above, the object counting tasks does not explicitly
require the detection of object instances within the image. It simply requires
the estimation of a single value representing the correct number of objects.
However, in practice, some intermediary detection step is incredibly beneficial
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for performing well on the task. Given that detection is often a frequent com-
ponent for object counting problems, it then makes sense to compare it directly
to the object detection task. Despite the tasks having different high-level goals,
they tend to share some similarities. However, speaking generally, object detec-
tion problems tend to focus on detecting a small number of objects across a
wide range of object classes using bounding boxes as the image annotation.
This is not necessarily true for all detection problems, but does characterize
object detection in natural images. For example, a popular object detection
benchmark dataset known as MS COCO [51] has an average of 7.3 objects per
image and spans across 80 object classes. In contrast to this, object counting
problems tend to involve counting a large number of objects across a single
class. As a similar motivating example, the popular object counting dataset
known as ShanghaiTech part B [1] contains an average of 123 objects per
image. While these object recognition tasks share many similarities, each prob-
lem faces a distinct set of circumstances that require different methodologies.
For example, if predicting bounding boxes for each object were to be used as
an intermediary detection step for an object counting methodology, it is not
guaranteed that bounding boxes would scale well to the number of objects
commonly seen in object counting problems. In practice, the object counting
task typically involves a different form of annotation, all together.

5 Dataset Annotation Strategies for Object
Counting

5.1 Overview

While the goal of object counting is to simply return the total number of
objects as a single value, there are several possible ways to acquire the object
count through intermediary targets. Four possible annotation strategies are
presented in Figure 3. Bounding boxes serve as one possible training target
for counting problems. This strategy involves training a neural network in
the same manner as with object detection problems, where the network per-
forms regression over the bounding box coordinates for each object within
the image. Then, during inference, the total number of bounding boxes gener-
ated by the network would simply correspond to the object count. The benefit
of using bounding box regression for counting problems is that it explicitly
frames counting as a localization problem, which grounds the object count by
correlating it directly with the local object features in each image. However,
bounding box regression tends to under perform on object counting problems.
This has been demonstrated empirically [54], with the intuition that bound-
ing box regression introduces ambiguity and noise when objects are highly
occluded and cluttered in dense groups. Additionally, many object detection
pipelines [55] filter multiple overlapping object proposals using non-maximum
suppression (NMS). It is difficult to distinguish whether two object proposals
refer to a single object or if they refer to two overlapping objects [56] and this
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(a) Bounding box (b) Global count

(c) Density map (from dot map) (d) Instance segmentation

Fig. 3: Examples of different types of annotations that can be used for estimat-
ing the number of objects in an image. Images are modified from ShanghaiTech
part B dataset [1]

is also aggravated by the wide range of object scales and crowd densities in
object counting problems.

Global count labels are another object counting annotation type. These
are the most straight forward training target, as training proceeds by simply
using a neural network to predict the global count. However, these global count
labels are not grounded within the image. A neural network has to learn a
relationship between the true local object features and the global count without
explicit guidance about the object identity. This can be problematic, as neural
networks are known to incorrectly fit to patterns that spuriously correlate with
the image label, especially when finding a function that fits those spurious
patterns is simpler to learn than the true underlying function [57]. Given that
object counting datasets are often rife with a large range of object scales and
degrees of occlusion, this problem requires serious considerations.

Another potential object counting annotation strategy is instance segmen-
tation. While this strategy is never used within the research literature, it still
represents a possible avenue for acquiring object counts. This method would
proceed by first training a model to perform instance segmentation, which is
the task of individually segmenting each unique object. Then, during inference,
each unique object captured by the output segmentation masks is summed
to get the count. From a practical stand point, instance segmentation is a
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Fig. 4: Density maps annotations are produced by first having an annotator
place a single dot at the location of each object, and then convolving a Gaussian
kernel with the resulting dot map. This produces a location-based heat map,
where larger values correspond to high object density.

very labour intensive annotation type to collect. Further, the task of instance
segmentation is very challenging in different ways than the object counting
problem, and spending network capacity on those challenges may not represent
an ideal scenario.

The last annotation type we will consider are density map annotations.
These are a special type of heatmap, where Gaussian density is placed over the
location of every object in the image. This heatmap has the property that the
total object count can be acquired by integrating the density map. Training
proceeds by performing density map regression, and inference is performed by
simply taking the summation of the density map. This strategy has the benefit
of localizing object features in the image, while not being as restrictive and
problematic as bounding box regression. We will now explore this annotation
type in greater detail.

5.2 Density Map Annotations

Density map annotations, first proposed in 2010 by the authors of [58], are a
useful optimization target for object counting methods because they represen-
tation a continuous spatial distribution of objects within an image. To produce
a density map, first suppose that we have some image which we would like to
annotate:

x ∈ [[0, 255]]H×W×C

which contains N objects that can be realistically identified by an annotator.
Here, H is the height, W is the width, and C is the number of channels. An
annotator would produce a dot map Mdot with the following properties:

Mdot ∈ {0, 1}H×W

Where Mdot
ij = 1 for each point xij that represents the approximate centroid

of each object within the image, and Mdot
ij = 0 everywhere else. In practice,

objects tend to be highly occluded and the true centroid is not necessarily visi-
ble. Then, the centroid is either estimated or a dot is placed at the approximate
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centroid of the visible portion of the object. A density map, defined as:

Dm ∈ RH×W

0+

can then be generated by convolving an isotropic Gaussian kernel over Mdot,
such that:

Dm = Mdot ∗ Nσ

where σ is the standard deviation of the Gaussian kernel, which determines the
spread for each resulting Gaussian blob. This process is detailed in figure 4.

Given that the integral of each Gaussian blob is equal to 1, obtaining the
final object count from a density map simply requires that we take the integral
of the entire density map. In practice, this operation is performed by taking
the sum over the entire density map:

ycount =
∑

ij

Dm
ij

which provides the final count, ycount. As an optimization target, density maps
have two important hyperparameters which need to be selected. First, the stan-
dard deviation of the Gaussian kernel, σ. This is often empirically determined,
and assignments are dataset specific. Second, the resolution of the density map
may also be modified. In practice, the resolution of the density map is usually
set as H

8 × W
8 , relative to the width and height of the image x. This may be

done to either simplify the optimization target or reduce the computational
resources necessary to output the density map. While this process for gen-
erating density maps is typical of many methodologies, there are many that
opt to modify the density map generation procedure. For example, geometry-
adaptive Gaussian kernels may be applied to treat dense regions differently
than sparse regions [59].

6 Challenges of Object Counting

Object counting problems seek to determine the number of objects in an image
under a variety of conditions related to the dynamics between objects and the
environment. These dynamics can lead to highly complex scenes that present
significant challenges for object counting methodologies. Further, object count-
ing problems require human annotators to provide accurate information, which
becomes difficult when the scene are complex or even ambiguous. In the
remainder of this section, we will explore these concepts further, and provide
an overview the major challenges of object counting

6.1 Object Variance

6.1.1 Scale and Perspective

Perspective in imaging is related to the process of projecting a 3D scene onto
the 2D sensor of a camera. This relationship is governed by the geometry



Springer Nature 2021 LATEX template

Counting Objects in Images using Deep Learning 13

Fig. 5: Images of natural scenes have a perspective, which impacts the scale
of objects within the image. The leads to a situation where objects are either
close to the camera and highly resolved, or very far away from the camera and
poorly resolved. Grids represent an artistic approximation of the perspective
in the scene. Images are modified from ShanghaiTech part B dataset [1]

of scene elements and their distance from the camera. Within the context of
object counting problem, perspective defines the distribution of objects within
a scene and can lead to a large variance in object scale. Figure 5 highlights an
example of this problem, where objects closest to the camera appear larger and
are better resolved and objects furthest from the camera appear smaller and
are poorly resolved. This emerges as a significant problem for object counting
methodologies, as a model must learn to extract features across scales, and
must learn how to disentangle individual objects in dense crowds when those
objects are small and poorly resolved. As will be discussed in later sections,
many researchers have proposed multiple solutions that attempt to alleviate
the problem of scale and perspective within images. However, it still remains
an open and challenging problem. Further, while this is problem exists for
many object counting problems in natural images, perspective issues will not
necessarily emerge as a problem for all object counting problems.

6.1.2 Inter-Object Variance

While scale variance emerges as a natural property of perspective within com-
plex scenes, inter-object variance emerges due to a distinct property of an
object class. For example, consider that humans may exhibit diversity across a
wide set of traits, including height, age, gender, clothing choice, etc. Or, con-
sider that vehicles may come in a wide variety of colors, sizes, and shapes. This
creates an additional challenge for object counting methodologies, which may
need to capture this variance across object classes. This may be exasperated
by several factors, including an imbalance in the distribution of object traits
within some dataset. When considered alongside the problem of perspective
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Fig. 6: There are two penguins in the green box, with one penguin partially
occluding the other in a vertical arrangement, potentially appearing as a single
long penguin. There are also two penguins in the red box, with one penguin
almost entirely occluding the other, with only parts of the penguin’s stomach
and feet being visible. Images modified from [2]

based variance, the complexity of object counting problems becomes clear.
Counting objects requires methods to learn complex functions that model the
potentially large variance within an object class.

6.2 Occlusion

Occlusion refers to a problem in images where parts of objects are covered
by other objects or scene elements, such that those portions of the object
are no longer visible within the image. This reduces the information avail-
able when attempting to resolve and detect that object for the purposes of
counting, and becomes a significant challenge for object counting methodolo-
gies. In particular, it requires that an object counting model learn a diverse
set of object features and still recognize the object when some of those fea-
tures are not present. Figure 6 provides examples of object occlusion within an
image. Beyond the problems created by the removal of object features, when
objects are occluded by other objects, the two objects become more difficult
to resolve from one another. This acts a second complicating factor. Finding
ways to delineate objects under the conditions of occlusion is a significant open
problem that exists across object recognition tasks more broadly.

6.3 Annotation Burden

In sections 5 we discussed the details of density maps as a form of object
counting annotation. These annotations require that an annotator place a
point at the approximate location of each object within an image. Cholakkal
et al. [60] conducted a study to measure the speed at which annotators could
produce a density map for images taken from the MS COCO dataset [51]. They
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Fig. 7: Object dot assignments made by of several annotators for several
objects, where each color indicates an individual annotators contribution.
There is significant inconsistencies between where different annotators place
dots. Further, annotators may not agree on whether an object exists at a
location at all. Here, the green annotator places a single dot where no other
annotator has selected one. Images modified from [2]

determined that it takes an annotator 1.1 seconds per point while annotating
an image. However, the MS COCO dataset contains significantly fewer objects
per image on average than the majority of common object counting datasets,
and this measure of annotator speed may not hold for scenes with dense crowds,
large variance in object scale, and heavy occlusion. However, using this measure
as a baseline, we can estimate the annotation burden for the ShanghaiTech part
B dataset. This dataset contains 716 images and 88,488 annotated individual
objects. Using an annotator speed of 1.1 seconds, it can be estimated that it
would take approximately 27 hours for an annotator to annotate every image.
Cholakkal et al. [60] also identified that object class labels could be collected
at a rate of roughly 1.1 seconds to 1.4 seconds per image. In the time it takes
to annotate the 716 images in the ShanghaiTech part B data, one could also
annotate nearly 88,488 images with object classes.

6.4 Annotation Imprecision

When collecting density maps, annotators are typically expected to place a
dot at a consistent location, such as the approximate centroid of each object
or the head of a person. However, this introduces a few significant problems.
First, an annotator must make a decision on how to select the location of an
object when parts of the object are occluded. Second, annotators may not be
able to correctly select that location consistently between objects. And third,
different annotators may make different types of errors when annotating the
objects within a scene. Figure 7 shows an example of this problem. Differ-
ent annotators select slightly different points as the centroid of each penguin,
leading to significant inter-annotator variance. This can potentially lead to a
performance bottleneck, where a neural network expends capacity fitting the
annotator noise.



Springer Nature 2021 LATEX template

16 Counting Objects in Images using Deep Learning

(a) Person in an advertisement (b) Reflection in the mirror

(c) Occluded but implied by context (d) Partial view of scene

Fig. 8: Ambiguity can emerge in counting problems from various sources.
What do we consider to be a distinct object, rather than a representation of
that object? Image (a) is modified from ShanghaiTech part B dataset [1]

6.5 Ambiguity

Ambiguity emerges due to a lack of precision in either the problem definition
or the object category under consideration. For example, in Figure 8, we pro-
vide four examples of images where the total object count is ambiguous. In
Figure 8a, a person is depicted within an advertisement. However, this is a
depiction of a person, rather than the actual person. In Figure 8b, a person
is reflected in a mirror. This appears as two people within a 2D image when
the context of the mirror is not considered. This type of ambiguity poses a
problem for object counting methods, as the source of ambiguity may not be
present in the training set, or the annotator may be unclear on how to cor-
rectly annotate the image. Thus, it becomes difficult to represent the object
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Fig. 9: The majority of object counting papers follow the same basic recipe
for their architectural design. These networks are comprised of some feature
extractor, usually some version of VGG16 [61] or ResNet50 [62]. They then
have an additional parameterized function which decodes the image features to
generate the final density map. Figure uses modified image from ShanghaiTech
part B dataset [1]

category context necessary to determine the outcome in the presence of these
ambiguous examples.

Further, ambiguity can be introduced when the downstream problem is
not concisely defined. For example, if our goal is to estimate the number of
penguins in an area, then we must make decisions about whether or not to
attempt to estimate the presence of penguins within the area which are not
present within the image. In Figure 8c, a person is sufficiently occluded behind
another person, such that they do not appear in the image. However, their
presence is implied by the context of the image, as people are lined up in a
formation. In Figure 8d, only a partial view of a crowd is available. Counting
only the visible crowd does not provide the total size of the crowd within the
stadium. Counting the number of visible objects within the image provides an
underestimate of the total number of objects within the image.

7 Architectures

Deep learning methodologies for object counting typically utilize a common
neural network architecture formulation, as seen in figure 9. This formulation
involves a backbone feature extraction neural network, which is responsible
for extracting useful features for solving the object counting problem. These
features are then decoded by a separate neural network, which is specifically
designed to be relevant to the type of object counting annotation being uti-
lized. One commonly used feature decoder is CSRNet [59], which is detailed
in figure 11. This decoder passes the image features through several dilated
convolutional layers before producing a density map estimate. The goal of this
method is to use dilated convolutions to learn long range dependencies within
an image, as crowds may have both local and long range properties that are
important for summarizing the count.

VGG16 [61], detailed in figure 10, is by far the most common backbone
feature extractor used for object counting problems. Figure 12 highlights this
trend, with VGG type architectures appearing more frequently in the reviewed
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Fig. 10: VGG16 [61] is a common backbone feature extractor used in object
counting architectures. VGG16 downsamples the image using consecutive con-
volutional layers followed by max pooling layers. The features are commonly
extracted from the point where the resolution of the features is 1/8th of the
original image.

Fig. 11: The CSRNet decoder [59] is an example of a popular density map
decoder used for object counting problems. It uses a stack of six dilated con-
volutional layers to learn long range dependencies within the image. Image
reproduced from the text of [59].

papers than all other backbone feature extractors combined. First proposed by
Karen Simonyan and Andrew Zisserman at ICLR 2015 [61], VGG16 is a deep
convolutional neural network comprised of two distinct types of layers. The
convolution layers process image features using parameterized kernels with a
resolution of 3x3 before passing the new features through a ReLU activation
function to introduce non-linearity. Image features are zero padded to maintain
the same resolution between convolutional layers. Down sampling is performed
by 2x2 max pooling layers, which pass forward only the maximum value within
a 2x2 block. Convolution layers and max pooling layers are applied in reptition
until the desired depth is achieved. The purpose of this process is to create
a network which is deep, with the goal of achieving rich features representing
the input image.
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Fig. 12: Among all of the object counting papers summarized in this review,
the vast majority of papers use a variant of VGG to perform feature extraction.
ResNet and MCNN are also common. All other papers use a unique backbone
architecture that can’t be neatly categorized, and these tend to be the oldest
papers.

In 2017, the seminal work on transformers fundamentally changed the field
of natural language processing [63]. Transformer-like architectures are incred-
ibly successful, and scale well with data size and architecture size. In 2021,
the benefits of transformer-like architectures were brought to computer vision
problems with the introduction of the Vision Transformer (ViT) [64]. These
architectures differ from the convolutional networks described above, in that
operate on patches rather than whole images, and they do not contain any
inductive biases related to local neighborhood structure. The introduced ViT
method introduced a strategy for operating on image patches, as well as fea-
ture patches generated from a traditional convolutional network. The latter
attempted to merge the benefits of both architectures. However, transform-
ers have seen limited application in object counting problems. Recently, the
authors of [65] proposed the seminal work on the successful application of
transformers to crowd counting problems, representing an emerging research
direction.

There exists a wide variety of approaches to object counting architec-
ture selection, ranging from neural architecture search [66] to simply using
established off-the-shelf architectures like VGG16.
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8 Evaluation Methods

8.1 Metrics

Object counting methods are typically evaluated by approximating their gen-
eralization error using a test set and two popular metrics. The first metric is
mean absolute error, defined as:
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made by the method on the i-th example, and N is the number of examples
in the test set. This metric measures the average absolute difference in the
number of objects predicted by the method and the true number of objects.
The second metric is the root mean squared error, defined as:
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This metric is typically used due to the fact that it is more sensitive to out-
liers given that the error scales quadratically with the difference between the
prediction and ground true rather than linearly. This metric is important,
as counting datasets are often highly imbalanced and it can help diagnosis
problems related to poor generalization in regions with fewer examples.

Additionally, there are other niche metrics that are occasionally used to
evaluate object counting methods. For example, the quality of the density map
can be evaluated using metrics such as PSRN and SSIM. These metrics essen-
tially measure how close the predicted density maps are to the ground truth
density map on a per-pixel basis. As another example, the TRANCOS [16]
dataset introduces an evaluation metric known as the Grid Average Mean
Absolute Error (GAME). This metric is defined as follows:

GAMEL =
1
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where the GAMEL metric splits the image into 4L regions and calculates the mean
absolute error for each region. Here, yli is the ground truth count for the l-th
region of the i-th, and ỹli is the method prediction for the l-th region of the i-th
example. This metric essentially attempts to determine how well the method
localizes the objects. Other metrics do not discern between contributions to
the count attributed by true objects and by non-objects.

While the above metrics are more common among object counting papers,
there exists other metrics that may be useful for evaluating object counting
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methods but which are not frequently utilized. For example, the mean absolute
percentage error is defined as:

EMAPE =
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This metric measures the absolute difference between the true and estimated
count as a percentage of the true count. As an example, consider a method
that outputs a prediction of 5 when the true count is 0, and also outputs 1005
when the true count is 1000. Both of these errors would be treated the exact
same using the previous metrics. However, mean absolute percentage error
would penalize the former significantly more than the latter. We may prefer a
metric which is more forgiving of small relative errors for larger total counts
given that we may consider a model with a large relative error for small counts
to be a critical failure.

8.2 Methods

The most common method for evaluating object counting methods is in-
distribution domain generalization. [Ali: two methods in one sentence does not
look good.] Typically, a dataset is collected from a single domain and randomly
split into a training and test set. A model is then trained on one split and
evaluated on the other. However, there are other ways to benchmark object
counting methods. For example, the authors of [67] evaluated the robustness
of their method to spatial annotator noise. They randomly shifted the location
of each individual point in a dot map to simulate varying levels of annotator
noise during training. The authors of [1] evaluated the domain generalization
performance of their method by evaluating their method on various trans-
fer learning tasks. They explored how well their method transferred from a
source domain to a target domain. The authors of [68] considered inference
time. Object counting methods may be deployed remotely on edge devices,
and inference time performance may be necessary for reasonable performance
on such devices.

9 Fully-Supervised Object Counting

9.1 Multi-Scale Feature Extraction

Object counting problems are complex, yet they are hindered by the available
datasets being relatively small. A common research direction involves making
custom neural network architecture design choices that better align the net-
work design with the specifics of the problem. Typically, this involves careful
consideration of the data and the task and using these intuitions to introduce
expert knowledge about the problem, such that the network does not have to
learn that knowledge from the dataset. One common approach, which shows
up frequently within the literature, is the strategy of multi-scale feature fusion.
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Fig. 13: An overview of the multi-scale feature extraction approach to object
counting architecture design. Image features are extracted and aggregated
using a fusion strategy. The feature extractors may be comprised of different
architectures meant to manage different scales, or a single shared architecture
with features sampled at different depths. Figure uses modified image from
ShanghaiTech part B dataset [1]

Object scale is an incredibly important property of objects within count-
ing datasets which requires careful consideration. A neural network must learn
different representations of an object across the variety of scales. Previous
research has approached this through multi-scale feature fusion. A high-level
overview of these methods is presented in figure 13. These methods seek to
extract different types of images features, typically focused on different scales
and crowd densities, and fuse those features together to produce the final den-
sity map. For example, Zhang et al. [1] proposed the multi-column convolution
neural network (MCNN), which utilizes three separate network paths. The
first path uses 9x9 and then 7x7 kernels. The second path uses 7x7 and then
5x5 kernels. And the final path uses 5x5 and then 3x3 kernels. The resulting
features from each path are then fused by concatenating them together. The
intuition behind using different network paths with different kernel sizes is
that each kernel will be suited for detecting objects at a specific scale. Boom-
inathan et al. [69] proposed a similar approach, which involved using a deep
network and a shallow network to capture both the high-level and semantically
rich features and the low-level highly localized features. These features were
also fused using concatenation. Onoro-Rubio et al. [70] proposed an approach
that operated on a pyramid of image patches and passed the patches through
different network paths meant to process different scales. Babu Sam et al. [71]
proposed Switch-CNN, which is conceptually similar to MCNN [1], except that
it decomposes an input image into patches and has an additional parameter-
ized model that attempts to determine which network path is best suited to
handle the patch. Jiang et al. [72] proposed a novel trellis encoder-decoder net-
work which aggregated multi-scale features from different depths in a single
network, and then fused features together at different scales to produce four
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different density maps with different resolutions. The loss function for the net-
work would then compare each of these four density maps to a ground truth
generated at each respective resolution. Liu et al. [73] introduced a strategy
for aggregating multi-scale features using a multi-scale pooling operation that
allows for adaptive re-weigghting of features using local and global context.
The common thread between all of these methods is that they focus on finding
ways to selectively process image features across different scales using different
network pathways.

Babu Sam et al. [74] and Sindagi et al. [75] explored a different strategy
for feature fusion which used concepts known as top-bottom and bottom-top
feature fusion. Bottom-top feature fusion fuses together features from early
layers in the network with later layers. Top-bottom feature fusion follows the
opposite strategy, taking the deepest features and gradually merging them
upwards. This strategy attempts to use the high level semantic information of
deeper layers to correct the information found in shallower layers.

Multi-scale feature extraction strategies are a common and well-explored
approach for attempting to incorporate additional knowledge about the pres-
ence of scale in object counting datasets. The goal of including this information
is to alleviate the model from needing to learn about scale from the data, as
the model is designed to handle scale from initialization. However, these design
choices are often based on intuition about scale. Explicit design choices tai-
lored towards multi-scale feature extraction have become less common within
the literature, and have been replaced by more sophisticated strategies.

9.2 Task-Specific Convolutions

Convolutional layers in neural networks take a small weighted matrix, with
shape N × M , and convolves it with an much larger input feature. This can
be thought of as similar to a sliding window algorithm. The weighted matrix
is then applied across the input when calculating the resulting features. Cus-
tom convolutions extend the basic idea of convolutional layers, and typically
employ special kernels or additional operations which attempt to better align
the convolutional layer with the task.

Li et al. [59] proposed CSRNet, a neural network based on a VGG16 back-
bone feature extractors. As overviewed in figure 11, their method for decoding
VGG16 features into the final density map involves a stack of dilated convolu-
tional layers. Dilated convolutions are sparse weighted matrices that increase
the size of the kernel without adding additional parameters. Using dilated con-
volutions allows a neural network to more easily learn long range dependencies
without drastically increasing the number of parameters, as dilated convolu-
tions are essentially sparse equivalents to larger kernels. Liu et al. [76] proposed
using deformable convolutions [77] for object counting in dense scenes. This
method uses a learned offset field to produce a deformable matrix which pro-
cesses signals non-uniformly. The regions sampled by the deformable kernel are



Springer Nature 2021 LATEX template

24 Counting Objects in Images using Deep Learning

not necessarily aligned with the grid, and so features are processed using bilin-
ear interpolation. This method allows a network to better adapt to complex
local features when compared to the standard grid-like convolution.

Custom convolutions are an interesting approach, which explore how con-
volutional layers might be better aligned with the object counting task. The
success of convolutional layers has been widely attributed to image-specific
inductive biases, such as translation invariance and locality [64]. Likewise, there
may be additional object counting specific inductive biases which can be intro-
duced through novel custom convolutions. The methodologies presented above
highlight the value of these custom operations and how they might introduce
better inductive biases.

9.3 Perspective

Perspective information has been utilized frequently throughout the object
counting literature [6, 58, 78, 79]. Unlike the multi-scale methods which were
discussed in section 9.1, including perspective information explicitly provides
a neural network with a rich source of information about the distribution of
object scale within the images. Including perspective information reduces the
complexity of the problem, as the model no longer has to attempt to learn this
property from the data.

The recent works of Shi et al. [78] explored the problem of estimating
perspective maps and including them within their object counting method.
Their method exploited the basic principles of how cameras work. Provided
with their assumptions about the camera model, the location of the head of
an person is given as a function of the focal length, the camera height, the
person’s depth, and the person’s height:

yh =
f(C −H)

z1

Similarly, the location of the person’s feet in the image is given by:

yf =
fC

z1

By re-arranging these two equations, the following relationship between the
camera height, the true height of the object, and the scale of the object within
the image can be determined:

h =
H

C −H
yh

which can then be used to define a perspective map as follows:
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Generating the perspective map then requires estimating H and C. To do
this, Shi et al. [78] estimated the height of humans, H, as 1.75 m. They then
manually annotated the heights of a few objects per image to estimate the
fixed camera height C and acquire the ground truth perspective maps.

To utilize these generated perspective maps, Shi et al. [78] trained a neural
network to first estimate the ground truth perspective map. They then used
the estimated perspective maps to adaptively re-weight three multi-scale den-
sity maps before combining them to get the final density map estimate. Yang
et al. [79] followed up on this work by noticing that the perspective maps pre-
dicted by the network developed by Shi et al. [78] were overly noisy and a
potential source of error. Instead, Yang et al. proposed an alternative formula-
tion of the problem which involved using the perspective maps to deform the
input images using a uniform grid. They trained a neural network to estimate
the perspective maps, and then used those perspective maps to deform the
input images during training with the goal of reducing the scale complexity of
the problem by attempting to make all objects roughly the same scale.

Perspective maps are a rich source of information which can be exploited to
simplify the object counting problem in scenes that are characterized by diverse
perspectives and a high variance in object scale specifically due to perspective.
However, perspective information is not always relevant to object counting
problems. Some problems may focus on images taken from an aerial view,
where perspective has a reduced impact on object scale. Other problems may
deal with objects that have high inter-object scale variance which is a natural
property of the object class and not related to perspective at all. Further,
perspective maps must be collected by annotating images, which introduces
an additional annotation burden to the problem. Given this, perspective maps
can be viewed as a powerful additional tool for solving counting problems in
situations where perspective problems are common and the burden of collecting
perspective maps is tolerable.

9.4 Attention

Attention mechanisms refer to a broad class of deep learning methods. Stated
as simply as possible, attention mechanisms are strategies for learning to focus
on the important parts of an input. We will discuss three forms of attention
as they relate to object counting methods: feature-wise self-attention, input
space attention, and gating.

The self-attention mechanism was first proposed by Vaswani et al. [63] in
their seminal work on the topic. Self-attention utilizes a scaled dot-product
strategy to learn long-range dependencies across the set of features. Given
the ability to learn long-range dependencies, self-attention mechanisms are
very applicable to object counting problems. Zhang et al. [80] extended upon
the idea of self-attention by introducing a local self-attention and global self-
attention module for learning short-range and long-range interactions across
an image. Lin et al. [65] proposed a multifaceted attention network, which
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utilizes three forms of attention. First, a self-attention mechanism. Second, a
learnable region attention. And third, instance attention.

Gating refers to an attention strategy which involves calculating the
element-wise product between a learned weighted gating vector and image
features, such that only important parts of the image features are passed for-
ward. Chen et al. [81] proposed a technique known as variational attention for
domain-specific attention. They opt to model domain-specific latent variables
and utilize the resulting variable as a gating vector to perform domain specific
channel-wise re-weighting. Liu et al. [82] proposed DecideNet, which utilizes
an additional network that produces a gating vector for deciding between two
different density map proposals. The first proposal is based on a Faster R-
CNN framework and outputs bounding box proposals which are converted into
density maps. The second proposal is based on patch-based local counting.
Zhang et al. [83] proposed attentional neural fields, which utilize an attention
mechanism and conditional random fields to aggregate multi-scale features.

Input space attention is a strategy for focusing on important regions of
the input space. This could involve dropping irrelevant input image regions or
manipulating relevant regions in some way. Liu et al. [76] proposed an attention
mechanism for generating attention maps which were used to mask the input
before passing it to an additional density map estimating neural network. Liu
et al. [84] proposed a strategy for generating attention maps that highlight
ambiguous image regions and then they recurrently zoom in on these regions
to better resolve the count. Jiang et al. [85] proposed an attention scaling
mechanism, which masks image regions based on object density and processes
each region with an object density specific network.

Attention is an important technique within deep learning methodologies
and provides significant improvements when applied to object counting tasks.
Guiding the network towards the most important features, and learning impor-
tant relationships between features, is a useful inductive bias for improving
solutions to these problems. However, it is still unclear how to best include
attention mechanisms into object counting frameworks, as the vast major-
ity of the literature explores attention for classification or similar recognition
tasks. Given this, attention remains and interesting aspect of object counting
methods and an open problem.

9.5 Loss Formulations

The previous sections have focused primarily on architectural choices or ways
to provide additional information during network training. An separate branch
of methods and techniques involve manipulating the output, typically using
a novel loss formulation or by modifying the predicted density map before
applying the loss. We will discuss three categories of loss formulations that
exist within the object counting literature: modified outputs, multi-task loss
functions, and generalized loss functions.

Shu et al. [68] proposed an output modification strategy, which involved
transforming the predicted and ground truth density maps into the frequency
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domain. Rather than calculating the pixel-wise error between the predicted
and ground truth density map, their strategy involves taking the L1-norm
between the characteristic functions of both in the frequency domain. They
further prove that this loss formulation acts as an upper bound on the pseudo
sup norm metric between the predicted and ground truth density maps and
that minimizing the loss minimizes this upper bound.

Wan et al. [86] and Wang et al. [87] explored the idea of reframing learning
from density maps as an optimal transport problem. Wan et al. [86] proposed
this idea as a generalized loss function for object counting with density maps.
They argued that the L2-norm between a predicted and ground truth density
map may not be the ideal learning signal for the counting task. They opt to
treat the problem as an unbalanced optimal transport problem and formulate
a novel loss function based on this property. Further, they demonstrate that
previous loss functions, such as the L2-norm between the predicted and ground
truth density map, are suboptimal solutions to the optimal transport problem.

Multi-task losses explore the idea of adding additional training signals as
additional loss functions. The intuition behind multi-task learning is that by
targeting multiple related tasks with different loss formulations, the model
may learn a more robust representation that generalizes better. Zhao et al. [88]
proposed a multi-task loss which decomposed the counting problem into sev-
eral core components. Their method jointly predicts geometric, semantic, and
numeric attributes. Idrees et al. [11] proposed a multi-task loss that targeted
multiple types of density maps, formulated with different σ values. Shi et
al. [89] proposed a multi-task loss that predicted a segmentation mask, the
density map, and the global density. These methods typically use additional
losses, related to localization but different than density map regression, to
learn more useful features for solving the counting problem.

9.6 Using Dot Maps

Density maps are generated from dot maps, which simply contain a single
dot at the center of each object. One line of research has explored using dot
maps directly, rather than using density maps as an intermediary. Laradji
et al. [90] designed a model which predicted segmentation maps containing
blobs around the ground truth points in the dot map. They treated the dot
maps as a sparsely annotated segmentation map, with the points representing
annotated pixels in the true underlying segmentation map. They introduced a
split-level loss, which forces the model to break apart blobs that contain more
than one ground truth point. Additionally, they introduce a false-positive loss,
which penalizes the model for predicting blobs which contain no ground truth
points. And finally, they propose a point-level loss which ensures that the model
always correctly predicts the few sparsely annotated pixels available during
training. Ma et al. [91] argued that using density maps as the training target
is sub-optimal due to occlusion and irregular crowd densities. They instead
proposed a novel loss formulation which targeted the expected count at each
annotation point, calculated using Bayes’ theorem, which takes the summation
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Fig. 14: Among the papers which we have reviewed in this report, there is
a clear trend that solutions to object counting problems with limited data
are becoming increasingly more common within the literature while fully-
supervised methods are becoming less common.

of contribution probability at each point. Liu et al. [92] proposed the idea
of using dot map annotations to generate pseudo bounding boxes targets,
and then iteratively update those bounding box proposals during training to
better include object size information. Song et al. [93] proposed a purely point
based approach, which adopts methods similar to those found in the key-point
matching literature, where they directly regress point coordinates and use the
Hungarian algorithm to optimally match predicted points to ground truth
points.

These methods seek to use the localization signal present in dot maps
directly by forgoing density map regression. Instead, they present a novel
strategy for utilizing the dots as anchor points in alternative formulations of
the problem. These papers take the perspective that density maps are not
ideal targets, and that different problem formulations may lead to models that
generalize better.

10 Counting with Limited Data

Fully-supervised object counting problems rely on density map annotations,
which carry a significant annotation burden and are labour intensive to collect.
As highlighted earlier, Cholakkal et al. [60] determined that each dot takes
approximately 1.1 s for an annotator to collect. Finding ways to solve object
counting problems when only limited data is available becomes an important
problem for increasing the usage of object counting methodologies in problem
spaces where annotations are sparse or challenging to collect.
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Fig. 15: An example of the visual grounding problem. The symbol for this
image is the object class label ”Fish”. However, there are multiple conflicting
visual stimuli in the image that may be spuriously correlated with the object
class label.

Counting with limited data refers to the task of solving the counting
problem when some information is missing as compared to the typical fully-
supervised setup. For example, this could involve utilizing a dataset where
the examples are annotated with a weaker signal. Similarly, this could involve
using an automatically annotated synthetic dataset and finding a way to adapt
features learned on this synthetic dataset to an unlabelled real dataset. There
are many potential formulations of low-data versions of the object counting
problem. However, there is a shared underlying problem that emerges when
attempting to solve these problems. While density maps create an explicit cor-
respondence between object locations and the predicted counts, limited data
setups may be working with some portion of the data where the signal has
no correspondence with location at all. This is known as the visual grounding
problem.

10.1 The Visual Grounding Problem and Object

Recognition

Visual grounding is the problem of correctly determining what stimulus in an
image gives a symbol meaning, where a symbol is any set of attributes. Exam-
ples of symbols in computer vision problems include a set of object class labels
(such as the 1000 ImageNet classes [47]), captions/language, or global count
labels. An example of an image, a set of visual stimuli, and an object class
label are presented in figure 15. Here we can see that a problem emerges when
attempting to attribute a stimulus to the object class label. For this partic-
ular example, a dataset may contain many images within the ”Fish” object
class that carry additional stimuli such as water, fishing nets, and people. If
these stimuli co-occur frequently enough with the ”Fish” object class, then
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it becomes incredibly challenging for a neural network to learn how to select
the appropriate stimuli. This problem is commonly referred to as a spurious
correlation, as an irrelevant feature spuriously co-occurs with the label due to
biases in the dataset.

Choe et al. [94] analyzed this problem within the context of weakly super-
vised object localization, which is the task of correctly attributing image pixels
to the object class label using only the object class label during training. Their
analysis demonstrates that if spurious features are more strongly correlated
with the label than some actually relevant object part, then the localization
task cannot be solved. Assume that for some problem you have a set of image
patches, where each patch is defined by a high-level semantic cue, M , such as
”water”, ”fish tail”, ”fish head”, ”net”, ”man holding something”, etc. And
suppose that the true posterior distribution, p(Y = Coho,Salmon|M), is known
ahead of time. The posterior distribution is the percentage of examples where
the semantic cue M co-occurs with the label Y . If there exists a situation, such
as

p(Y = Coho,Salmon|M = water) > p(Y = Coho,Salmon|M = fish tail)

then we can see that there exists no threshold on the posterior distribution
that perfectly selects all of the relevant cues while ignoring all of the spurious
cues.

An additional challenge that makes solving the visual grounding problem
difficult is the simplicity bias. Described by Shah et al. [57], the simplicity
bias refers to a tendency for neural networks to preferentially learn overly
simple functions, even when a more complex function would lead to a lower
training error on a given dataset. As discussed above, distinguishing the correct
set of relevant visual stimuli is potentially not possible, even when you have
access to the true posterior distribution. The tendency for neural networks to
preferentially learn simple functions means that access to the true posterior
distribution of high-level semantic cues may not be accessible at all. These two
problems make localizing the true signal within an image using only global
labels an incredibly challenging task.

Returning to the object counting problem, the intuition behind select-
ing density maps as a supervisory signal becomes apparent. By re-framing
the object counting problem as a density based object localization problem,
the training signal is explicitly grounded within the image. Given this, the
challenge of solving object counting problems with limited data must give con-
sideration to the problem of visual grounding. The remainder of this section
will discuss the various ways that methodologies for solving object counting
problems with limited data attempt to also solve the problem of visual ground-
ing, with many methods exploring clever ways to continue utilizing density
maps while lowering the annotation burden.
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Fig. 16: Overview of a typical architecture formulation for a class-agnostic
counting problem. An exemplar, which is meant to be an informative prototype
for the objects of interest, is passed through a feature extractor and used to
guide the main counting network in detecting objects in the given image that
match the exemplar. Figure uses modified image from ShanghaiTech part B
dataset [1]

10.2 Few-Shot Object Counting

Few-shot Object Counting refers to the problem of training an object counting
network which is class agnostic. The typical formulation, detailed in figure 16,
involves training an object counting network using image and exemplar pairs
while using a density map as the training target. An exemplar is defined as
an additional image containing a single example of the object which can be
used by the network as a prototype for detecting that object in the whole
image. Essentially, one network is responsible for extracting rich object-centric
features from an image, and a second network is responsible for generating
a prototype that can be used to select the most relevant objects from the
resulting features. These methods don’t explicitly learn from limited data.
Instead, this strategy involves using a lot of fully-supervised data to learn a
class agnostic counting model that can then later be applied to unseen object
categories with limited additional data being required. In this way, it is a
limited data method with respect to the unseen object categories.

Ranjan et al. [95] produced the seminal work on the topic of few-shot object
counting by introducing the FSC-147 dataset. This dataset contains 6135
images across 147 object categories with an average of 56 objects per image.
Each image was annotated with a ground truth density maps. Their work also
introduced FamNet, which utilized ResNet50 [62] as a feature extractor. Their
method then produced a feature correlation map using the image features and
the exemplar features. This feature correlation map was then decoded into a
density map using an additional network. Shi et al. [96] explored the idea that
computing the similarity between image features and exemplar features via a
fixed inner product is not optimal. Instead, they proposed a learnable bilin-
ear similarity metric. Gong et al. [97] approached the challenge of intraclass
diversity, which includes factors such as color, shape and scale. Essentially, an
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exemplar may not contain enough information to capture the full diversity of
an object class. They introduced the concept of Exemplar Feature Augmenta-
tion to generate a more diverse set of exemplars. Further, they introduce the
concept of Edge Matching, which introduces shape priors into the training pro-
cess. Nguyen et al. [98] approached a slightly more challenging version of the
problem, where they were focused on generating both density maps and bound-
ing box proposal. They introduced an uncertainty aware training strategy for
generating pseudo ground truth bounding boxes from density map propos-
als, which were then used as the targets during a second round of training.
Few-shot object counting is an active area of exploration, and open problems
primarily focus on finding better ways to learn features that robustly define
object classes and methods for correlating image features and exemplars.

10.3 Domain Adaptation

Domain adaptation refers to the problem of training a model using a dataset
from a source domain and then transferring that knowledge to a similar target
domain which may have an underlying distribution shift. In practice, a source
object counting dataset tends to be collected from a few environments and
the underlying properties of that dataset may not represent the general case
for those objects. As a hypothetical example, a crowd counting dataset could
have been collected entirely from indoor environments while a target distribu-
tion could have been collected entirely outdoors. The underlying distribution
shift between indoor environments and outdoor environments could potentially
change the image features enough to prevent the model from generalizing to
the new environment. However, methodologies that learn robust features on a
source domain which can be adapted to a new domain is a promising research
direction, as it alleviates the need to collect additional fully-supervised data
for every new environment where the objects might be found.

Zhang et al. [99] proposed a method for object counting domain adaptation
which involved first training a network on a source domain. Then, they use
their network to locate patches within the source domain that looked most
like the target domain to further fine-tune the network. Essentially, their goal
was to detect a subset of the source distribution that best matched the target
distribution with the goal of improving domain adaptation. Marsden et al. [24]
proposed a local patch based method for regressing the object count coupled
with a residual adapter module that performs domain-specific normalisation
and scaling. With the goal of learning from several domains, they then trained
their model on four distinct domains; people, penguins, vehicles, and cells.
Ma et al. [100] explored domain adaptation from the perspective that object
counting methods are severely impacted by scale shifts between distributions.
They propose a scale alignment module which derives an optimal re-scaling
factor between scale distributions.
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(a) Synthetic data from GCC
dataset [12]

(b) Real data from ShanghaiTech B
dataset [1]

Fig. 17: Zoomed in crops of crowd counting images from a real and a synthetic
dataset. The underlying domain gap makes task transfer from synthetic to real
domains a challenging problem.

10.3.1 Synthetic Data

Learning to count objects from a synthetic image distribution is a special
case of the domain adaptation problem. In this version of the problem, a
large synthetic dataset is generated automatically using various 3D assets,
which also allows for the automatic production of density map annotations.
However, as can be viewed in figure 17, the difference between synthetic and
real distributions can be significant. Thus, it becomes worthwhile to talk about
synthetic domain adaptation as a distinct problem.

Historically, synthetic datasets have been applied to many computer vision
problems. For example, the Synthia dataset [101] contains synthetic images uti-
lized for semantic segmentation in urban scenes. Likewise, the Virtual KITTI
dataset [102] contains synthetic images utilized for multi-object tracking. Both
of these datasets contain pedestrians, and can potentially be utilized for crowd
counting problems. However, both of these datasets contain a low density of
pedestrians, and are not necessarily representative of the real world crowd
densities that are regularly explored in crowd counting problems.

Wang et al. [12] proposed the GCC dataset, a synthetic crowd counting
dataset, which utilised character assets from the Grand Theft Auto V video
game. Their approach to the problem of synthetic domain adaptation involved
using SE Cycle GAN, a method typically used for style transfer in images,
to transform the synthetic images such that they appear in the style of the
target domain. Liu et al. [103] approach the problem by jointly training a
neural network on the synthetic data in a fully-supervised fashion and on
the real data in a self-supervised fashion. Their network attempts to solve a
proxy task, which involves predicting whether or not an image from the real
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distribution has been flipped upside down. Objects within a scene tend to have
a well-defined orientation, and act as a strong signal for image orientation. The
authors found that by jointly training a network on these two tasks, they were
able to better generalize to the target distribution. Gong et al. [104] introduced
a method for task-driven data alignment between source and target domains,
and developed a strategy for finding the optimal set of source domain image
transformations.

Domain adaptation is a promising direction, which attempts to alleviate
the need for to acquire new data for similar objects under previously unseen
conditions. Synthetic domain adaptation, in particular, has emerged as an
interesting direction. However, while 3D assets are often cheap to collect, they
still suffer from a large domain gap. Further, there exists many object classes
for which 3D assets are not readily available.

10.4 Self, Weak and Semi-Supervision

Self-, weak-, and semi-supervised object counting methods refer to a broad
framework of weak supervision strategies. These methods attempt to learn
from limited, if any, fully supervised examples. They utilize a significantly less
informative signal and attempt to extract as many relevant features as possible
from the data, typically by using a clever prior.

Semi-supervised object counting refers to the task of learning from a small
amount of fully-supervised density maps and a large quantity of completely
unlabelled examples. They typically approach the problem by attempting to
extract a weak signal from the unsupervised data to help reduce the set of pos-
sible functions that fit the small amount of fully-supervised examples. Change
et al. [105] and Zhao et al. [106] proposed active learning frameworks, which
focused on identifying the most informative images for annotation, and then
learned from the remaining images in an unsupervised way. Change et al. [105]
enforced a manifold constraint on the unlabelled images using a Laplacian
regularised least squares strategy by taking the assumption that the data gen-
eration process is similar between the labelled and unlabelled portions of the
dataset. Liu et al. [107] proposed a self-supervised proxy task for learning
from the unlabelled portion of the data. Their strategy involved recognizing
that for any image, a sub-crop of that image must have as many or fewer
objects. They then proposed a learning strategy for ranking images and image
sub-crops pairs while jointly optimizing their network using the available fully-
supervised density map annotations. Sam et al. [108] proposed a strategy for
learning unsupervised features using a Grid Winner-Take-All autoencoder, and
then fine-tuning the learned features on a small amount of fully-supervised
annotations. Liu et al. [109] utilized self-training by learning a proxy seg-
mentation task using the available fully-supervised data and then used the
pseduo-segmentation masks generated on the unlabelled data as a target dur-
ing training. Sindagi et al. [110] proposed an iterative self-training method
using a Gaussian Process for estimating the pseudo ground truth on unlabelled
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data. Meng et al. [111] used a spatial uncertainty aware teacher-student frame-
work to learn from a surrogate task over the unlabelled data. Lei et al. [112]
proposed a weakly-semi supervised approach, which utilized a small amount
of fully-supervised density maps and a large quantity of global object counts.

Object counting with sparse density map annotations involves learning to
count when only a subset of each image has been annotated. In the typical
formulation, 10% of an image region is annotated while the remaining 90% of
an image is unannotated. Xu et al. [113] approached this problem by proposed
a module which encouraged visual features to flow from annotated regions to
unannotated regions. This approach works by extracting a training signal from
the annotated regions in a supervised way and the unannotated regions in an
unsupervised. More importantly, it exploits the fact that an annotated region
contains information about the object density in the neighboring unannotated
regions. This distinction separates the problem from a typical semi-supervised
formulation, where only a subset of the images are fully annotated. Similar
approaches have been applied to weak object detection problems [114]. The
intuition appears to be that knowing a little bit about 10 images can potentially
be more useful than knowing a lot about 1 image. It has been postulated that
inter-image differences in the traditional semi-supervised setup can prevent
the learning of useful features from the unlabelled data.

Weakly-supervised object counting methods utilize a weaker signal, which
still requires manual annotation to collect, but which is less informative than
the fully-supervised examples. Borstel et al. [115] proposed a method for learn-
ing from local count patches, rather than density maps, using a Gaussian
process prior on a latent function. Yang et al. [116] proposed a method for
learning exclusively from global object counts. Their method used a sorting
loss which enforced that the network learn inter-example relationships across
the dataset.

Self-supervised object counting attempt to learn how to count with no
labels whatsoever. This is an incredibly challenging problem, and requires
sophisticated and highly curated priors to achieve anything that could be con-
sidered a reasonable result. Babu et al. [117] proposed a fully self-supervised
approach to crowd counting. Their method first trains a neural network on a
self-supervised proxy task, such as predicting image rotation. They identified
that the distribution of object counts in patches from crowd counting images
follows a power law distribution, and they use an optimal transport law to
strictly force the features of the self-supervised model to follow this power law
distribution. However, they tested their method exclusively on dense scene
and avoided evaluating on sparse datasets where crowds may not be uniformly
distributed across every image.

These methodologies, which attempt to alleviate the annotation burden by
learning from unlabelled or weakly labelled data, represent a promising direc-
tion for object counting problems. However, there is still significant progress
necessary to bring the performance of these methods closer to fully-supervised
methods.
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11 Future Directions

11.1 Considering Downstream Usage

Enumerating the number of objects within an image is often an intermediate
step in solving a downstream domain-specific task. Therefore, for future work,
it will be interesting to collect downstream task related ground truth labels
and train end-to-end model for solving those tasks, while using the count labels
as an additional source of information for regularization.

For example, the Non-Violent Action Lab is a lab which monitors and
disseminates knowledge pertaining to social movements and protests. They
specifically monitor crowd sizes at political events as a method for estimating
the extent of public support for political movements. However, estimating the
object count in a single 2D image often does not capture the entire crowd.
This is due to the fact that for sufficiently large crowds, a single image cannot
capture every object within the crowd. Given that crowd size estimation is used
to estimate abstract properties such as political support and counting is used
as a proxy metric, there may be value in more explicitly coupling the count
to that task. Therefore, there may be additional ground truth labels which
could accompany crowd counting labels. For example, tracking the number of
related social media posts at the time of an event may be a useful additional
label for estimating the total extent of the crowd, in addition to the per-image
crowd density.

Similarly, estimating the quantity of a plant organ, such as fruits or leaves,
is useful for forecasting the expected yield for that crop. However, the per-
image count is not the actual goal in this scenarios. For example, in the example
of yield forecasting, the goal is the estimate productivity of that crop for
the farmer. This is based on several complex factors, including temperature,
fertilizer application, watering schedule, etc. There may be value in collecting
yield ground truth, and estimating the yield directly from images and the
environmental factors.

In domains such as medical image analysis, counts of lesions or cells can
be used within the decision-making process. For example, tracking the number
of acne lesions is a useful metric when making decisions related to disease
management. If the goal is to use counts to make decisions, then there may be
value in including those decision as ground truth labels.

11.2 Domain Considerations

The object counting literature has been biased towards crowd counting prob-
lems, which represents only a fraction of the relevant domains explored within
the object counting literature. Crowd counting methods have focused on solv-
ing problems related to occlusion and scale due to perspective-based object
variance, which serves as the central challenge in the available datasets. How-
ever, these methods may not be relevant in other domains. For example, cell
counting problems [24, 25, 39] and aerial view vehicle counting problems [4, 15]
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do not share the same perspective profile as crowd counting problems. This
indicates that there may be unexplored research directions which specifically
tackle domains with unique challenges.

11.3 Synthetic Data

While synthetic datasets such as GCC [12] have been developed for counting
problems, they are still limited due to their scope and lack of realism. GCC only
tackles crowd counting problems, likely due to simple 3D assets for humans
being highly accessible. Further, there is still a large domain gap between these
synthetic images and real images, which has prevented performance gains [103].
Generating high-quality and realistic synthetic images without relying on 3D
assets would allow the synthetic counting problem to easily extend to other
object classes, and would significantly reduce the annotation burden.

Guided image synthesis is an emerging field that has seen significant strides
forward with the development of technologies such as stable diffusion [118].
Recent examples, such as SDEdit [119], have focused on guided image synthesis
through stroke-based guidance and compositing based guidance. Stroke-based
guidance utilizes user guidance to select image regions using a digital brush-
stroke, with the user having brushes with distinct semantic meaning. The
diffusion based editing system then completes the scene by generating a syn-
thetic image that matches the semantics of the strokes. Compositing based
guidance involves copying image patches representing content from one image,
and integrating it into a second image. For example, copying an image patch
with glasses and placing it on an image of a person’s face. Diffusion based
guidance can then integrate the patch and produce a realistic combination of
the two. Guided image synthesis has not yet been applied to object counting
problems, and represents a novel research direction for reducing the annotation
burden by streamlining the process of high-quality synthetic image generation.

Automatic generation of complex 3D scenes represents an additional option
for synthetic dataset generation. Kubric [120] has been recently proposed
as a Blender based dataset generator for the fast production of 3D multi-
object synthetic data which also provides a wide variety of complex automatic
annotations. These dataset generators could be used for the development of
synthetic few-shot learning methods, similar to the real datasets presented in
section 10.2. A method trained using a synthetic few-shot dataset may trans-
fer to an real object of interest without needing to generate an object-specific
synthetic datasets

11.4 Multi-Class Counting

Multi-class object counting [54, 60, 121] and few-shot object counting [95] have
only been explored to a limited extent. Cholakkal et al. [60, 121] explored
multi-object counting in sparse scenes using global object counts and object
class labels. However, their work predominately focused on sparse scenes, with
object counts within or close to the subitizing range for humans. Similarly,



Springer Nature 2021 LATEX template

38 Counting Objects in Images using Deep Learning

Chattopadhyay et al. [54] also focused on multi-class object counting prob-
lems within the subitizing range. While few-shot object counting [95] have
approached the problem by focusing on multi-class dataset with dense object
counts, well outside of the subitizing range, these problems predominately
focus on a single object category per image, designated by a class defining
exemplar. Given this, we argue that there is a need for dense multi-class
object counting datasets where multiple object categories within an image are
interacting.

11.5 Multi-Modal Counting

Counting objects within images primarily relies on only a single modality.
However, there are many additional modalities which complement the image-
based counting problem. For example, crowd counting with audiovisual [122],
thermal imaging [123, 124], and depth [125] have been explored. However, this
research topic has only been minimally explored, with each distinct sub-domain
offering unique modalities. For example:

• Crowd size estimation has been performed using mobile phone and Twitter
data [126]. This additional modality may be combined with crowd imaging
data.

• Yield forecasting in agriculture has frequently relied on remote sensing [127]
to provide measurements about croplands. This modality could be combined
with in-field image-based counting of plant organs.

• Medical imaging problems typically involve multiple modalities such as
hybrid PET/CT scan, and multi-model MRI (e.g. T1 and T2 weighted).
Medical image counting problems, such as counting multiple sclerosis
lesions [41–43], may benefit from these additional modalities.

Thus, we argue that multi-modal object counting is an under explored problem,
and there exists a vast number of modalities that may potentially benefit
domain specific object counting problems.

12 Ethical Considerations

Solutions to object counting problems, and especially object counting problems
with limited data, have a wide variety of applications that benefit different
fields. However, crowd analysis has continued to be the dominant application
within the research community, with pedestrian specific datasets represent-
ing the majority of benchmark datasets used for evaluating object counting
methods. Given that the surveillance of people is such a dominant topic in the
space, it is worth considering the ethical implications of making surveillance
cheaper. Surveillance methods can potentially be used by unethical govern-
ments to violate personal privacy and autonomy, suppress dissent, and gain
tactical military advantages. However, crowd density estimation also provides
useful information in large event management, disaster management, and pub-
lic safety. Further, object counting methods typically only provide an estimate
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of the count, and do not necessarily localize faces and make it easier to re-
identify individuals. Face detection and recognition methods, which can be
used to re-identify individuals, are already a well-defined and separate research
topic. Thus, access to accurate crowd analysis is not necessarily easily utilized
for unethical means. Further, other methods often perform better at tasks
that may be exploited for unethical means. As a positive example, the meth-
ods developed by Cheng et al. [67] were used to perform crowd analysis of
the January 6th capital riot, for which they were awarded the 2022 Pulitzer
Prize for public service. Given this, crowd counting methods seem to have sig-
nificant positive benefits that are worth pursuing from a research perspective
and limited unethical use cases. However, researchers should remain vigilant
when providing contributions to the space and make themselves aware of who
is using their research and how it is being applied.

13 Conclusions

Object counting is an important computer vision task, which has several
applications across a wide variety of domains. Progress within the field has his-
torically been driven by density map annotations. However, these annotations
are labour intensive to collect and contain significant noise, errors, and inter-
annotator variance. More recent approaches have attempted to alleviate the
burden of density map annotations by proposed limited data approaches, such
as few-object counting, domain adaptation, semi-supervised learning, weakly
supervised learning, and self-supervised learning. The field has shown a trend
towards these approaches and away from fully supervised approaches. However,
these limited data methodologies do not achieve similar performance when
compared to fully supervised methods, and significant work must be done to
find new strategies for improving these methods.
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Maldonado-Bascón, S., noro-Rubio, D.O.: Extremely overlapping vehi-
cle counting. In: Iberian Conference on Pattern Recognition and Image
Analysis (IbPRIA) (2015)

[17] Hoekendijk, J., Kellenberger, B., Aarts, G., Brasseur, S., Poiesz, S.S.,
Tuia, D.: Counting using deep learning regression gives value to ecolog-
ical surveys. Scientific reports 11(1), 1–12 (2021)

[18] DataCanary, M.R. Katie: NOAA Fisheries Steller Sea Lion Pop-
ulation Count. Kaggle (2017). https://kaggle.com/competitions/
noaa-fisheries-steller-sea-lion-population-count

[19] Lu, H., Cao, Z., Xiao, Y., Zhuang, B., Shen, C.: Tasselnet: counting maize
tassels in the wild via local counts regression network. Plant methods
13(1), 1–17 (2017)

[20] Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Finely-grained
annotated datasets for image-based plant phenotyping. Pattern recogni-
tion letters 81, 80–89 (2016)

[21] David, E., Serouart, M., Smith, D., Madec, S., Velumani, K., Liu,
S., Wang, X., Pinto, F., Shafiee, S., Tahir, I.S., et al.: Global wheat
head detection 2021: an improved dataset for benchmarking wheat head
detection methods. Plant Phenomics 2021 (2021)

https://kaggle.com/competitions/noaa-fisheries-steller-sea-lion-population-count
https://kaggle.com/competitions/noaa-fisheries-steller-sea-lion-population-count


Springer Nature 2021 LATEX template

42 Counting Objects in Images using Deep Learning

[22] Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting and detec-
tion with fully convolutional regression networks. Computer methods in
biomechanics and biomedical engineering: Imaging & Visualization 6(3),
283–292 (2018)

[23] Paul Cohen, J., Boucher, G., Glastonbury, C.A., Lo, H.Z., Bengio, Y.:
Count-ception: Counting by fully convolutional redundant counting. In:
Proceedings of the IEEE International Conference on Computer Vision
Workshops, pp. 18–26 (2017)

[24] Marsden, M., McGuinness, K., Little, S., Keogh, C.E., O’Connor, N.E.:
People, penguins and petri dishes: Adapting object counting models to
new visual domains and object types without forgetting. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8070–8079 (2018)

[25] Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S.,
Hasz, R., Walters, G., Garcia, F., Young, N., et al.: The genotype-tissue
expression (gtex) project. Nature genetics 45(6), 580–585 (2013)

[26] Li, B., Huang, H., Zhang, A., Liu, P., Liu, C.: Approaches on crowd
counting and density estimation: A review. Pattern Analysis and Appli-
cations 24(3), 853–874 (2021)

[27] Sindagi, V.A., Patel, V.M.: A survey of recent advances in cnn-based
single image crowd counting and density estimation. Pattern Recognition
Letters 107, 3–16 (2018)

[28] Thasveen M., S., Mredhula, L.: Real time crowd counting: A review.
In: 2020 International Conference on Futuristic Technologies in Control
Systems & Renewable Energy (ICFCR), pp. 1–5 (2020). https://doi.org/
10.1109/ICFCR50903.2020.9249984

[29] Jingying, W.: A survey on crowd counting methods and datasets. In:
Advances in Computer, Communication and Computational Sciences,
pp. 851–863. Springer, ??? (2021)

[30] Khan, M.A., Menouar, H., Hamila, R.: Revisiting crowd counting: State-
of-the-art, trends, and future perspectives. Image and Vision Computing,
104597 (2022)

[31] Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.-Q.:
Crowd analysis: a survey. Machine Vision and Applications 19(5), 345–
357 (2008)

[32] Zaidi, S.S.A., Ansari, M.S., Aslam, A., Kanwal, N., Asghar, M., Lee, B.:
A survey of modern deep learning based object detection models. Digital

https://doi.org/10.1109/ICFCR50903.2020.9249984
https://doi.org/10.1109/ICFCR50903.2020.9249984


Springer Nature 2021 LATEX template

Counting Objects in Images using Deep Learning 43

Signal Processing, 103514 (2022)

[33] Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years:
A survey. Proceedings of the IEEE (2023)

[34] Zhang, D., Han, J., Cheng, G., Yang, M.-H.: Weakly supervised object
localization and detection: A survey. IEEE transactions on pattern
analysis and machine intelligence 44(9), 5866–5885 (2021)

[35] Asgari Taghanaki, S., Abhishek, K., Cohen, J.P., Cohen-Adad, J.,
Hamarneh, G.: Deep semantic segmentation of natural and medical
images: a review. Artificial Intelligence Review 54, 137–178 (2021)

[36] Kang, D., Dhar, D., Chan, A.: Incorporating side information by adap-
tive convolution. Advances in Neural Information Processing Systems 30
(2017)

[37] Sindagi, V.A., Yasarla, R., Patel, V.M.: Pushing the frontiers of uncon-
strained crowd counting: New dataset and benchmark method. In:
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1221–1231 (2019)

[38] De Almeida, P.R., Oliveira, L.S., Britto Jr, A.S., Silva Jr, E.J., Koerich,
A.L.: Pklot–a robust dataset for parking lot classification. Expert
Systems with Applications 42(11), 4937–4949 (2015)

[39] Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., Lepetit, V.: You
should use regression to detect cells. In: International Conference on
Medical Image Computing and Computer-Assisted Intervention, pp.
276–283 (2015). Springer

[40] Wu, X., Wen, N., Liang, J., Lai, Y.-K., She, D., Cheng, M.-M., Yang, J.:
Joint acne image grading and counting via label distribution learning. In:
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 10642–10651 (2019)

[41] Dworkin, J.D., Linn, K.A., Oguz, I., Fleishman, G.M., Bakshi, R., Nair,
G., Calabresi, P.A., Henry, R.G., Oh, J., Papinutto, N., et al.: An
automated statistical technique for counting distinct multiple sclerosis
lesions. American Journal of Neuroradiology 39(4), 626–633 (2018)

[42] Chung, K.K., Altmann, D., Barkhof, F., Miszkiel, K., Brex, P.A.,
O’Riordan, J., Ebner, M., Prados, F., Cardoso, M.J., Vercauteren, T.,
et al.: A 30-year clinical and magnetic resonance imaging observational
study of multiple sclerosis and clinically isolated syndromes. Annals of
neurology 87(1), 63–74 (2020)



Springer Nature 2021 LATEX template

44 Counting Objects in Images using Deep Learning

[43] Karimaghaloo, Z., Arnold, D.L., Arbel, T.: Adaptive multi-level condi-
tional random fields for detection and segmentation of small enhanced
pathology in medical images. Medical image analysis 27, 17–30 (2016)

[44] Gurcan, M.N., Madabhushi, A., Rajpoot, N.: Pattern recognition in
histopathological images: An icpr 2010 contest. In: International Confer-
ence on Pattern Recognition, pp. 226–234 (2010). Springer

[45] Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja,
O.: Computational framework for simulating fluorescence microscope
images with cell populations. IEEE transactions on medical imaging
26(7), 1010–1016 (2007)

[46] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hub-
bard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code
recognition. Neural computation 1(4), 541–551 (1989)

[47] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet:
A large-scale hierarchical image database. In: 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 248–255 (2009). Ieee

[48] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet
large scale visual recognition challenge. International journal of computer
vision 115(3), 211–252 (2015)

[49] Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.:
The pascal visual object classes (voc) challenge. International journal of
computer vision 88(2), 303–338 (2010)

[50] Everingham, M., Van Gool, L., Williams, C.K.I., Winn,
J., Zisserman, A.: The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html

[51] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In:
European Conference on Computer Vision, pp. 740–755 (2014). Springer

[52] Biggs, B., Boyne, O., Charles, J., Fitzgibbon, A., Cipolla, R.: Who left
the dogs out?: 3D animal reconstruction with expectation maximization
in the loop. In: ECCV (2020)

[53] Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose
estimation: New benchmark and state of the art analysis. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
(2014)



Springer Nature 2021 LATEX template

Counting Objects in Images using Deep Learning 45

[54] Chattopadhyay, P., Vedantam, R., Selvaraju, R.R., Batra, D., Parikh,
D.: Counting everyday objects in everyday scenes. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp.
1135–1144 (2017)

[55] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in neural
information processing systems 28 (2015)

[56] Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-nms – improv-
ing object detection with one line of code. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV) (2017)

[57] Shah, H., Tamuly, K., Raghunathan, A., Jain, P., Netrapalli, P.: The
pitfalls of simplicity bias in neural networks. Advances in Neural
Information Processing Systems 33, 9573–9585 (2020)

[58] Lempitsky, V., Zisserman, A.: Learning to count objects in images.
Advances in neural information processing systems 23 (2010)

[59] Li, Y., Zhang, X., Chen, D.: Csrnet: Dilated convolutional neural net-
works for understanding the highly congested scenes. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp.
1091–1100 (2018)

[60] Cholakkal, H., Sun, G., Khan, S., Khan, F.S., Shao, L., Van Gool, L.:
Towards partial supervision for generic object counting in natural scenes.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)

[61] Simonyan, K., Zisserman, A.: Very deep convolutional networks for
large-scale image recognition. In: International Conference on Learning
Representations (2015)

[62] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778 (2016)

[63] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser,  L., Polosukhin, I.: Attention is all you need. Advances in
neural information processing systems 30 (2017)

[64] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S.,
Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Trans-
formers for image recognition at scale. In: International Conference
on Learning Representations (2021). https://openreview.net/forum?id=
YicbFdNTTy

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy


Springer Nature 2021 LATEX template

46 Counting Objects in Images using Deep Learning

[65] Lin, H., Ma, Z., Ji, R., Wang, Y., Hong, X.: Boosting crowd counting via
multifaceted attention. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19628–19637 (2022)

[66] Hu, Y., Jiang, X., Liu, X., Zhang, B., Han, J., Cao, X., Doermann,
D.: Nas-count: Counting-by-density with neural architecture search. In:
European Conference on Computer Vision, pp. 747–766 (2020). Springer

[67] Cheng, Z.-Q., Dai, Q., Li, H., Song, J., Wu, X., Hauptmann, A.G.:
Rethinking spatial invariance of convolutional networks for object count-
ing. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 19638–19648 (2022)

[68] Shu, W., Wan, J., Tan, K.C., Kwong, S., Chan, A.B.: Crowd counting
in the frequency domain. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 19618–19627 (2022)

[69] Boominathan, L., Kruthiventi, S.S., Babu, R.V.: Crowdnet: A deep con-
volutional network for dense crowd counting. In: Proceedings of the 24th
ACM International Conference on Multimedia, pp. 640–644 (2016)
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