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Abstract 
Medical imaging continues to permeate the practice of medicine, but 
automated yet accurate segmentation and labeling of anatomical structures 
continues to be a major obstacle to computerized medical image analysis 
(MIA). Deformable models, with its profound roots in estimation theory, 
optimization, and physics-based dynamical systems, represent a powerful 
approach to the general problem of medical image segmentation. This Thesis 
presents a number of novel contributions to the field of deformable modeling, 
and includes theory as well as application. In the first part of the Thesis, a 
modified Active Contour Model (ACM), utilizing adaptive inflation reversal 
and damping, is applied to segmenting oral lesions in color images. In the 
second part, the amalgamation of Active Shape Models (ASM) and ACM into 
a technique, that harnesses the powers of both, is applied to locating the left 
ventricular boundary in echocardiographic images. The third part of the Thesis 
discusses the development of two methodological extensions for spatio-
temporal image analysis: Optical flow-based contour deformations, applied to 
contrast agent tracking in echocardiographic image sequences, and deformable 
spatio-temporal shape models for extending 2D ASM to 2D+time. The fourth 
part describes the use of a new Hierarchical Regional Principal Component 
Analysis, and presents two methods for interactive and learned, localized and 
multiscale, controlled shape deformation: medial-based shape profiles and 
physics-based shape deformations. In the final part of the Thesis, we develop 
Deformable Organisms: a robust decision-making framework for MIA that 
combines bottom-up, data-driven deformable models with top-down, 
knowledge-driven processes in a layered fashion inspired by Artificial Life 
modeling concepts. We present different segmentation and labeling examples 
of various anatomical structures from medical images and conclude that 
deformable organisms represent a promising new paradigm for MIA. 

Keywords 
Medical image analysis, segmentation, deformable models, shape modeling, 
shape deformation, physics-based modeling, artificial life, spatio-temporal 
shape analysis, statistical shape variation, principal component analysis, active 
contour models, snakes, active shape models, optical flow, dynamic 
programming, echocardiography, magnetic resonance imaging, digital color 
images, oral lesions, medial axis, spring-mass model, hierarchical regional 
principal component analysis, deformable organisms, deformable spatio-
temporal shape models, medial-based shape profiles. 
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CChhaapptteerr  11..  IINNTTRROODDUUCCTTIIOONN  

This Chapter introduces the reader to medical imaging, medical image 
analysis, and applications thereof. Medical image segmentation using 
deformable models and models incorporating prior knowledge of 
anatomical shapes are emphasized. Additionally, this Chapter presents a 
summary of the contributions and contents of this Thesis. 

1.1 Medical Imaging 
The advancements in medical imaging over the past decades are enabling 
physicians to non-invasively peer inside the human body for the purpose of 
diagnosis and therapy. With the advent of medical imaging modalities that 
provide different measures of internal anatomical structure and function, 
physicians are now able to perform typical clinical tasks such as patient 
diagnosis and monitoring more safely and effectively than before such imaging 
technologies existed. Applications of imaging in medicine include computer-
aided diagnosis (CAD), image guided therapy and therapy evaluation, 
computer assisted intervention, surgical simulation, planning, and navigation, 
medical telepresence and telesurgery, functional brain mapping, etc. Evidently, 
this introduction of a number of advanced internal, in vivo medical imaging 
technologies, which allow for the acquisition of high-resolution cross-sectional 
images of the human body, has significantly improved the quality of medical 
care available to patients. Short descriptions of some of the common modalities 
follow. 
 Planar (2D) X-ray images, as in mammography and chest X rays, are 
projection (shadow) images of a patient’s 3D region of interest. The images are 
produced from X rays passing through the patient’s body tissues and attenuated 
according to the varying tissue densities (Figure 1.1). 
 Computed Tomography (CT) or Computed Axial (Computer Assisted) 
Tomography (CAT) is based on the same principle as conventional X-ray 
radiography. However, stacks of axial slices or mathematically reconstructed 
volume (3D) images are produced. X-ray based imaging is useful for the 
investigation of bone structure and fat tissue. For adequate acquisition of soft 
tissue images, invasive contrast agents are required which cause allergic 
reactions in some patients (Figure 1.2). 
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(a) (b) 

Figure 1.1. (a) X-ray scanner. (b) Pelvis X-ray. 

 

 

 
(a) (b) 

Figure 1.2. (a) CT scanner. (b) Male CT data from the 
Visible Human Project® [VIS] (from top to bottom): Head, 
thorax, abdomen, pelvis, and feet. 

 
 Magnetic Resonance Imaging (MRI) is based on the principal of 
resonance (the absorption of energy from a source at a particular frequency, the 
resonant or natural frequency). In MRI, Radio Frequency (RF) pulses modify 
the net magnetization of groups of protons (hydrogen nuclei) while in an 
external magnetic field. An MR signal is the RF energy released when nuclei 
return to their original state. Different characteristics of the emitted MR signal, 
along with spatial localization procedures via external magnetic field gradients, 
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are used to produce images of tissue hydrogen concentration that reflect the 
different structures imaged. MRI is noninvasive, provides high-resolution 
images, and the use of radio waves is much safer than imaging using X rays. 
However it is an expensive procedure with typically longer scanning time than 
CT, during which the patient should ideally lie motionless inside a narrow tube. 
Magnetic resonance angiography, a specific type of MRI, is used to produce an 
image of blood flow for the visualization of arteries and veins (Figure 1.3). 
 

  
(a) (b) 

  
(c) (d) 

Figure 1.3. (a) MRI scanner. (b) Knee MRI.  (c) Sagittal and (d) 
transversal MRI brain slices (see Figure 1.4). 

 

 
(a) (b) 

Figure 1.4. Cardinal planes of the body: Sagittal (S), frontal (F), 
and transversal (T). (b) Planes in supine position. 
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 Digital Subtraction Angiography (DSA) produces images of a patient’s 
blood vessels as the difference image between a post- and a pre-contrast 
injection images. Since the contrast medium injected flows only in the vessels, 
the image data arising from other structures does not change in the two images 
and are eliminated by the subtraction (Figure 1.5). 
 

   
(a) (b) (c) 

Figure 1.5. Digital subtraction angiography. (a) Before and (b) after 
contrast injection. (c) Image of vessels after subtraction. 

 
 Ultrasound imaging (such as B-mode and Doppler) uses pulsed or 
continuous high-frequency sound waves to image internal structures by 
recording the different reflecting signals. Among others, ultrasound imaging is 
used in echocardiography for studying heart function and in prenatal 
assessment. Although ultrasonographic images are typically not high-resolution 
as images obtained through CT or MRI, they are widely adopted because of 
ultrasound’s invasiveness, cost effectiveness, acquisition speed, and 
harmlessness (Figure 1.6). 
 

 
(a) (b) 

Figure 1.6. (a) Ultrasound examination. (b) B-mode ultrasound image of 
the carotid artery. 
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 Nuclear medicine acquisition methods such as Single Photon Emission 
Computed Tomography (SPECT), and Positron Emission Tomography (PET) 
are functional imaging techniques. They use radioactive isotopes to localize the 
physiological and pathological processes rather than anatomic information 
(Figure 1.7). 
 

  
(a) (b) (c) 

Figure 1.7. (a) PET scanner.  Example PET brain scans (b) before and (c) 
after therapy. 

 

1.2 Medical Image Analysis 
Medical imaging is an important source of anatomical and functional 
information and is indispensable for the diagnosis and treatment of disease. 
However, huge amounts of high-resolution three-dimensional spatial and 
temporal data cannot be effectively processed and utilized with traditional 
visualization techniques. It is generally insufficient or inefficient for physicians 
to only visually inspect the medical image data collected from MR, CT, PET 
and other modalities. The role of medical imaging is expanding and the 
medical image analysis community has become preoccupied with the 
challenging problem of creating quantification algorithms that make full use of 
the information in the flood of image data. 
 Among the primary tasks of medical image analysis are image 
segmentation, registration, and matching. Medical image analysis directly 
impacts applications such as image data fusion, quantitative and time series 
analysis, biomechanical modeling, generating anatomical atlases, visualization, 
virtual and augmented reality, instrument and patient localization and tracking, 
etc. Medical images, for example, are analyzed to ascertain the detailed shape 
and organization of anatomic structures, in an effort to enable a surgeon to 
preoperatively plan an optimal approach to some target structure. Medical 
images can also be analyzed for examining relationships between structural 
abnormalities and deformations and certain functional abnormalities and 
diseases. In radiotherapy, medical image analysis is crucial for allowing the 
delivery of a necrotic dose of radiation to a tumor with minimal collateral 
damage to healthy tissue. 



   Chapter 1 6

 The reader is referred to [Duncan2000] for a recent overview of the 
medical image analysis field. See also, for example, [Ayache1995, Pun1993] 
for general overview articles related to medical image computing. 

1.2.1 Medical Image Segmentation 
Segmentation is nearly always the crux of any problem in computer assisted 
medical image computing. Segmenting an anatomical structure in a medical 
image amounts to identifying the region or boundary in the image 
corresponding to the desired structure. In the classical approach of 
segmentation by image labeling, image features are extracted and used to 
obtain a sparse collection of locations and data, which are then interpolated to 
form a representation and possible segmentation. Desired regions are identified 
by labeling each volume element (voxel) in a 3D scan, or picture element 
(pixel) in 2D, based on the anatomical structure to which it corresponds. In 
more recent approaches, an initial curve or surface estimate of the structure 
boundary is provided and optimization methods are used to refine the initial 
estimate based on image data. 
  A fully segmented scan allows surgeons to both better qualitatively 
visualize the shapes and relative positions of internal structures and more 
accurately measure their volumes and distances quantitatively. Detailed 
segmentation and subsequent 3D models can be used to generate an anatomical 
atlas for visualization, teaching, and as training data for other algorithms. 
Segmentation is beneficial when applied to image data of both patients with 
pathology and normal volunteers. Scans of people without pathological 
abnormalities can be used as a method for comparison to define abnormality.  
 The output of manual segmentation of medical images, by 
knowledgeable medical experts, can sometimes be considered optimal. 
Unfortunately, expert segmentation is far from recommended in many clinical 
situations. For example, in manual segmenting a structure in a three-
dimensional volume data, experts cannot visualize the entire volume 
simultaneously and typically resort to outlining the structure of interest 
manually in a series of consecutive two-dimensional slices of the original 3D 
volume. This slice-by-slice segmentation suffers from errors due to the 
difficulty in maintaining consistency across slices. Furthermore, manual tracing 
of object boundaries generally suffers from poor reproducibility of results 
(inter- and intra-operator variability). It is also tedious and time consuming 
thus becoming questionable given the large number of data sets usually 
required. Naturally, segmentation is performed automatically whenever 
possible. Most applications still require at least some amount of manual 
intervention and some are performed completely manually. 
 Although exceptional views of internal anatomy can be provided by 
modern medical imaging devices, efficient computer-assisted analyses of 
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internal anatomy that produce accurate results is limited. Accurate, repeatable, 
quantitative data must be efficiently extracted in order to support the spectrum 
of biomedical investigations and clinical activities, from diagnosis, to 
radiotherapy, to surgery. Medical imagery may be exceptional, but it is far 
from being ideal. The shortcomings typical of sampled data, such as sampling 
artifacts, spatial aliasing, and noise are a cause for the less than perfect 
performance of current medical image segmentation tools. Additionally, the 
similar appearance of different tissue in images, the shape complexity and 
variability of anatomical shapes, and the appearance of structure boundaries as 
indistinct and disconnected, together render accurate and efficient 
segmentation tools difficult to obtain. 
 Subsequent analysis and interpretation of segmented objects is hindered 
by voxel-level  (or pixel-level in 2D) structure representations, generated by 
most traditional low-level image processing techniques. Low-level 
segmentation techniques that consider only local information can make 
incorrect assumptions during the integration process and generate infeasible 
object boundaries. These model-free techniques usually require considerable 
amounts of expert intervention. The challenge is to extract boundary elements 
belonging to the same structure and integrate these elements into a coherent, 
consistent, and compact model representation of the structure. 

1.2.2 Deformable Models 
Although segmenting objects in high contrast, noise-free images can be done 
with simple low-level techniques, problems do arise when medical images are 
corrupted with noise and the structure itself is not clearly or completely visible 
in the image. This may result in detecting erroneous object regions or 
boundaries, or failing to detect true ones. Furthermore, in medical applications 
the structures to be analyzed, segmented, or tracked are generally anatomical 
structures that are natural (not man-made), non-rigid, and usually dynamic; 
changing their shape in time and/or between observations. To analyze such 
noisy images and to provide a coherent representation for variable structure 
shapes, deformable models were introduced, with some ideas dating back to 
the early 70’s (rubber mask technique [Widrow1973] and spring-loaded 
templates [Fischler1973]). Deformable models are curves or surfaces defined 
within an image domain. They are designed to be attracted to external image 
features (such as edges) while maintaining internal shape constraints (such as 
smoothness), thus progressively changing their shape in an effort to locate a 
desired structure in the image. By constraining the extracted boundaries of the 
target object shape to be smooth, and by incorporating other prior information 
about the object shape, deformable models offer robustness to both image noise 
and boundary gaps. Deformable models allow integrating boundary elements 
into a coherent and consistent mathematical description readily available for 
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subsequent applications. Furthermore, deformable models can be implemented 
on the continuum and achieve subpixel accuracy, a highly desirable property 
for medical imaging applications.  
 Snakes or Active Contour Models (ACM) [Terzopoulos1987, Kass1987], 
the seminal work on deformable models, has attracted the most attention and 
has been widely used for segmenting non-rigid objects in 2D in a wide range of 
applications. The mathematical formulation of snakes, dynamic deformable 
models, numerical simulation, and probabilistic deformable models are treated 
in Appendix A. 
 The work presented in this Thesis, focuses on the development of 
deformable models and their application to medical image analysis. 

1.2.3 Brief Overview of Deformable Models for MIA 
Current research on deformable models for medical image analysis is 
extensive. Many variations, extension, and alternative formulations appeared 
since the introduction of snakes. For general reviews the reader is referred, for 
example, to [Terzopoulos1988, McInerney1996, Gibson1997, Singh1998a, 
Blake1998, Xu2000]. The following paragraphs summarize some of these 
advancements. 
 Different methods that proposed additional energy (or force) terms were 
reported, mainly to increase the capture range of deformable models. For 
example, in [Cohen1991] an inflation force is incorporated and the contour 
curve is treated as a balloon that is inflated in order to avoid local minima 
solutions, i.e. the curve passes over weak edges and is stopped only if the edge 
is strong. [Xu1998] proposed Gradient Vector Fields (GVF). GVF extend the 
gradient map farther away from the edges into homogenous regions using a 
computational diffusion process. The attraction potential can also be defined 
through the use of Chamfer distance to edge points [Borgefors1984]. 
Additionally, a scale-space implementation was originally suggested in 
[Kass1987] where the snake is allowed to come to equilibrium on a very blurry 
energy function and then slowly reduce the blurring. The use of medial-ness 
(or medial axis-related features and energy terms) was also proposed 
[Pizer1999]. This has the effect of increasing the capture range and reducing 
the models’ sensitivity to initializations. In [Gunn1997] (see also [Gunn1994]) 
a dual active contour model (or dual snake) that overcomes the primary 
problems of sensitivity due to initialization was presented. In dual snakes, two 
inter-linked contours are used, one expanding from inside the target and the 
other contracting from the outside, until locking onto the object. 
 Different physics-based formulations were reported. [Terzopoulos1991] 
proposed Deformable Superquadrics and others proposed Finite Element 
Methods (FEM) formulations [Pentland1991, Cohen1993]. 
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 Methods for dealing with topological changes also appeared in the 
literature such as the topologically adaptable snakes  [McInerney2000], 
surfaces [McInerney1999], and meshes [Lachaud1999]. 
 Hierarchically organized models, which shift their focus from structures 
associated with stable image features to those associated with less stable 
features, were also reported [McInerney1998, Shen2000]. 
 Different numerical methods for model parameter optimization were 
introduced, including the use of dynamic programming [Amini1990, 
Gunn1996] (as in the “live-wire” technique [Mortenssen1992], which has been 
incorporated into united snakes [Liang1999a, Liang1999b]), simulated 
annealing [Ruekert1995, Grzeszczuk1997], genetic algorithms 
[MacEachern1998, Ballerini1998], and Bayesian frameworks [Storvik1994]. 
 Motion tracking using deformable models has been used for tracking 
non-rigid structures, such as blood cells [Laymarie1993]. Much attention has 
also been given to tracking the left ventricle in both 2D and 3D [Signh1993, 
McInerney1995]. Using a B-spline active contour model,  [Stark1996] tracked 
the silhouette of 3D object in 2D, using Kalman filtering in conjunction with a 
3D object pose tracker and an underlying 3D geometric model. [Curwen1994] 
used a Kalman B-spline snake model to track coronary vessel motion using a 
linear motion model. In ‘Kalman snakes’ [Terzopoulos1992], the contour’s 
motion equation is used to describe the expected evolution of the contour’s 
shape parameters, i.e. a time varying prior (see Appendix A). 
 Different shape representations for deformable models were also 
adopted. For example [Rueckert1995] proposed an adaptive spline model. The 
accuracy of the model is gradually increased during segmentation by inserting 
new control points yielding faster and more efficient computations. 
[Menet1990] introduced B-spline snakes (B-snakes) and deformable models 
based on elliptic Fourier descriptors were proposed by [Staib1992]. Fourier 
coefficients obtained from a Fourier series of polar development (FSPD) were 
also proposed [Bonciu1998]. Level-set and minimal path techniques for finding 
the global minimum of active contour models were also formulated 
[Cohen1996]. [Caselles1995] introduced Geodesic Active Contours and 
[Leventon2000] proposed an extension that incorporates statistical shape 
information. [Szekely1996] developed Fourier contours with constrained 
elastic deformation, and [Lobregt1995] formulated a polygonal or discrete 
dynamic contour model. Wavelets-based deformable contours were also 
reported [Yoshida1997]. [Delingette1999] developed deformable simplex 
meshes and [Hug1999] introduced ‘Tamed snakes’, particle-based snakes with 
adaptive subdivision. Loop free snakes were also proposed [Ji1999]. 
Furthermore, medial-based deformable models have been recently investigated 
[Fritsch1997, Pizer1998, Pizer1999, Pizer2000, Joshi2001]. 
 Solving the registration and matching problems that usually follow 
segmentation has resulted in methods that simultaneously determine the object 
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boundary and the spatial correspondence between similar structures of different 
subjects or anatomical atlases [Wang1998, Wang2000, Cootes1995a]. 
Additionally, there has been a great deal of work on multi-modality image 
fusion, warping, and registration in a deformable anatomy context. Some 
methods, for example, are based on the maximization of mutual information 
[Viola1997, Pluim2000] or on elastic [Kelemen1999] and fluid deformations 
[Christensen1996]. For more information on registration techniques, the reader 
is referred to survey papers on medical image registration, including  
[Antoine1998, Audette2000]. It’s worthwhile mentioning that non-rigid 
deformation methods [Sederberg1986, Bookstein1989, Little1996, 
MacCracken1996, Moccozet1997, Singh1998b] are valuable tools for many of 
the medical image registration techniques. 
 The incorporation of statistical prior knowledge in deformable models 
has also attracted much attention and research. We devote the following section 
(Section 1.2.4) for discussing this topic emphasizing on Active Shape Models 
[Cootes1995a] and related work. 

1.2.4 Statistical Prior Knowledge of Shape 
The original snakes formulation may be too general to give acceptable results 
when dealing with images where shape and appearance abnormalities are 
present due to occlusions, closely located but irrelevant structures, or noise. 
This led to several techniques that utilize prior knowledge of object shape for 
segmentation, pioneered by the work on Active Shape Models (ASM) 
[Cootes1995a]. While introducing a priori knowledge generally improves the 
segmentation results, nevertheless, the model will require training and thus 
becomes less general. 
 ASM is a deformable shape modeling technique that is used for 
segmentation of objects in digital images and has been used for locating 
anatomical structures in medical images [Cootes1993, Cootes1994b, 
Cootes1995c]. In ASM the statistical variation of shapes pertaining to a 
specific class of objects is modeled beforehand from a training set. An initial 
model guess is then applied and the model is allowed to deform according to 
image data. Proposed deformations, which are chosen to minimize a certain 
energy (cost) function, are constrained to be consistent with the prior 
knowledge about the target object. The energy function is chosen in a way that 
the model will be attracted to certain image features extracted form the 
intensity (or gray-level) values of the image.  Appendix B describes the steps 
involved in ASM in more detail. 
 Several enhancement and additions to the basic ASM method were 
developed. An automatic landmark generation algorithm was proposed in 
[Hill1994, Hill1997, Hill2000]. A multi-resolution implementation of ASM 
was presented in [Cootes1994a]. [Hill1992] suggested to tackle the ASM 
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parameter optimization problem via genetic algorithms. [Baumberg1994, 
Lanitis1994b] used Kalman filtering for tracking in an ASM framework. 
[Cootes1995b] formulated the combination of physical vibrational modes and 
statistical variational modes. [Hill1993] applied ASM to 3D data. [Cootes1997] 
presented a method for kernel-based estimation of the shape density 
distribution. The use of ASM for classification (face recognition) was 
investigated in [Lanitis1994a, Lanitis1995, Lanitis1997]. Combined 
Appearance Models and Active Appearance Models (AAM)1 were introduced 
in [Cootes1998, Cootes1999]. View-Based Active Appearance Models, in 
which a set of statistical models is built for several distinct view points, were 
introduced [Cootes2000a] and used for tracking. More recently, [Cootes2000b] 
presented the work on combining elastic and statistical models of appearance 
variation. 
 To model the non-linearity that can be present in point distribution 
models, non-linear statistical models were proposed [Bowden2000]. 
[Sozou1994] attacked this problem by fitting a high order polynomial to the 
non-linear axis of the training set. [Sozou1995]  modeled the non-linearity via 
back propagation neural networks. [Bowden1997] approximated the non-
linearity by a combination of multiple smaller linear models. 
[Chennubhotla2001] proposed Sparse PCA, a modified version of PCA, as a 
means to trade off the correlation among coefficients for sparsity. 

1.3 Thesis Outline and Contributions 
In this section we introduce the contributions of the Thesis to the field of 
deformable models for Medical Image Analysis (MIA). The paragraphs below 
present our work in a general context and point to different chapters within the 
Thesis where the reader can find detailed information about specific 
contributions. Note that minor overlap in the chapters may be noticed since 
they were written to be self-contained. 
 Active contour models gained large acceptance within the medical image 
analysis community and their use covered a wide range of applications. In 
Chapter Two of this Thesis, a modified version of snakes, which uses adaptive 
inflation reversal and damping, is applied to the problem of detecting oral 
lesions in digital color images. 
 Many extensions to the original snakes formulation were developed. 
Among the most notable are the incorporation of additional energy or force 
terms. In Chapter Four, an additional optical flow-based force is introduced 
and utilized for tracking the leading edge of injected contrast agent in an 
echocardiographic image sequence. 

                                                 
1 ‘Active Blobs’, an approach similar to AAM, was presented in [Scarloff1998]. 
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 Another important development to the original active contour 
formulation is the utilization of prior knowledge. The leading work on 
including statistical prior knowledge is Cootes’ Point Distribution Models 
(PDM) and Active Shape Models (ASM). In Chapter Five the reader is 
introduced to our work on extending 2D ASM to 2D+time. 
 A necessary nuisance for generating PDM is the need for labeling a 
training-set of images with spatial correspondence. In Chapter Three we 
present our contribution to overcoming the spatial labeling by means of 
performing the statistical analysis in the frequency domain. 
 The main modes of variation captured by a PDM via Principal 
Component Analysis (PCA) are spatially global. Changing the weight of a 
single variational mode of the PDM generally causes the whole shape to 
change. In Chapter Six and Chapter Seven we use our Hierarchical Regional 
PCA as a means for performing multiscale and spatially localized learned 
shape deformations. 
 A substantial amount of knowledge is often available about structures of 
interest. However, the use of high-level contextual knowledge in current 
deformable models is either largely ineffective because it is intertwined much 
too tightly with the low-level optimization, or non-automatic relying on the 
knowledgeable users’ interaction. Chapter Eight presents Deformable 
Organisms, a novel approach for MIA, which incorporates a higher-level 
cognitive layer on top of the original physics and geometry layers of traditional 
deformable models.  Deformable Organisms are architected in an artificial-life 
modeling framework.  
 Since high-level segmentation strategies (of deformable organisms or 
other) eventually need to trigger low-level geometrical and physical shape 
deformations, methods that provide controlled deformation ‘handles’ are 
needed. In Chapter Six and Chapter Seven we present a geometry- and a 
physics-based controlled shape deformation methods, respectively, to be used 
for such lower level layers. 
 Chapter Nine presents a future outlook. The Thesis also includes seven 
appendices dealing with the mathematical formulation of deformable models 
(Appendix A), active shape models (Appendix B), principal component 
analysis (Appendix C), 2D and spatio-temporal shape alignment (Appendix D 
and Appendix E), a proposed pruning algorithm (Appendix F), and details of a 
physics-based shape deformation tool that we developed (Appendix G). 
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CChhaapptteerr  22..  OORRAALL  LLEESSIIOONN  DDEETTEECCTTIIOONN  
IINN  CCOOLLOORR  IIMMAAGGEESS  

This chapter1 presents the application of active contour models (snakes) 
to the segmentation of oral lesions in medical color images acquired from 
the visual part of the light spectrum. The aim is to assist the clinical 
expert in locating potentially cancerous cases for further analysis (e.g. 
classification of cancerous vs. non-cancerous lesions). We apply a 
modified version of snakes, which uses adaptive inflation reversal and 
damping, to single-band images derived from the original color images. 
A number of different single-bands were evaluated including those 
resulting from the original and normalized RGB, perceptual HSI space, 
I1I2I3, and the Fisher discriminant function. Examples of segmentation 
results of oral lesions are presented. 

2.1 Introduction 
The human oral mucosa is a site of a variety of disorders. Numerous diseases or 
lesions have been clinically classified [Pindborg1992]. In particular, there exist 
lesions that have a potential to develop into oral cancer. The American Cancer 
Society estimated 30,200 new cases and 7,800 deaths in the US in the year 
2000 of oral cancer [ACS]. The preliminary diagnosis of oral disease is based 
on ocular inspection and registration of the patient’s oral cavity as true-color 
digital images. Although complementary techniques exist, based e.g. on 
infrared or fluorescence spectroscopy [Dhlngra1996], in clinical practice the 
decision about further treatment of the patient is predominantly based on lesion 
appearance from the visual part of light spectrum. The automatic detection 
(segmentation) of color images of the oral mucosa is thus an important part of 
computer-aided oral lesion diagnosis systems (CADx). It is of great interest for 
the medical community working with oral lesions to have an automatic (or 
semi-automatic) method for segmenting the lesions in true-color images, since 
by doing that the next step of extracting the different features and the 
consequent classification (examining the potentiality of a malignant cancerous 
lesion) can be immediately performed and evaluated. A previous study 
evaluated the classification of lesions based on different color features with the 
lesions being manually segmented by medical experts [Chodorowski1999, 
Chodorowski2000]. The oral specialists usually agree on the position of the 

                                                 
1 This chapter is based primarily on [Hamarneh2000d]. 
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lesion boundaries in the recorded images. However, this is still a challenging 
computer vision problem due to the shape and appearance variability of oral 
lesions. On the other hand, the machine is usually more efficient, after 
supervised learning, than humans in discrimination of different oral diseases. 
The automatic segmentation algorithm will simplify analysis of oral lesions and 
can be used in clinical practice to assist in the diagnosis of potentially 
cancerous lesions. 
 Currently our image database includes cases of two common oral lesions, 
the potentially cancerous lesions called leukoplakia and the usually harmless 
lesions called lichenoid reactions. Furthermore, the lichenoid reactions can be 
divided into atrophic, plaque-formed and reticular lesions. Thus the subsequent 
classification problem can be studied as a 2-class problem: cancerous vs. non-
cancerous, or a 4-class problem: complete classification (Figure 2.1). Both of 
the lesion types appear reddish-whitish to the human observer and are not 
easily differentiated. From a clinical viewpoint the boundaries of the lesions 
form a closed contour with no gaps. Most of the research in this field arises 
from dermatology and skin cancer detection [Ercal1993, Round1997]. In 
contrast to skin lesions, the oral lesions are predominantly reddish and occupy a 
narrow band of hue-spectrum. 
 
 
 

   
  

  
Figure 2.1. Examples of the four classes of oral lesions. 
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2.2 Methods 
Most of the previous work on deformable models was directed towards scalar-
valued (intensity or gray level) images. Nevertheless, attempts have been made 
to modify, extend, and/or apply snakes to detecting and segmenting objects in 
multi-band images [Sapiro1996, Chiou1996, Vandenbroucke1997, Zhu1996, 
Sobottka1996, Rasmussen1998]. For our application, we derived different 
single bands from the original multi-band (true-color, RGB) images and 
compared their suitability for semi-automatic detection of oral lesion 
boundaries. We used a modified version of snakes, including adaptive inflation 
reversal and damping. 

2.2.1 ACM with Adaptive Inflation Reversal and Damping 
Using a single value for the inflation force for all the nodes proved insufficient 
in our experiments. It caused the snake to ‘leak’ at regions where the snake 
nodes reached the target boundary earlier than others, since those regions were 
still being inflated. In order to dampen the inflation force when the snake nodes 
reach the target boundary, we associate a node-specific inflation weight ( )iq t  
and the equation for updating the position of snake node i  becomes (compare 
with equation (A.15) in Appendix A) 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )tensile flexural external inflation
i i i i i i i

tt t t t t t q t tα βγ
∆+∆ = − + − −v v F F F F . (2.1) 

When a node reaches the target boundary the inflation direction is reversed 
(inflation becomes deflation and vice versa). If a certain number of inflation 
reversals occurred within a limited number of past iterations then the inflation 
force is dampened for this particular node only. We also implemented an 
adaptive resampling scheme, where the polygonal snake nodes are re-sampled 
based on the distance between nodes and the curvature along the snake. Our 
snakes implementation was also equipped with a facility that allows the user to 
place certain forced nodes on the target boundary through which the snake must 
pass. 

2.2.2 Single Band Generation from Color Images 
In order to apply the discussed ACM formulation on color images without 
using complex multi-band forces, we derive a number of single bands from the 
original three-band (RGB) images. We have investigated the use of the single 
bands shown in Table 2.1, seeking the band in which the detected edges are 
most pronounced and coincide with the true lesion boundaries. 
 
 
 



   Chapter 2 20

 
 

Table 2.1. Single bands 

Color space* Single bands 
RGB R: red G: green B: blue 
HSI H: hue S: saturation I: intensity 
Normalized RGB Rn=R/(R+G+B) Gn=G/(R+G+B) Bn=B/(R+G+B) 
I1I2I3 I1=(R+G+B)/3 I2=R-B I3=(2G-R-B)/2 
Other F: Fisher projection M: modified Fisher projection 
* [Ledley1990, Ohta1980] 

 
The different single bands generated from one example color image are shown 
in Figure 2.2. All single bands used are either linear or nonlinear 
transformations of the original RGB values to other color coordinates. 
However, the Fisher (F) and the modified Fisher (M) single bands require 
training. In order to generate the F and M single bands, manually segmented 
lesions (by clinical experts) in true-color images were supplied (such as those 
in Figure 2.1). For a single image two classes were formed representing the two 
regions near the boundary; inside the lesion (in) and outside (out) (Figure 2.3). 
The Fisher single band image, FI , is calculated as ([Blake1998]) 

 ( ) ( ), ,T
F RGBI x y x y= f I  (2.2) 

where ( ) ( ) ( ) ( ), , , ,
T

RGB R G Bx y I x y I x y I x y =   I  are the original RGB 

values, 
 ( ) ( )1

RGB RGB

in out out inS S −= + −f I I  (2.3) 

 ( )( )
( )

( )( )
,

, , Tin in in
RGB RGB

x y in
S x y x y

∈
= − −∑ I I I I  (2.4) 

 ( )
( ),

1 ,in
RGB

in x y in
x y

N ∈
= ∑I I  (2.5) 

and similarly for outS  and outI . In the modified fisher the within-class scatter 
matrices ( inS , outS ) used in the original Fisher formulation were ignored (i.e. 
S  replaced by an identity matrix). This firstly simplifies calculations and 
secondly gives complete emphasis on generating a single band that possesses 
high mean contrast along the boundary edge, i.e. giving maximum separation of 
the means of the two classes with no regards to their respective variance. 
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Figure 2.2. Different single bands derived from an RGB image of an oral 
lesion (see Table 2.1). 

 

  
(a) (b) 

Figure 2.3. (a) Original oral lesion image with expert delineation. (b) 
Inner (dark) and outer (white) samples used for the Fisher training. 
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2.2.3 Comparing Single bands 
In the snake implementation there are different weighting factors and 
parameters to be set. Many of these depend mainly on the shape of the lesion, 
for example the tensile and flexural weights and the resampling parameters. 
The threshold value T  (see equation (A.13)) on the other hand, is directly 
linked to the intensity of the image and hence to the single band under 
investigation. In order to compare the performance of snakes using the different 
single bands, we fixed the values of all the parameters except for the threshold 
value. For each single band generated we performed a fully automated snake 
segmentation (without any manual intervention) over a feasible range of 
threshold values. To quantify the difference between the manually delineated 
boundary, M , and the snake-segmented boundary, S , we defined the 
following error measure 

 
( ) ( ) ( ) ( )

( )
A S A M A S A M

A M
ε ∪ − ∩=  (2.6) 

where ( )A M  and ( )A S  are the areas enclosed within M and S , respectively. 
This error measure was then used to determine which bands perform well to be 
used in the segmentation procedure. Figure 2.4 illustrates the various error 
measures for a selection of single bands obtained as described above for an 
example color image. 
 

 
Figure 2.4. Error measures for various single bands vs. 
the threshold value calculated for one cancerous lesion. 

2.3 Results 
In this section we present our results of the snake segmentation of the oral 
lesions performed on single band images generated from the true color digital 
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images. Figure 2.5(a) shows a single band image with only five snake nodes 
used for initialization and placed inside the target lesion region. Figure 2.5(b) 
shows the final result of the snake segmentation with the forced points used to 
constrain the snake shown as circles. The expert manual tracings of the oral 
lesion are shown in Figure 2.5(c). Figure 2.6 shows a similar snake 
segmentation result on a different lesion image using four initial snake nodes. 
Figure 2.7 depicts the deformation of the snake and the progress of the 
segmentation. The four snake nodes used for initialization are shown in Figure 
2.7(a) while Figure 2.7(b) shows the snake after deformation and subdivisions. 
Figure 2.7(c) shows the snake in a later stage of the deformation where it is 
stuck on an erroneous edge, not being able to reach the correct left side of the 
lesion boundary. The placement of a single forced point at the correct lesion 
boundary (the part that the snake couldn’t latch to) and how this improves the 
segmentation is depicted in Figure 2.7(d). The final segmentation result is 
shown in Figure 2.7(e) and the expert delineation of the oral lesion is shown in 
Figure 2.7(f). Notice how the number of snake nodes is adaptively increased to 
accommodate the complexity of the lesion boundary. Figure 2.8 illustrates the 
calculation of the error term in equation (2.6). The binary image in Figure 
2.8(a) shows the area ( )A S  of the snake-segmented oral lesion of Figure 
2.8(e) and Figure 2.8(b) shows the area ( )A M  of the manually segmented 
lesion. Figure 2.8(c) shows the area described by the numerator of the error 
term in (2.6). 
 

   
(a) (b) (c) 

Figure 2.5. Segmentation example using the Green band: (a) Initial snake 
nodes. (b) Final segmentation result (snake nodes shown as white dots and 
forced points as white circles). (c) The manual expert delineation of the oral 
lesion overlaid on the original lesion image. 
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(a) (b) (c) 

Figure 2.6. Segmentation example using the Blue band: (a) Initial snake nodes. 
(b) Final segmentation result (snake nodes shown as white dots and forced 
points as white circles). (c) The manual expert delineation of the oral lesion 
overlaid on the original image. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2.7. Segmentation example using the original Fisher projection band: (a) 
Initial snake nodes. (b) Progress of snake deformation (snake nodes shown as 
white dots). (c) Snake stuck on erroneous edge (left-side of lesion). (d) 
Addition of a forced point (white circle). (e) Final segmentation result. (f) The 
manual expert delineation of the oral lesion. 

 

   
(a) (b) (c) 

Figure 2.8. Error calculation: Area of (a) snake-segmented lesion, (b) manual 
delineation of the same lesion. (c) The erroneous area, ε  = 0.0953 (9.53%). 
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2.4 Conclusion 
We have applied snakes for semi-automatic segmentation of oral lesions in 
color images of the human oral cavity. Snakes proved to be a valuable method 
for the segmentation of oral lesions by guaranteeing continuous and smooth 
lesion boundaries (by edge linking) and led to small segmentation errors. 
However some operator interaction was still needed due to the large variability 
of the objects and images in this application. It is important that a user (or an 
add-hoc method) assists in the segmentation procedure by initializing the snake 
in the vicinity of the region in the image where the target lesion exists (done 
here by specifying a few initial snake nodes). The user should also be ready to 
intervene by placing constrained (forced) points to assist the snake if it clings to 
erroneous edges. Such assistance is generally accepted in clinical practice, 
sometimes even preferred and therefore we conclude that our segmentation 
method based on snakes will contribute to the clinical toolbox. 
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CChhaapptteerr  33..  SSTTAATTIISSTTIICCAALLLLYY  CCOONNSSTTRRAAIINNEEDD  SSNNAAKKEESS  

In this chapter1 we present a method for constraining the deformations of 
snakes in a way that is consistent with a training set of images. The 
method we propose is similar to both Active Shape Models (ASM) but 
without the landmark identification and correspondence requirement, and 
to Active Contour Models (ACM), but enforced with a priori information 
about shape variation. Rather than representing the object boundaries by 
spatially corresponding landmarks, we employ a frequency-based 
boundary representation. The Principal Component Analysis (PCA), 
which is central to ASM, is applied to the set of frequency-domain shape 
descriptors. An average object shape is extracted along with a set of 
significant shape variational modes. Armed with this model of shape 
variation we find the boundaries in unknown images by placing an initial 
ACM and allowing it to deform only according to the examined shape 
variations. The described methodology was applied to the problem of 
locating the left ventricular boundary in echocardiographic images. A 
training set of 105 expert-segmented echocardiographic images was used 
to train the model. 

3.1 Introduction 
Ultrasound echocardiography is a valuable non-invasive and relatively non-
expensive tool for clinical diagnosis and analysis of heart function including 
ventricular wall motion. An important step towards this analysis is the 
segmentation of endocardial boundaries of the left ventricle (LV) [Hunter1993, 
Parker1994, Taine1994, Papadopoulos1995, Mikic1998, Malassiotis1999]. 
Although segmenting anatomical objects in high SNR images can be done with 
simple techniques, problems do arise when the images are corrupted with noise 
and the object itself is not clearly or completely visible in the image. This is 
clearly the case in heart images obtained by ultrasonography, which are 
characterized by weak echoes, echo dropouts and high levels of speckle noise. 
These image artifacts often result in detecting erroneous object boundaries or 
failing to detect true ones. Snakes or Active Contour Models [Kass1987] and 
its variants [Amini1990, Cohen1991, Grzeszczuk1997, McInerney2000] 
overcome parts of these limitations by considering the boundary as a single, 
inherently connected, and smooth structure, and also by supporting intuitive, 
interactive mechanisms for guiding the segmentation. In our application of 
locating the human LV boundary in echocardiography, human guidance is 

                                                 
1 This chapter is based primarily on [Hamarneh2000c] (see also [Hamarneh2000e, 
Hamarneh2000b, Hamarneh2000f]). 
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often needed to guarantee acceptable results. A remedy is to present the snake 
with a priori information about the typical shape of the LV. Statistical 
knowledge about shape variation can be obtained using Point Distribution 
Models (PDM), which are central to the Active Shape Models (ASM) 
segmentation technique [Cootes1995a]. PDM, which are obtained by 
performing Principal Component Analysis (PCA) on landmark coordinates 
labeled on many example images, have been applied to the analysis of 
echocardiograms [Parker1994]. However, this procedure is problematic since 
manual labeling of corresponding landmark points is required. In our 
application it is tedious to obtain a training data set delineated by experts with 
point correspondence, let alone the fact that defining a sufficient number of 
landmarks on the LV boundary is a challenging task by itself. Hence, we adopt 
an approach similar to PDM for capturing the main modes of ventricular shape 
variation, however, in our method shapes are represented by descriptors that 
eliminate the need for spatial point correspondence, namely the Discrete 
Cosine Transform (DCT) coefficients. We use snakes as the underlying 
segmentation technique but with constrained deformations derived from the 
prior knowledge of ventricular shape (A similar approach using Fourier 
descriptors and applied to locating the corpus callosum in 2D MRI images was 
reported in [Székely1996].). Results of segmenting the human LV in real 
echocardiographic data using the discussed methodology are presented. 

3.2 Methods 

3.2.1 Overview 
This section presents a general overview of the method (Figure 3.1). We used 
snakes as the underlying segmentation technique. In order to arm the snake 
model with a priori information about the typical shape variations of the LV 
that may be encountered during the segmentation stage, a training set of images 
is provided. This set is manually delineated by medical experts without the 
requirement of complete landmark correspondence between different images. 
The entire set of manually traced contours is then studied to model the typical 
ventricular shape variations. This is done by first applying a re-
parameterization of the contours, which gives a set of DCT coefficients 
replacing the spatial coordinates. We then apply PCA to find the strongest 
modes of shape variation. This results in an average ventricular shape, 
represented by a set of average DCT coefficients, in addition to the principal 
components along with the fraction of variation each component explains. To 
segment a new image of the LV, we initialize a snake and, unlike classical 
snakes, do not allow it to freely deform according to internal and external 
energy terms, but instead we constrain its deformations in such a way that the 
resulting contour is similar to the training set. To attain the constrained 
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deformations we obtain the vector of DCT coefficients for the active contour 
coordinates, project it onto an allowable snake space defined by the main 
principal components, and then perform an Inverse DCT (IDCT) that converts 
the constrained DCT coefficients back to spatial coordinates. This is repeated 
until convergence, which is reached when the majority of snake nodes do not 
change their locations significantly. The shape models generated are 
normalized with respect to the similarity transformation parameters: rotation 
angle, scaling factor, and two translation parameters. 
 

Prepare a training
set of images

Expert delineat ion
without point

correspondence 

PCA of DCT
coefficients

New image
to segment Initialize Snake Deform Snake with

traditional forces
DCT of 

Snake coordinates 

Project DCT
coefficients on 

allowable space  

Define 
allowable space

IDCT of projected
coefficients

New constrained
snake

Training

Application

DCT of
coordinates

Converge?

no
yes

Done!

Figure 3.1. Flowchart depicting the main steps involved in the use of a 
statistically constrained snake for image segmentation. 

3.2.2 Representing Contours by DCT Coefficients 
We use snakes as the underlying segmentation technique. A snake contour is 
originally represented by a set of N  of nodes ( ) ( ) ( )( ){ },i i it x t y t=v , 

1, 2, ,i N= … , and is deformed according to internal and external forces (more 
details can be found in Appendix A). Snake contour re-parameterization is 
obtained via the use of the one-dimensional Discrete Cosine Transform (DCT) 
of the snake coordinates. The 1D DCT of the sequence ix  of snake contour 
coordinates is defined as 

 ( ) ( )
( )( )

1

2 1 1cos , 1, ,
2

N

i
i

i kX k w k x k N
N

π
=

− −= =∑ …  (3.1) 

and the inverse DCT is give as 

 ( ) ( )
( )( )

1

2 1 1cos , 1, ,
2

N

i
k

i kx w k X k i N
N

π
=

− −= =∑ …  (3.2) 

where 
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 ( )

1  , 1

2  , 2

k
Nw k

k N
N

 ==  ≤ ≤

 (3.3) 

and ( )X k  are the DCT coefficients. Similar equations are used for the iy  
coordinates and the ( )Y k  DCT coefficients. The DCT was favored as the new 
frequency domain shape parameterization because it produces real coefficients, 
has excellent energy compaction properties, and the correspondence between 
the coefficients (when transforming contours with no point correspondence) is 
readily available. The latter property stems from the fact that corresponding 
DCT coefficients capture specific spatial contour frequencies. 

3.2.3 Principal Component Analysis 
In order to identify the main modes of shape variation found in the training 
contours, we perform a PCA on the DCT coefficients representing them. The 
same number, say M , of DCT coefficients is obtained for the set of x  and y  
coordinates that represent each shape in the training set. This is done either by 
interpolating the spatial coordinates or truncating the DCT coefficients. PCA 
yields the principal components (PCs) or main variation modes, ja , and the 
variance explained by each mode, jλ . The first t  PCs, sufficient to explain 
most of the variance, are used, i.e. 1,2, ,j t= … .  The average of the 
coefficient vectors, X , is also calculated. The same procedure is performed for 
the y  coordinates (further details on PCA can be found in Appendix C). 

3.2.4 Constraining Contour Deformation 
Subsequent to providing a set of images containing the object of interest, the 
training set of tracings is obtained (contours represented by coordinate-vectors 
of varying length with no point correspondence). DCT coefficients (X ) are 
then obtained followed by PCA. Presented with a new image, a snake contour 
is first initialized by specifying the starting and end points of the contour, and 
then allowed it to deform by applying forces that minimize traditional energy 
terms. In order to guarantee a snake contour resembling an acceptable shape 
(similar to those in the training set), we constrain the resulting deformed 
contour, ( ){ }, 1, ,i t i N=v … , by projecting the vector X  (consisting of M  
DCT coefficients) onto the subspace of principal components (the allowable 
shape space) according to 
 projX X= + Ab  (3.4) 
where b  is a vector of scalars weighing the main variation modes in A  and is 
calculated as 
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 ( ) ( )1T T X X−= −b A A A  (3.5) 

and 1 2 t
 =   A a a a… . Prior to performing the IDCT, we restrict the 

projected coefficients ( projX ) to lie within 3 jλ±  since in this application the 
population typically lies within three standard deviations from the mean. 
Again, the same procedure is performed for the y  coordinates. The statistical 
constraints can be applied after each snake deformation step or only when the 
resulting DCT coefficients of the snake contour are different (using some norm 
and threshold) from the mean coefficients. Note that the DCT coefficients are 
obtained and constrained for shapes normalized with respect to similarity 
transformation parameters utilizing corresponding starting and ending contour 
points. 

3.3 Results 
The described methodology was applied for segmenting the LV ventricle in 
real echocardiographic images. We collected 105 images of the human LV. 
The ventricular boundaries were manually traced by a medical expert. There 
was no point correspondence between the frames, with the number of traced 
points varying between 28 and 312 (Figure 3.2 and Figure 3.3). The DCT of 
the manual tracings was then obtained.  
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Figure 3.2. Sample of the echocardiographic training image set. 
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Figure 3.3. Manual tracings of LV boundary in the training images. 

 
 
Figure 3.4 shows an example of the manual tracings and the resulting contour 
after IDCT of the truncated DCT coefficients. The ratio ‘energy of truncated 
contour’/‘energy of the original contour’ for increasing numbers of DCT 
coefficients was examined in order to determine how many DCT coefficients 
to use. This was followed by a PCA of the truncated DCT coefficients. Five 
variation modes of 56 possible were enough to explain 95% of the total 
variation, 12 were enough for 99%, and 24 for 99.9%. Figure 3.5 depicts the 
first and second shape variation modes found in the training set. 
 To illustrate applying shape constraints we used test examples. We began 
with one of the manual tracings, added Gaussian noise, performed DCT, 
truncated certain DCT coefficients, projected the remaining coefficients on the 
allowable shape space, and then performed the IDCT. It was visually obvious 
how the constrained contour resembles a much more plausible boundary of the 
LV than the noisy one (Figure 3.6). 
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Figure 3.4. Ultrasound image with the manual 
tracing (continuous) and the contour after 
IDCT of truncated DCT coefficients (dots). 
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Figure 3.5.  Mean contour and the first and 
second variation modes (weighted by ±1 std). 
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Figure 3.6. (a) Manual tracing. (b) Noisy version of (a). (c) 
IDCT of truncated DCT coefficients of (b). (d) The 
projection of (c) on the allowable shape space (note the 
similarity to (a)).  

 
 
 More importantly, results on real echocardiographic data were obtained 
by initializing the snake on an image that wasn’t included in the training set 
(i.e. cross validation was used) and then allowing it to deform under forces that 
minimize its energy. This was followed by a DCT-Truncation-Projection-IDCT 
procedure. The outcome of the snake segmentation alone, due to noise and 
echo dropouts in the image, often gave unreasonable and unacceptable shape of 
the LV. Conversely, employing constrained deformations resulted in 
acceptable LV boundaries (Figure 3.7, Figure 3.8). 
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Figure 3.7. Snake contours (dashed) and the constrained 
contours (continuous) with increasing number of iterations 
(left to right, top to bottom). 

 

(d) 

(b)   (a)   

(c)   

 
Figure 3.8. The progress (a to d) of a snake overlaid on an ultrasound 
image of the left ventricle (dashed) and the result of the DCT-
Truncation-Projection-IDCT (continuous). 
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3.4 Conclusion 
We presented a method for constraining the deformations of an active contour 
according to training examples and applied it to segmenting the human left 
ventricle in echocardiographic (ultrasound) images. To capture the typical 
shape variations of the training set, principal component analysis was 
performed on frequency-domain shape descriptors in order to avoid the 
drawbacks associated with labeling corresponding landmarks (only the starting 
and ending points of the contours correspond). The method utilizes the strength 
of ACM in producing smooth and connected boundaries along with the 
strength of ASM in producing shapes similar to those in a training set. More 
plausible LV shapes resulted when employing the new method compared to 
classical snakes. 



CChhaapptteerr  44..  OOPPTTIICCAALL  FFLLOOWW  SSNNAAKKEE  FFOORRCCEESS  

In this chapter1 we present an extension to the formulation of Active 
Contour Models (snakes) by including an additional contour-deforming 
force. The new force is derived from the optical flow field calculated 
between two time-consecutive frames in an image sequence. The addition 
of the new force assists the snake in tracking desired dynamics while the 
traditional snake forces guarantee the contour’s smoothness and attraction 
to edges. The method is applied to the problem of tracking the leading 
edge of injected contrast agent in an echocardiographic image sequence 
and is shown to improve the tracking speed. A clinical motivation and 
previous work on echocardiography and videodensiometry are initially 
presented. 

4.1 Introduction 

4.1.1 Clinical Motivation 
The assessment of human right ventricular (RV) function is of great 
importance in many diseases afflicting the heart. For example, disturbances in 
filling and elimination patterns of the RV hemodynamics can be interpreted as 
signs of abnormal RV function. Arrhythmogenic Right Ventricular Dysplasia 
(ARVD) is a rare but clinically important disease, which afflicts young adults 
and may play a role in the etiology of sudden death among young people 
[McKenna1994]. The impairments of the RV function in this group of patients 
can be described in terms of wall motion abnormalities, or as localized bulging 
and sacculations. These abnormalities are mainly located at the inflow, outflow 
or apical regions. To study these abnormalities we use sequences of contrast 
echocardiographic images. 

4.1.2 Medical Imaging Procedure 
Thirty patients with biopsy-verified ARVD and 18 healthy volunteers (control 
group) were investigated by use of contrast echocardiography. The 
investigations were performed with an Acuson XP 128 computed system or a 
Sequoia system equipped with multiHertz transducers. As a contrast agent, 2 
ml of Haemaccel® (Hoechst) was injected intravenously. Transthoracic apical 
four-chamber view with focus on the right ventricle was used and continuously 
recorded during and after the injection. The video sequence (Figure 4.1) of the 

                                                 
1 This chapter is based primarily on [Hamarneh2000a] (see also [Althoff2000]). 
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filling and elimination of the contrast agent was then digitized using a PC with 
a frame grabber (Matrox, Meteor II), giving about 600 images for each 
sequence. 
 
 

 
Figure 4.1. Sample frames from a digitized image sequence. In frame 
#1, #59, #124 and #422 the contrast agent hasn’t reached, just 
reached, totally filled and washed out from the RV, respectively. 

4.1.3 Contrast Echocardiography and Videodensiometry 
Contrast-echocardiography in conjunction with real-time videodensiometry 
[Suurküla1997] is a method to describe the RV hemodynamics by 
intravenously injecting a contrast agent and continuously imaging, recording, 
and analyzing its flow. This can be an effective means of studying right 
ventricular (RV) structural changes, e.g. in patients diagnosed with ARVD, 
since it can be used to illustrate such hemodynamics by calculating wash-in 
and wash-out time indices (parameters) corresponding to the time needed for 
filling and elimination of the contrast agent in the RV. The time indices are 
calculated for 5×5 pixels regions of interest (ROI) in each sequence, located in 
the right ventricular inflow tract (RVIT) and in the apex (Figure 4.2). 
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Figure 4.2. The RVIT and apex ROIs (shown 
as white squares). In this example the contrast 
agent has not yet reached the RV. 

 

 The changes over time in image intensity, I, due to the flow of the 
contrast agent at those regions were studied.  A total of 48 frame sequences 
were analyzed from two groups: 30 ARVD-diagnosed patients and 18 healthy 
volunteers. The mean intensity of each ROI in the sequence was calculated and 
analyzed. Three time parameters To, Ta and Te were obtained (Figure 4.3). The 
parameters are defined as 
� Ta: time of maximum contrast agent intensity, Imax. 
� To: time for the intensity to rise to 0.2×Imax, (wash-in). 

� Te: time for the intensity to drop to 0.5×Imax, (wash-out). 
A comparison of the following time-differences, rather than the absolute values 
of To, Ta and Te, is performed for different sequences  

 
eo e o

ao a o

ea e a

T T

T T

T T .

∆ = −

∆ = −

∆ = −

 (4.1) 

The mean and standard deviation of the time differences are found to be larger 
for the ARVD-group (Table 4.1, Figure 4.4). 
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Figure 4.3. Image intensity at a particular ROI vs. time. Also shown in 
the figure are locations of the calculated time parameters, To, Ta and Te.  

 

Table 4.1. Mean (in seconds) and standard deviation 
values for the ARVD-group and the control group. 

Test ARVD-group Control-group 
∆eo RVIT 11.1 ± 6.9 5.5 ± 1.7
∆eo apex 11.0 ± 5.0 6.3 ± 1.7
∆ea RVIT 8.6 ± 6.6 3.9 ± 1.6
∆ea apex 7.1 ± 4.2 4.0 ± 1.5
∆ao RVIT 2.6 ± 1.4 1.7 ± 0.8  
∆ao apex 3.8 ± 1.9 2.3 ± 0.6

 

(a) (b) 

Figure 4.4. ∆eo RVIT histograms  for (a) the ARVD group and (b) the control 
group. 
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The P-values resulting from a Mann-Whitney U-test2 show that the ARVD and 
the control group are statistically well separated (Table 4.2) and that the best 
separation measure is ∆eo.  
 
 

Table 4.2. Resulting P-values 
after a Mann-Whitney U test 

Test P-value 
∆eo RVIT 0.0019 
∆eo apex 0.0002 
∆ea RVIT 0.0109 
∆ea apex 0.0031 
∆ao RVIT 0.0203 
∆ao apex 0.0019 

 
 
Furthermore, a pseudo color map can be obtained by analyzing the image 
intensities at different regions of the right ventricle (Figure 4.5) 
[Suurküla1997]. 
 

                                                 
2 About the Mann-Whitney U-test: Basically, the P value answers this question: If the 
populations really have the same median, what is the chance (probability) that random 
sampling would result in the separation observed in this experiment? For example, low 
probability P-value (e.g. 0.0019) implies rejecting the hypothesis that the populations 
come from the same median, with high confidence, (1-0.0019)×100%. The test doesn’t 
require that the groups have normal distribution. The test involves the following steps: 
Ranking all the values from low to high, paying no attention to which group each 
value belongs, if two values are the same, then they both get the average of the two 
ranks for which they tie. The smallest number gets a rank of 1. The largest number 
gets a rank of N, where N is the total number of values in the two groups. Summing 
the ranks in each group and reporting the two sums. If the sums of the ranks are very 
different, the P value will be small. 
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Figure 4.5. The time (Ta) needed for the contrast agent to produce 
maximum intensity in different regions of the RV in both (a) normal and 
(b) ARVD cases shown as color-coded time maps. The bright values in the 
right figures are indicative of hindered flow (longer times) relating to 
ARVD. 

4.2 Tracking the Contrast Front 
Here we attempt a different approach to characterize RV flow pattern, which 
involves tracking the front (the leading edge) of the contrast agent during the 
RV filling. Examining the flow of the contrast agent in a typical 
echocardiographic image sequence (Figure 4.6) reveals weak ultrasound 
echoes, echo dropouts and high levels of noise. Thus, the application of simple 
edge detectors to locate the front of the contrast would result in detecting 
erroneous edges and gaps. 
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Figure 4.6. Successive frames of the contrast agent entering the right 
ventricle of the heart. 

 
 The strength of active contour models in integrating low-level image 
information and guaranteeing a smoothly connected contour makes them 
suitable for our purposes (refer to Section 1.2.2 for further details). For 
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tracking the contrast front in a sequence we make use of the motion field 
obtained by Optical Flow (OF) computation as an additional contour deforming 
force, in order to speed up the tracking and to influence the snake nodes to 
match corresponding contrast front regions in-between frames. 
 Other authors have investigated similar approaches. In [Mikic1998] a 
method for segmenting and tracking cardiac structures in ultrasound image 
sequences is presented. In integrating the contour’s equation of motion, the 
method sets the initial velocities of the contour vertices to OF estimates, and 
sets their positions to the final position from the preceding frame. 
[Peterfreund1999] used Kalman filter-based active contours that calculate OF 
along the contour as system measurement to detect and reject measurement that 
may belong to other objects. [Akgul1998]  presents an application of tracking 
2D contours of tongue surfaces from digital ultrasound image sequences. The 
proposed method makes use of OF to reduce the computational complexity 
involved when searching for optimal snake node locations in a dynamic 
programming setting. This is done by considering only a subset of pixels in a 
search window. The subset is chosen on the basis of the first OF constraint, 
namely that the intensity of an object’s point in a dynamic image doesn’t 
change with time. 

4.2.1 Optical Flow 
Optical flow [Horn1981] is a well-established method for calculating the 
velocity field ( ) ( )( ), , ,u x y v x y  of the apparent 2D motion of pixels in a 
dynamic image ( ), ,I x y t  due to the 3D motion of imaged objects, by 
examining the spatial and temporal changes in intensity values. Classical OF is 
based on two main constraints. The first states that the brightness of any object 
point is constant over time. This can be written as: 
 ( , , ) ( , , )I x dx y dy t dt I x y t+ + + = . (4.2) 
Using Taylor series expansion and neglecting higher order terms gives the first 
OF constraint equation: 
 0x y tI u I v I+ + =  (4.3) 
where ,u dx dt v dx dt= =  are the desired velocity field components, xI  

and yI  are the spatial image derivatives, and tI  is the temporal image 
derivative. Equation (4.2) by itself is insufficient to calculate ( ),u v  hence a 
second constraint, the velocity field smoothness constraint, is introduced. The 
velocity field can now be calculated as that which best satisfies both constraints 
by minimizing the following square error function 
 ( )2 2 2 2 2 2, ( ) ( )x y x y x ytx y I u I v I u u v vξ λ= + + + + + +  (4.4) 
where λ  is a Lagrange multiplier. The following iterative algorithm detailed in 
[Horn1981] is used to find the velocity field (Figure 4.7). 
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( ) ( )

( )2

Initialize: , , 0 for all ,

do:  ,  while ,x y

u x y v x y x y

P Pu u I v v I x y
D D

ξ ε

= =

= − = − >
 (4.5) 

where  2 2 2,  Dx y x ytP I u I v I I Iλ= + + = + +  and ε  is a small number. 
 

  
Figure 4.7. Optical flow (velocity) field shown on two consecutive frames. 

4.2.2 Optical Flow Snake Forces 
In order to track the contrast agent front in an echocardiographic image 
sequence we need to accomplish two tasks. The first is to locate the region 
where the contrast front has moved from one frame to the next, and the second 
is to detect this front as a smooth and connected boundary. We use the optical 
flow to address the first task and snakes to address the second (see Appendix A 
for more details on snakes). To combine the two techniques we include an 
additional force term ( )flow

i tF  proportional to the calculated velocity field at 
the current snake node position ( ) ( ( ), ( ))i i it x t y t=v , yielding (compare with 
equation (A.15)): 

1 2 3 4( ) ( 1) ( ) ( ) ( ) ( )tensile flexural external flow
i i i i i it t w t w t w t w t= − + + + +v v F F F F  (4.6) 

where 4w  is a weighting factor,  

 flow
iF ( ) ( ( ( 1), ( 1)), ( ( 1), ( 1)))i i i it u x t y t v x t y t∝ − − − −  (4.7) 

and ( ) ( ), , ,i i i iu x y v x y  are obtained using algorithm (4.5) in Section 4.2.1. 

4.3 Results 
We tracked the leading edge of synthesized frame sequences and of contrast 
agent filling the RV in real ultrasonic image sequences. Images were first 
smoothed using non-linear diffusion filtering [Perona1990]. Initially we 
present an example of tracking in a synthesized sequence (Figure 4.8). The 
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snake nodes are shown after latching onto the leading edge. In Figure 4.8(a) the 
snake deformed without OF forces and detected the leading edge after 7, 8, 8, 
11, 13, and 21 iterations, whereas in Figure 4.8(b) OF forces were used and the 
edge was reached in only 2, 5, 3, 2, 3, and 2 iterations. 
 

 
(a) 

 
(b) 

Figure 4.8. Results of tracking a synthetic sequence. (a) 
Without using optical flow forces. (b) With optical flow 
forces.  In (a) 7, 8, 8, 11, 13, and 21 iterations were required 
compared to 2, 5, 3, 2, 3, and 2 iterations in (b). 

 
 The front of the contrast agent was tracked in eight sequences during the 
RV filling process, five from the ARVD-group and three from the control 
group. In each sequence, the front was tracked, on average, in about eight 
images. In the example depicted in Figure 4.9, the snake without OF forces 
needed 19, 20, 23, 22, 22, and 16 iterations (Figure 4.9(a)) whereas the snake 
with OF forces needed 5, 8, 10, 10, 6 and 10 iterations (Figure 4.9(b)). 
 We also show an example of both snakes, with and without OF forces, 
deforming towards the leading edge of the contrast agent in a single frame 
(Figure 4.10). The OF snake (with larger nodes in the figure) progresses faster 
towards the edge and locates it in only 10 iterations compared to 23 iterations 
needed for the snake without OF forces. 
 Histograms of the number of iterations needed for the contour to find the 
edge for all tested frames are also calculated (Figure 4.11). The mean number 
of iterations needed when using and without using information about the OF 
was 6.3 and 12.3, respectively. 
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(a) 

      
(b) 

Figure 4.9. Results of tracking a real sequence. Upper frames: without using 
optical flow forces obtained after 19, 20, 23, 22, 22, and 16 iterations. 
Lower frames: with optical flow forces obtained after 5, 8, 10, 10, 6 and 10 
iterations. 

 
 
 

   
Figure 4.10. The snake with optical flow forces (large nodes) progresses 
faster towards the contrast front compared to the snake without optical flow 
forces. The snake nodes are shown after 1 (left-most), 2, 6, 10, 15, and 23 
(right-most) iterations. 
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(a) (b) 

Figure 4.11.  Histogram of the total number of iterations needed for the contour 
to latch to the contrast front (a) with optical flow forces, (b) without optical 
flow forces. 

 
 An investigation into the use of the methodologies described (contrast 
echocardiography, videodensiometry and tracking the contrast front) for the 
discrimination between ARVD patients and healthy subjects can be found in 
[Althoff2001]. For example, in the case when the calculated time indices do 
not clearly belong to either the ARVD patients or the healthy subjects groups, 
the characteristics of the contrast front dynamics may provide the additional 
needed clues or features (Figure 4.12). 



  Chapter 4 48

 
 

 
Figure 4.12. The result of tracking the leading edge in one of the 
sequences from the ARVD-group. Each contour represents the contrast 
agent front at different times indicated beside each contour. The contrast 
front enters the RV (t=0) until the RV is totally filled (t=2960ms). Note 
how the contrast front in the initial phase of the filling (t=0 to 480ms) 
moves faster than the final phase (t=480 to 2960ms). This is indicative of 
the inhomogeneous operation of the RV, identified via contrast front 
tracking. 
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4.4 Conclusion 
In this chapter we motivated the use of contrast echocardiography for studying 
the blood flow in RV. We discussed the use of videodensiometry for extracting 
time indices and pseudo color time maps describing RV hemodynamics. We 
then presented an extension to active contour models in the form of an 
additional optical flow-based force. The method was used to track the front of 
the injected contrast agent while filling the RV. The front dynamics may 
provide additional information for discriminating between healthy subjects and 
ARVD patients. 
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CChhaapptteerr  55..  DDEEFFOORRMMAABBLLEE  SSPPAATTIIOO--TTEEMMPPOORRAALL  
SSHHAAPPEE  MMOODDEELLSS  

In this chapter1 2D Active Shape Models are extended to 2D+time by 
presenting a method for modeling and segmenting spatio-temporal shapes 
(ST-shapes). The modeling part consists of constructing a statistical 
model of ST-shape parameters. The model obtained describes the 
principal modes of variation of the ST-shape in addition to certain 
constraints on the allowed variations. A deformable model approach is 
used in segmentation; an initial ST-shape is deformed to better fit the 
data and the optimal proposed deformation is calculated using dynamic 
programming. Resulting ST-shapes are forced to conform to the training 
set. Different spatio-temporal segmentation results are presented. 

5.1 Introduction 
In many image analysis applications there is a need for modeling and locating 
non-rigid time-varying objects. One approach for dealing with such objects is 
the use of deformable models. Deformable models (DM) [Singh1998a], such as 
snakes [Kass1997] and its variants [Cohen1991, Grzeszczuk1997, Herlin1992, 
Lobregt1995, McInerney2000], have attracted considerable attention and are 
widely used for segmenting non-rigid objects in 2D and 3D (volume) images. 
Nevertheless, there are several problems associated with snakes. They were 
designed as interactive models often relying upon user intervention to guide the 
segmentation. They were also designed to be a general model showing no 
preference for a particular object shape other than those that are smooth. This 
generality can cause unacceptable results when snakes are used to segment 
objects with shape abnormalities arising from occlusion, closely located but 
irrelevant structures, or noise. Thus, techniques which incorporate a priori 
knowledge of object shape led by Active Shape Models (ASM) [Cootes1995a] 
were introduced. In ASM the statistical variation of shapes is modeled 
beforehand in accordance with a training set of known examples. In order to 
attack the problem of tracking non-rigid time-varying objects, DM were 
extended to dynamic deformable models [Leymarie1993, Singh1993, 
McInerney2000]. These describe the shape changes (over time) in a single 
model that evolves through time to reach a state of equilibrium where internal 

                                                 
1 This chapter is based primarily on [Hamarneh2001d] (see also [Hamarneh1999a, 
Hamarneh1999b]). 
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forces, representing constraints on shape smoothness, balance the external 
image forces and the contour comes to rest. DM have been constructed by 
applying a probabilistic framework and led to techniques such as ‘Kalman 
snakes’ [Terzopoulos1992]. Motion tracking using deformable models has 
been used for tracking non-rigid structures such as blood cells [Leymarie1993] 
and much attention has been given to the human heart and the tracking of the 
left ventricle in both 2D and 3D [Leymarie1993, McInerney2000]. In addition 
to tracking rigid objects, previous work focused on arbitrary non-rigid motion 
and gave little attention to tracking objects moving in specific motion patterns, 
without the incorporation of statistical prior knowledge in both 2D and time 
[Black1997]. 
 In this chapter, we present a new method for locating spatio-temporal 
shapes (ST-shapes) in image sequences. We extend ASM [Cootes1995a] (see 
also Appendix B) to include knowledge of temporal shape variations and 
present a spatio-temporal shape modeling and segmentation technique. We 
believe the method is suited for modeling and segmenting objects with specific 
motion patterns, as in cardiography, optical signature motion recognition, and 
lip-reading for Human-Computer Interaction (HCI), and others. 
 In order to model a certain class of ST-shapes (Figure 5.1), a representative 
training set of known shapes is collected. The set should be large enough to 
include most of the ST-shape variations we wish to model. The ST-shapes in 
the training set are then parameterized. A data dimensionality reduction stage is 
then performed by capturing only the main modes of ST-shape variation. In 
addition to constructing the ST-shape model, the training stage also includes 
the modeling of gray-level information. The task is then to locate an ST-shape 
given a new unknown image sequence. An average ST-shape is first initialized 
then ‘optimal’ deformations are proposed and forced to agree with the training 
data. The proposed changes minimize a cost function that takes into account 
both temporal and appearance constraints. The search for the optimal proposed 
change is done using dynamic programming. 
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Figure 5.1. Spatio-temporal shape example (consisting of 16 frames). 

 
 
 

  
Figure 5.2. Frame sequence example (consisting of 16 frames). 
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5.2 Methods 

5.2.1 Statistical ST-Shape Variation 

The training set. N  training frame-sequences each with F  frames are 
collected. The training set, 1 2, , ,

NV V V V Φ =  … , displays similar object 

motion patterns. 
1 2

( ) , , ,
i i iFiV i V f f f Φ = =  …  is the thi  frame-sequence 

containing F  frames (Figure 5.2) and ( ) ( , )i ijVV j i j f≡ Φ =  is the thj  frame 

of the thi  frame-sequence containing the intensity value ( , ) ( , , , )ij Vf r c i j r c≡ Φ  

at the thr  row and thc  column of the frame.  
 
The ST-shape parameters. iS  is introduced to denote the parameter vector 
representing the thi  ST-shape. Parameterization is done using landmarks2 that 
are labeled either manually, as when a cardiologist labels the heart chamber 
boundaries [Cootes1995a, Hill1993], or (semi-) automatically as reported, for 
example, in [Hill1994]. Each landmark point is represented by ( ),x y  
coordinates. Using L  landmarks per frame and F  frames per sequence, the 
training set of ST-shapes is written as 1 2, , ,

NS S S S Φ =  … , where 

1 2
( ) , , ,

i i iFiS i S p p p Φ = =  …  is the thi  ST-shape containing F  shapes and 

( ) ( , )i ijSS j i j p≡ Φ =  is the thj  shape of the thi  ST-shape. ijp  is written as 

1 1 2 2, , , , , ,ij ij ij ij ij ijL ijLp x y x y x y =   … , where ( ,1) ( , , ,1)ijijk Sx p k i j k= ≡ Φ  and 

( ,2) ( , , ,2)ijijk Sy p k i j k= ≡ Φ  are the x  and y  coordinates of the thk  
landmark of the shape ijp . 
 
ST-shapes alignment. ST-shapes are aligned to allow comparing equivalent 
points from different ST-shapes. This is done by rotating, scaling and 
translating the shape in each frame by an amount that is fixed within one ST-
shape (Figure 5.3 and Figure 5.4). A weighted least-squares approach is used 
for aligning two sequences and an iterative algorithm is used to align all the 
ST-shapes (details of aligning ST shapes can be found in Appendix E). If the 
observed motion patterns in the training sequences span different time 

                                                 
2 Other shape parameterization methods may be utilized, e.g. Fourier descriptors 
[Bonciu1998] or B-Splines [Stark1996]. 
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intervals, temporal re-sampling or aligning that incorporates temporal scaling 
might be needed. If these differences are insignificant, their effects may be 
interpreted and modeled as shape variations. 
 

 
(a) 

 
(b) 

Figure 5.3. ST-shapes before alignment (a) and after alignment (b), 
shown projected on the x-y plane. 
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(a) 

 
(b) 

Figure 5.4. ST-shapes before alignment (a) and after alignment (b), 
shown in 3D (2D-time). 
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Main ST-shape variation modes. The N  aligned ST-shapes, each of length 
2FL  and now represented by { }1 2, , , NS S S… , map to a ‘cloud’ of N  points 
in a 2FL  dimensional space. It is assumed that these N  points are contained 
within a region of this 2FL  dimensional space we dub the Allowable ST-
Shape Domain (ASTSD). Principal Component Analysis (PCA) of the aligned 
ST-shapes is performed to find the main modes of ST-shape variation (PCA is 
explained in Appendix C). The resulting PCs are the eigenvectors kp , 
1 2k FL≤ ≤ , of the observations covariance matrix, SC   
 S k k kC λ=p p  (5.1) 
where 

 
1

1 ( ) ( )
1

N
Ti iS

i
C S S S S

N =
= − −

− ∑  (5.2) 

kλ  is the thk  eigenvalue of SC  ( 1k kλ λ +≥ ) and is equal to the variance along 

the thk  PC. The mean ST-shape is calculated as 

 
1

1 N

i
i

S S
N =

= ∑ . (5.3) 

The principal components are normalized to unit length and are mutually 
orthogonal. 
 
Model representation. Each ST-shape, iS , is expressed as the sum of the 
mean ST-shape, S , and a linear combination of the principal modes of 
variation, iPb , i.e. 
 i iS S= + Pb  (5.4) 

where ,1 ,2 ,2
T

i i i i FLb b b =   b …  and 1 2 2... FL
 =   P p p p . lb  is 

constrained to min maxl l lb b b≤ ≤  with min maxl lb b= −  and 1 2l FL≤ ≤ . 

maxlb  is chosen to be proportional to lλ .  
 
Assuming that the observations form a hyper-ellipsoid in 2FL dimensions, then 
the eigenvectors of the covariance matrix corresponding to the largest 
eigenvalues describe the longest axes of the ellipsoid. Those eigenvectors 
describe the most significant variation modes of the variables. The variance 
explained by each eigenvector is equal to its corresponding eigenvalue. The 
2FL  dimensional ellipsoid can be approximated by a t  dimensional one by 
taking the first t  eigenvectors. The N  vectors representing the ST-shapes are 
expressed as the sum of the mean shape and a weighted sum of some of the 
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principal components. We assume that these t  (out of 2FL ) principal 
components explain a sufficiently high percentage of the total variance in the 
original data. Intuitively, this means that the 2FL dimensional cloud of ST-
shapes has a ‘narrow’ width in the direction of the thk  principal components 
for 1,  2,  3, ,  2k t t t FL= + + + … . The fundamental model equation now 
becomes 
 S S= + Pb  (5.5) 

where 1 2 ...
T
tb b b =   b , 1 2 ... t

 =   P p p p , and t is the smallest 

value satisfying  

 1
2

1

t

i
i
FL

i
i

f
λ

λ

=

=

≥
∑

∑
. (5.6) 

f  is the fraction of explained variance. The constraints on b  become 

min maxl l lb b b≤ ≤ , where 1 l t≤ ≤ . 

5.2.2 Gray-Level Training 
The ST-shape model alone is typically not enough for spatio-temporal 
segmentation. Therefore, additional representative information about the 
intensities or gray-levels relating to the object is also desired and collected in 
the gray-level training stage. In the search stage, new estimates of the ST-shape 
are sought that will better match the gray-level prior knowledge. Different gray-
level representative information can be used, e.g. gathering the intensity values 
in the entire patch contained within the object ([Cootes1998]) or using a 
parametric description of the profiles or patches around the landmark. In this 
implementation we follow [Cootes1995a] and use a mean normalized 
derivative (difference) profile, passing through each landmark and 
perpendicular to the boundary created by the neighboring ones. The profile of 
the thk  landmark in the thj  shape of the thi  ST-shape can be written as 

 1 2ijk ijk ijk ijkGg g g =   g …  (5.7) 

where 1 i N≤ ≤ , 1 j F≤ ≤ , 1 k L≤ ≤ ,  and G  is the length of the 
profile. The derivative profile (of length 1G − ) is written as 
 2 1 3 2 ( 1)...ijk ijk ijk ijk ijk ijkG ijk Gd g g g g g g −

 = − − −  g  (5.8) 

and the normalized derivative profile as  
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 1

1

ijk
ijk G

ijkl
l

d

d
−

=

=

∑

g
y

g
. (5.9) 

The mean normalized derivative profile for each landmark is calculated as  

 
1 1

1 F N

ijkk
j iFN = =

= ∑∑y y  (5.10) 

where ijky  is the representative profile for the thk  landmark in the thj  shape of 
the thi  ST-shape. Using the gray-level information along with temporal and 
shape constraints, the model is guided towards a better estimate of the dynamic 
object hidden in the new frame-sequence. Here it is assumed that a landmark’s 
profile doesn’t change considerably between frames, otherwise we could obtain 
a different mean profile for each landmark in each frame (resulting in FL  
mean profiles). ky  is used in the search stage for locating better positions of 
the landmarks. 

5.2.3 ST-Shape Segmentation Algorithm 
Given a new frame-sequence, the task is to locate the object in all the frames or 
equivalently, locate the ST-shape. An initial estimate of the ST-shape 
parameters is chosen at first, then changes to the parameters are proposed. The 
pose of the current estimate is then modified and suitable weights for the 
modes of variation are chosen in order to fit the model to the proposed changes. 
This is done with the restriction that the changes can only be made in 
accordance with the model (with reduced dimensionality) and the training set. 
New changes are then proposed and so on. Here we present a detailed 
discussion of these steps. 
 
Initial estimate. An initial ST-shape 0Ŝ  is used 
 ( )[ ]0 0 0 0 0ˆ ,S M s Sθ= + +Pb t  (5.11) 

where x y x y x yt t t t t t =   t …  is of length 2FL . ( )[ ],M s Sθ + t  

scales, rotates, and translates S  by s , θ , and t , respectively. Both S  and P  
are obtained from the training stage. A typical initialization would set 0b  to 
zero, and 0s , 0θ , and 0t  to values that put the initial sequence in the 
vicinity of the target. 
 
Proposing a new sequence. The next step is to calculate a proposed change in 
the ST-shape. This can be done in different ways; the one we describe is based 
on the minimization of a cost function using dynamic programming. In 
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summary, we make use of the gray level information in addition to time-
smoothness constraints to find where each landmark of the ST-shape is 
suggested to move. We deal with a specific landmark, in all the frames, 
separately. The idea is to search in the neighborhood of the landmark in all the 
frames in order to find the ‘best’ combination of changes to their positions. The 
best changes minimize a cost function comprising two terms: a cost due to 
large landmark position changes with time, and a cost reflecting the mismatch 
between the gray levels surrounding the current landmark and expected values 
found from training. The minimization is done using dynamic programming.  
Specifically, for each landmark, say the thk  landmark in the thj  frame, a 

search profile 1 2jk jk jk jkHh h h =   h …  is defined. It is differentiated and 

normalized as in the training profiles (Figure 5.5(a-b)). This gives FH  
possibilities for the proposed positions of the thk  landmarks in the F  frames 
(Figure 5.6). Since locating the new positions (one out of FH  possible) is 
computationally demanding, the problem is formulated as a multi-stage 
decision process and dynamic programming ([Amini1990, Wendelhag1997, 
Gustavsson1997]) is used to find the optimal positions. In the following 
paragraphs, we detail our implementation of dynamic programming. 
A gray-level mismatch value ( , )kM j l  is calculated for each point along each 
search profile in all the frames according to  
 ( , ) ( ( ) ) ( ( ) )T T

k jk k jk kM j l l l= − −h y W W h y  (5.12) 
where 1 k L≤ ≤ , 1 j F≤ ≤ , 1 l H≤ ≤ , ( )jk lh  is a sub-profile of length 

1G −  anchored at the thl  location of the search profile jkh , and W  is a 
weighting matrix (Figure 5.5(d-e)). A temporal discontinuity value, 

2
1( , )j jjkd l l − , is calculated, corresponding to moving the thk  landmark in frame 

1j −  to location 1jl −  and the thk  landmark in frame j  to location jl , each 
along its respective search profile (Figure 5.5(f-h)). jkd  is given by 

 ( ) ( )2 22
1 1 11 1( , ) ( ) ( ) ( ) ( )j j jj j jjk jkx j kx jky j kyd l l l l l l− − −− −= − + −c c c c  (5.13) 

where 1 2jkx jk jk jkHx x x =   c …  and 1 2jky jk jk jkHy y y =   c …  are 

the search profile coordinates relating to the thk  landmark in the thj  frame 
(Figure 5.5(b)).  
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Figure 5.5. Schematic diagram: Obtaining the mismatch matrix and the 
temporal discontinuity values. 
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Figure 5.6. An illustration of an ST-shape overlaid on an image 
sequence. The search profiles of one landmark in 2 frames are 
shown in white. Examples of proposed landmark positions are 
shown as black squares. 

 
The accumulated costs of moving the thk  landmark to the thl  position in the 
thj  frame, 2 j F≤ ≤ , from any of the H  positions in frame 1j −  is 

compared and the least value is assigned to ( , )kA j l , i.e.  

 { }1 2( , ) min , , ,k jkl jkl jklHA j l t t t= …  (5.14) 
where  
 ( , ) ( , ) ( 1, )mjklm d jk k kt w d l m w M j l A j m= + + − . (5.15) 

dw  and mw  satisfy 1mdw w+ =  and control the relative importance of 
temporal discontinuity and gray-level mismatch (Figure 5.7(a-d)). Furthermore, 
an index or a pointer, ( , )kP j l , is assigned to the location of the best landmark 

in the previous frames (Figure 5.7(e)). The same procedure is applied to the thk  
landmark in all the F  frames yielding F H×  accumulated values and F H×  
pointers (no temporal discontinuity cost is associated with the first frame).  
 To find the proposed positions of the thk  landmark in all the frames, the 
location, Fm , of the minimum accumulated cost, along the search profile of 
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the landmark in the last frame F , is found. Fm  is used to find the proposed 
landmark position in the second last frame, frame 1F − , as 

1 ( , )F k Fm P F m− =  (Figure 5.7(f)). Its coordinates will be ( 1 1( )F kx Fm− −c , 

1 1( )F ky Fm− −c ). In general the proposed coordinates of the thk  landmark of the 
thj  frame are given by 

 ( ) ( ), : ( ), ( )j jjkx jkyx y m mc c  (5.16) 
with  
 1( 1, )j jkm P j m += +  (5.17) 
Tracking back to the first frame, the coordinates of the proposed positions of 
the thk  landmark in all frames are acquired (Figure 5.7(g)). In the same way, 
the proposed positions for all the landmarks (1 k L≤ ≤ ) defining the ST-
shape changes 0

p̂roposeddS , are obtained. 
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Figure 5.7. Schematic diagram: Using dynamic programming to obtain the 
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Limiting the proposed ST-shape. Since, in general, the proposed ST-shape 
( 0 0ˆ

p̂roposedS dS+ ) will not conform to our model of reduced dimensionality 
and will not lie in the allowable spatio-temporal shape domain (ASTSD), it 
cannot be accepted as an ST-shape estimate. Therefore, an acceptable ST-shape 
that is closest to the proposed one is sought. This is done by first calculating the 
pose parameters ( 1s , 1θ , and 1t ) that will align S  to 0 0ˆ

p̂roposedS dS+  by 

mapping S  to ( )[ ]1 1 1,M s Sθ + t , then finding the extra ST-shape 

modifications 1dS  which, when combined with the pose parameters, will map 
exactly to 0 0ˆ

p̂roposedS dS+ . The latter is done by solving the following 

equation for 1dS  
 ( )[ ]1 1 1 1 0 0ˆ ˆ, proposedM s S dS S dSθ + + = +t  (5.18) 
hence obtaining  
 ( ) 11 1 1 0 0 1ˆ ˆ, proposeddS M s S dS Sθ −  = + − −  t  (5.19) 

where ( ) ( )11 1 1 1 1, ( ) ,M s M sθ θ− −= − . In order to find the new shape 

parameters, 1b  we need to solve 1 1dS = Pb , which, in general, has no 
solution since 1dS  lies in a 2FL  dimensional space whereas P  spans only a 
t  dimensional space. The best solution in a least-squares sense is obtained as  
 1 1TdS=b P  (20) 
Finally, using the constraints discussed earlier, min maxl l lb b b≤ ≤  where 
1 l t≤ ≤ , the ST-shape variations are constrained to obtain an acceptable or 
allowable shape within the ASTSD. 
 
Updating the estimate and reiterating. Similarly, new ST-shape estimates 
can be obtained, i.e., 

 
( )[ ]

( )[ ]1 1 1 1 1

ˆ ,

ˆ    ,

i i i i i

i i i i i

S M s S

S M s S

θ

θ+ + + + +

= + +

→ = + +

Pb t

Pb t
 (5.21) 

for 1,2,3,i = …. Checking for convergence can be done by examining the 
changes in parameters. If the new estimate is not much different (according to 
some predefined threshold) then the search is completed, otherwise we 
reiterate. 
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5.3 Results 

5.3.1 Synthetic ST-Shapes and Frame Sequences 
We tested the method on synthetic data (Figure 5.8). A single synthetic 
example consisted of an ST-shape and a frame-sequence. The ST-shape data is 
first calculated and then used to generate the frame-sequence.  The ST-shapes 
are represented by a set of coordinates describing the shapes in all the frames. 
Each synthetic ST-shape consists of F  frames. Each frame contains L  
landmark coordinates. Both the x  and the y  coordinates of each landmark 
move within a sequence according to sinusoidal functions with certain 
amplitudes and frequencies. The positions of the landmarks in the first frame 
and the amplitudes and frequencies of the sinusoidal functions are sampled 
from Gaussian distributed functions with given means and variances. This is 
done to produce similar ST-shapes to be used in the training stage. After the 
ST-shapes are produced, binary images are generated for all the frames in the 
sequences, by ‘filling’ the polygon areas generated from the landmark 
coordinates. Then the binary frame-sequences are smoothed by convolution 
with a Gaussian kernel. Noise and occlusions are added when producing a 
frame-sequence for testing the search algorithm. 
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 Figure 5.8. Examples of synthetic ST-shapes. 
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5.3.2 Frame Sequence Imperfections 
For the purpose of producing image sequences that imitate real-life imagery 
including artifacts, the synthetically generated image sequences used for both 
training and testing were deteriorated in different ways as listed below. 
 

     
(a) (b) (c) (d) (e) 

Figure 5.9. Examples of synthetic frames with imperfections due to (a) global 
noise, (b) missing frame, (c) overlapping occlusion, (d) touching occlusion, 
and (e) local noise. 

 
Global noise. For each pixel in the 3D test data sets, white Gaussian noise was 
added (Figure 5.9(a)). The choice of Gaussian type noise is somewhat arbitrary. 
It should, however, sufficiently well serve the purpose of evaluating the 
robustness of the ST-shape segmentation in presence of noise. 
 
Missing frames. In many applications dealing with analyzing image sequences, 
the sequence digitization may be disturbed by badly synchronized frames, 
frames including strong artifacts, or missing frames. Therefore, it is important 
that studies can be done on data sets even if there are some missing frames 
(Figure 5.9(b)). 
 
Overlapping occlusion. In most tomographic techniques it is hard to select the 
view so that the object under examination can be seen clearly throughout its 
cross-section. Given a specific view, the object maybe partly occluded by 
overlapping occlusions. Therefore, in the synthetic data set we have constructed 
circular objects having varying radii and appearing at varying positions through 
out the spatio-temporal space (Figure 5.9(c)). 
 
Touching occlusion. In many cases, the object under examination is not free-
lying but has neighboring objects touching at the boundary, as can be found in 
MRI scans. This is problematic in segmentation especially when the touching 
object has similar texture. Therefore, we have constructed a data set that, 
besides the ST-shape under consideration, includes a touching circular object 
appearing at varying positions throughout the spatio-temporal space (Figure 
5.9(d)). 
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Local noise. Besides global noise due to shortcomings in the imaging 
procedures, there may also exist local noise deteriorating the image of the 
object under examination. In ultrasonic cross-sectional imaging of the left 
ventricle, for example, there are often noisy areas where the ultrasound beam is 
almost tangential to the ventricular boundary. Therefore, we have constructed a 
data set with local white additive noise of Gaussian type appearing at specific 
regions in the frames (Figure 5.9(e)). These regions have been chosen to be 
circular and the noise strength decays radially from the center of the circle 
following a Gaussian function. 

5.3.3 Gray-Level Training 
In practice, the gray level profile training takes place on digitized images 
contaminated with noise. This means that the profile variations found are not 
only due to variations in the appearance of the object alone but also includes 
variations due to other factors. In order to test the influence of different factors 
we constructed and trained our model on the following data sets. 
 
An ideal case: Object perfectly reconstructed by the imaging procedure but 
with the presence of random noise. The resulting data set is a noised binary 
image sequence in which the binary object is subject to noise but otherwise 
perfect. 
 
The sub-ideal case: Object subject to degradations such as smoothing through 
the imaging procedure as well as random noise. The resulting data set is a 
smoothed and noised binary image sequence. 
 
The realistic case: Object subject to degradations such as smoothing as well as 
some imperfections as those described in Figure 5.9. Resulting in a smoothed, 
occluded, and noised binary image sequence. 

5.3.4 Results on Synthetic Data 

The test data sets. In all the test cases, training was performed using 10 image 
sequences. Each sequence consisted of 16 frames (F=16). The size of each 
frame was 160x182 pixels. Each ST-shape that generated an image sequence 
consisted of 16 contours (one at each frame). Each contour was represented by 
25 landmarks (x, y coordinates), (L=25).  The gray level search was conducted 
on a profile of length 41 pixels (20 inside the object and 20 outside it) and the 
gray level training profile was of length 13 (7 inside the object and 5 outside 
it). The testing was performed on an image sequence different from those in the 
training set but produced similarly, i.e. a cross validation procedure was 
applied. In our model we used 6 ST-shape parameters sufficient to describe 
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98% of the ST-shape variations. Smoothing the binary images was done using a 
Gaussian kernel of size 17x17. 
 This section summarizes the details of the data used for both training and 
testing. Seven types of tests are presented.  In each type we try to detect an ST-
shape hidden in a test image sequence. The test image sequence suffers from 
different types of degradations specified under Imperfections in Table 5.1. The 
degradations may appear in only one frame, in some consecutive frames, in 
some separated frames, or in all the frames. The table also lists which frames 
are affected. Different image sequences are used for training as mentioned in 
5.3.3. The table includes the type of training used, as well. 
 

Table 5.1. Summary of the test data sets. 

Test 
case 

Imperfection 
(global noise in all cases) 

Frames affected 
(global noise in all) 

Training set 
(global noise in all) 

1 Missing frames Separated frames Smoothed and noised 
2 Overlapping occlusion All frames Smoothed and noised 
3 Overlapping occlusion Separated frames Smoothed and noised 
4 Touching occlusion Consecutive frames Smoothed and noised 
5 Local noise All frames Smoothed and noised 
6 Overlapping occlusion All frames Noised 
7 Overlapping occlusion All frames Smoothed, occluded and 

noised 
 
Note: the frame sequences are displayed in the order shown below. 
 

1/16 2/16 3/16 4/16
5/16 6/16 7/16 8/16
9/16 10/16 11/16 12/16

13/16 14/16 15/16 16/16
 
Following are the different test cases. For each case a table summarizing the 
test conditions, a figure depicting the segmentation results, and comments are 
presented. 
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Test Case One: Missing Frames - A 
 

Table 5.2. Missing frames: Example 1A. See Figure 5.1. 

Imperfection Missing frames (and global noise in all frames) 
Frames affected Frame 5/16 
Training set Smoothed and noised 
Number of iterations 16 
Global noise variance 100 
Minimum object intensity 0 
Maximum object intensity 60 
Mean object intensity 30 

 

 
(a) (b) 

Figure 5.1. Missing frames: Example 1A. (a) Initial and (b) final state. 

 
Comments: The result shows that the deformable ST-shape converged to the 
target object in all the frames and a reasonable guess was produced for the 
missing frame. 
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Test Case One: Missing Frames - B 

Table 5.3. Missing frames: Example 1B. See Figure 5.2. 

 Imperfection Missing frames (and global noise in all frames) 
Frames affected Separated frames: 3, 9, and 14/16 
Training set Smoothed and noised 
Number of iterations 23 
Global noise variance 100 
Minimum object intensity 0 
Maximum object intensity 60 
Mean object intensity 30 

 
 

 
(a) (b) 

Figure 5.2. Missing frames: Example 1B. (a) Initial and (b) final state. 

 
Comments: The result shows that the deformable ST-shape converged to the 
target object in all the frames and reasonable guesses were produced for the 
separated missing frames. 
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Test Case Two: Overlapping Occlusion I 

Table 5.4. Overlapping occlusion: Example 2. See Figure 5.3. 

Imperfection Overlapping occlusion 
(and global noise in all frames) 

Frames affected All frames 
Training set Smoothed and noised 
Number of iterations 15 
Global noise variance 100 
Minimum object intensity 0 
Maximum object intensity 60 
Mean object intensity 30 
Radius of occlusion 15 pixels 

 

  
(a) (b) 

Figure 5.3. Overlapping occlusion: Example 2. (a) Initial and (b) final state. 

 
Comments: The result shows that the deformable ST-shape converged to the 
target object overcoming the problem of overlapping occlusions that appeared 
in all the frames. 
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Test Case Three: Overlapping Occlusion II 

Table 5.5. Overlapping occlusion: Example 3. See Figure 5.4. 

Imperfection Overlapping occlusion 
(and global noise in all frames) 

Frames affected Separated frames: 3, 6, 11 and 14/16 
Training set Smoothed and noised 
Number of iterations 14 
Global noise variance 100 
Minimum object intensity 0 
Maximum object intensity 60 
Mean object intensity 30 
Radius of occlusion 20, 18, 30, and 15 pixels, respectively 

 

  
(a) (b) 

Figure 5.4. Overlapping occlusion: Example 3. (a) Initial and (b) final state. 

 
Comments: The result shows that the deformable ST-shape converged to the 
target object in all the frames and overcame the problem of overlapping 
occlusions of different sizes that existed in some separated frames. 
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Test Case Four: Touching Occlusion 

Table 5.6. Touching occlusion: Example 4. See Figure 5.5. 

Imperfection Touching occlusion 
(and global noise in all frames) 

Frames affected Consecutive frames: 7, 8, 9 and 10/16 
Training set Smoothed and noised 
Number of iterations 15 
Global noise variance 100 
Minimum object intensity 0 
Maximum object intensity 60 
Mean object intensity 30 
Radius of occlusion 20 pixels 

 

  
(a) (b) 

Figure 5.5. Touching occlusion: Example 4. (a) Initial and (b) final state. 

 
Comments: The result shows that the deformable ST-shape converged to the 
target object in all the frames and overcame the problem of touching occlusions 
that appeared in some consecutive frames. 
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Test Case Five: Local Noise 

Table 5.7. Local noise: Example 5. See Figure 5.6. 

Imperfection Local noise (and global noise in all frames) 
Frames affected All frames 
Training set Smoothed and noised 
Number of iterations 18 
Global noise variance 100 
Local noise variance 2500 
Minimum object intensity 0 
Maximum object intensity 60 
Mean object intensity 30 
Radius of local noise 25 pixels 
Spatial variance of local noise 200 pixels 

 

  
(a) (b) 

Figure 5.6. Local noise: Example 5. (a) Initial and (b) final state. 

 
Comments: The result shows that the deformable ST-shape converged to the 
target object in spite of the presence of strong local noise in all the frames. 
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Test Case Six: Gray Level Training on Perfect Data - A 

Table 5.8. Binary training: Example 6A. See Figure 5.7. 

Imperfection Global noise in all frames 
Training set Noised 
Number of iterations 10 
Global noise variance 0.04 
Object intensity 1 (binary) 

 

 
(a) (b) 

Figure 5.7. Binary training: Example 6A. (a) Initial and (b) final state. 

 
Comments: The results here may suggest that the deformable ST-shape fits 
better to the target object if compared to the results given in other sections. 
This is explained by the fact that the training in this case is done on noised 
binary image sequences which are not smoothed, hence the original contours 
generating the images correspond exactly to the boundaries of the objects in the 
noised binary images. In the other cases, the definition of the boundary points, 
on which the model was trained, was taken before the smoothing was applied. 
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Test Case Six: Gray Level Training on Perfect Data - B 

Table 5.9. Binary training: Example 6B. See Figure 5.8. 

Imperfection Overlapping occlusion 
(and global noise in all frames) 

Frames affected All frames 
Training set Noised 
Number of iterations 18 
Global noise variance 0.04 
Object intensity 1 (binary) 
Radius of occlusion 16 pixels 

 

(a) (b) 

Figure 5.8. Binary training: Example 6B. (a) Initial and (b) final state. 

 
Comments: The result shows that the deformable ST-shape converged to the 
target object overcoming the problem of overlapping occlusions that appeared 
in all the frames. 
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Test Case Seven: Occluded Noisy Training 

Table 5.10. Occluded noisy training: Example 7. See Figure 5.9. 

Imperfection Overlapping occlusion 
(and global noise in all frames) 

Frames affected All frames 
Training set Smoothed, occluded and noised 
Number of iterations 15 
Global noise variance 100 
Minimum object intensity 0 
Maximum object intensity 60 
Mean object intensity 30 
Radius of occlusion 16 pixels 

 

 
(a) (b) 

Figure 5.9. Occluded noisy training: Example 7. (a) Initial and (b) final state. 

 
Comments: The result shows that the deformable ST-shape, which is trained 
on smoothed, occluded and noised data, converged to the target object 
overcoming the problem of overlapping occlusions that appeared in all the 
frames. 
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5.3.5 Results on Real Data 
Here we present results of applying the technique to real data (see Figure 5.10 
and Figure 5.11). 
 

  
(a) (b) 

Figure 5.10. Spatio-temporal left-ventricular segmentation result on 
smoothed real echocardiographic data. Four frames are shown with the ST-
shape overlaid in white (a) before and (b) after projection onto the ASTSD. 

 
 

(a) (b) 

Figure 5.11. Segmenting a 3D astrocyte cell (spatial z-axis replaces time).  
(a) The initial shape model and (b) the segmentation result are overlaid 
(in white) on eleven slices of a 3D fluorescence image. 

5.4 Conclusion 
Motivated by the fact that many image analysis applications require robust 
methods for representing, locating, and analyzing time-varying shapes, we 
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presented Deformable Spatio-Temporal Shape Models: an extension of 2D 
Active Shape Models to 2D+time. This method models the spatio-temporal 
shape variations and the gray-level information of a time-varying object in a 
training set. The model is then used for locating similar objects in a new image 
sequence. The segmentation technique is based on deforming a spatio-temporal 
shape model to better fit the image sequence data only in ways consistent with 
the training set. The proposed deformations are calculated by minimizing an 
energy function using dynamic programming. The energy function includes 
terms reflecting temporal smoothness and gray-level information constraints. 
The method was elaborately tested and succeeded in segmenting synthetic 
spatio-temporal shapes in noisy image sequences. The method is suited for 
segmenting objects with specific motion patterns, hence potential applications 
include cardiography, optical signature motion recognition, and lip-reading for 
Human-Computer Interaction (HCI). 
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CChhaapptteerr  66..  CCOONNTTRROOLLLLEEDD  SSHHAAPPEE  DDEEFFOORRMMAATTIIOONN  
VVIIAA  MMEEDDIIAALL  PPRROOFFIILLEESS  

Robust, automatic segmentation and analysis of medical images requires 
powerful and flexible models of anatomical structures. In this chapter1 we 
present a multiscale, medial-based approach to shape representation and 
controlled deformation in an effort to meet these requirements. We use 
medial-based profiles for shape representation, which follow the 
geometry of the structure and describe general, intuitive, and independent 
shape measures (length, orientation, and thickness). Controlled shape 
deformations (stretch, bend, and bulge) are obtained either as a result of 
applying deformation operators at certain locations and scales on the 
medial profiles, or by varying the weights of the main variation modes 
obtained from a hierarchical (multiscale) and regional (multi-location) 
principal component analysis of the medial profiles. We demonstrate the 
ability to produce controlled shape deformations on a medial-based 
representation of the corpus callosum. 

6.1 Introduction 
Controlling the deformations of an object’s shape in a way that is based on the 
natural geometry of the object is highly desirable in image interpretation tasks, 
especially in the segmentation of natural objects from medical images. This 
intuitive deformation ability reflects the flexibility of clay to be shaped in a 
sculptor’s hands and naturally lends itself to guidance by high-level controllers. 
Furthermore, the performance of the controllers can be greatly enhanced by 
keeping the deformations consistent with prior knowledge about the possible 
object shape variations. 
 Most deformable shape models (see [McInerney1996] for a 
comprehensive survey) are boundary-based and although provide excellent 
local shape control, lack the ability to undergo intuitive global deformation. As 
a result, it is difficult to incorporate intelligent deformation control operating at 
the right level of abstraction into the typical deformable model framework of 
energy minimization. Consequently, these models remain sensitive to initial 
conditions and spurious image features in image interpretation tasks. 
 Various hierarchical versions of boundary-based deformable models have 
been developed [Miller1991, Montagnat1997, Mandal1998, Lachaud1999] but 
again fail to provide a natural global description of an object - the multiscale 
deformation control is constructed upon arbitrary boundary point sets and not 

                                                 
1 This chapter is based primarily on [Hamarneh2001a]. 
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upon object-relative geometry. Several global or “volume-based” shape 
representation or deformation mechanisms do exist [Barr84, Sederberg86, 
Coquillart1990, Singh1998b, Terzopoulos1991] but are limited either by the 
type of objects they can model, or the type and intuitiveness of the 
deformations they can carry out. They are also typically not defined in terms of 
the object but rather the object is unnaturally defined (or deformed) in terms of 
the representation or deformation mechanism. 
 Deformable models based on medial shape representations of objects are 
emerging as a powerful alternative to boundary-based and volume-based 
techniques, primarily led by the work of Pizer’s group at the University of 
North Carolina at Chapel Hill [Fritsch1997, Pizer1998, Pizer1999]. Medial 
representations provide both a local and global description of shape. 
Deformations defined in terms of a medial axis are natural and intuitive and 
can be limited to a particular scale and location along the axis. 
 In this chapter, we utilize medial-based profiles for shape representation 
and define deformation operators in terms of these shape profiles. Our goal is 
the ability to intelligently control the different types and extents of model 
deformations during the model-to-data fitting process in an effort to focus on 
the extraction of stable image features before proceeding to object regions with 
less well-defined features. 
 To this end, we construct a model of an anatomical structure with a set of 
profiles that are based on the medial axis of the structure, where each profile 
describes general and intuitive shape measures (length, orientation, and 
thickness). Structure deformations (stretch2, bend, and bulge3) are then 
implemented as deformation operators acting on the shape profiles, where each 
operator can have a different shape and scale and can be applied at any point 
along a profile.  
 In addition to the general deformation operators, we would also like to 
use as much knowledge as possible about the object itself and to generate 
statistically-proven feasible deformations from a training set. We would like to 
control these statistical deformations locally along the medial shape profiles to 
support our goal of intelligent deformation scheduling. Since general 
statistically-derived shape models only produce global shape variation modes 
[Cootes1995a, Szekely1996], we have developed spatially-localized feasible 
deformations at desired scales by utilizing hierarchical (multiscale) and 
regional principal component analysis to capture shape variation statistics. 
 In the following sections, we demonstrate the ability to produce 
controlled shape deformations by applying them to medial-based 
representations of the corpus callosum (CC), derived from 2D mid-sagittal 
MRI slices of the brain. We begin by describing the generation and use of 
                                                 
2 Stretch or compress. 
3 Bulge or squash. 
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medial-based profiles for shape representation and describe a set of general 
operators that act on the medial shape profiles to produce controlled shape 
deformations. We then present a technique for performing a multiscale multi-
location statistical analysis of the shape profiles and describe statistics-based 
deformations based on this analysis. In Section 6.3, we present a simple 
application of the controlled shape deformations and demonstrate their use in 
an automatic medical image analysis system. 

6.2 Shape Representation and Deformation via Medial Profiles 
To control shape deformation intuitively requires a shape representation that, 
among other things, describes global shape variation intuitively. To meet this 
requirement, we represent the shape with a set of profiles that are based on a 
sampled medial axis of an object. Each profile captures an intuitive measure of 
shape: length, orientation, and thickness. Once the profiles are constructed, 
various deformation functions or operators can be applied to a profile, 
producing intuitive, controlled deformations: stretching, bending, and bulging. 

6.2.1 Medial Profiles for Shape Representation 
We use a boundary representation of an object to generate the medial-based 
profiles. Generation of the profiles begins with the extraction of a sampled 
(semi-automatically) pruned skeleton of the object to obtain a set of medial 
nodes (the proposed pruning algorithm is explained in Appendix F). Four 
medial profiles are constructed: a length profile ( )L m , an orientation profile 
( )O m , a left (with respect to the medial axis) thickness profile ( )lT m , and a 

right thickness profile ( )rT m , where 1,2, ,m N= … , N  is the number of 
medial nodes, and nodes 1 and N are the terminal nodes. The length profile 
represents the distances between consecutive pairs of medial nodes, and the 
orientation profile represents the angles of the edges connecting consecutive 
pairs of medial nodes (measured with respect to the horizontal). The thickness 
profiles represent the distances between medial nodes and their corresponding 
boundary points on both sides of the medial axis (Figure 6.1). Corresponding 
boundary points are calculated by computing the intersection of a line passing 
through each medial node in a direction normal to the medial axis, with the 
boundary representation of the object. Example medial profiles are shown in 
Figure 6.2 and Figure 6.3. 
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Figure 6.1.  Diagram of shape representation. 
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Figure 6.2. Example medial shape profiles: (a) 
length profile ( )L m , (b) orientation profile 
( )O m , (c) left thickness profile ( )lT m , and (d) 

right thickness profile ( )rT m . 
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Figure 6.3. Another medial shape profiles example: (a) 
( )L m , (b) ( )O m , (c) ( )lT m , and (d) ( )rT m . 

 

6.2.2 Shape Reconstruction from Medial Profiles 
To reconstruct the object’s shape given its set of medial profiles, we calculate 
the positions of the medial and boundary nodes by following these steps: 
 
1. Specify affine transformation parameters: orientation angle θ , translation 

values ( ),x yt t , and scale ( ),x ys s . 
2. Using medial node 1 as the base or reference node, place it at location 

( )1 ,x yx t t= .  
3. Repeat steps 4 and 5 for 1,2, ,m N= … . 
4. Compute the locations lmx  and rmx  of the boundary points l  and r  at either 

side of the thm  medial node (Figure 6.1) as 

 ( )

( )( )
( )( )

cos
2

sin
2

x
l l
m m

y

s O m
x x T m

s O m

πθ

πθ

 + +    = +    + +   
 (6.1) 
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and similarly, 

 ( )

( )( )
( )( )

cos
2

sin
2

x
r r
m m

y

s O m
x x T m

s O m

πθ

πθ

 + −    = +    + −   
. (6.2) 

 
5. If m N< , compute the location 1mx +  of the next medial node 1m +  as  

 ( )

( )( )

( )( )1

cos

sin
x

mm
y

s O m
x x L m

s O m

θ

θ+

+  = +   +  
. (6.3) 

Examples of shape reconstruction are shown in Figure 6.4 and Figure 6.5. Note 
that we have generalized the reconstruction algorithm so that any medial node 
may serve as the base or reference node. 
 

 
Figure 6.4. Object reconstruction resulting from the 
shape profiles in Figure 6.2. 
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Figure 6.5. CC anatomical feature labels overlaying a reconstruction of 
the CC using the medial shape profiles shown in Figure 6.3.  

 

6.2.3 Shape Deformation using Medial-Based Operators 
Once the shape profiles have been generated, we can construct deformation 
operators and apply these operators to the shape profiles. This results in 
intuitive deformations of the object upon reconstruction. That is, by applying 
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an operator to the length, orientation, or thickness shape profile, we obtain a 
stretch, bend, or bulge deformation, respectively. 
Each deformation operator is implemented by defining a medial-based operator 
profile, ( )k m , of a particular type (Figure 6.6)  [Bill1995] and specifying an 
amplitude, location, and scale.  
 

 
(a) (b) (c) (d) (e) 

Figure 6.6. Examples of operator types: (a) Triangular, (b) 
Gaussian, (c) flat, (d) bell, and (e) cusp. 

 
The operator profile is then added to (or blended with) the medial shape profile 
corresponding to the desired deformation. For example, to introduce a bulge on 
the right boundary, an operator profile with a specific amplitude, type, location, 
and scale is generated and added to the right thickness medial profile ( )rT m  
to obtain ( ) ( )rT m k m+  (Figure 6.7). 
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Figure 6.7. Introducing a bulge on the right 
boundary by applying a deformation operator 
on the right thickness profile: (a) ( )rT m  
before and (c) after applying the operator. (b) 
The reconstructed shape before and (d) after 
the operator.  
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In general the application of a deformation operator ( )k m  alters the desired 
shape profile according to 
 ( ) ( ) ( )

d d dlst dlstp m p m k mα= +  (6.4) 
where  
p  shape profile 
d   deformation type (stretch, bend, left/right bulge), 

i.e. ( ) ( ) ( ) ( ) ( ){ }: , , ,l r
dp m L m O m T m T m  

p   average shape profile 
k   operator profile (with unity amplitude) 
l   location 
s   scale 
t   operator type (Gaussian, triangular, …, etc.) 
α   operator amplitude. 
 
Altering one shape profile only affects the shape property associated with that 
profile and does not affect any other object shape properties. For example, 
applying an operator to the orientation profile results in a bend deformation 
only and does not result in a stretch or bulge. This implies the ability to 
perform successive operator-based object deformations of varying amplitudes, 
types, locations or scales, which can be expressed as 
 ( ) ( ) ( )

d d dlst dlst
l s t

p m p m k mα= +∑∑∑ . (6.5) 

Examples of operator-based deformations are shown in Figure 6.8(a-d). 
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Figure 6.8. Examples of controlled deformations: (a)-(c) Operator-based bulge 
deformation at varying locations, amplitudes, and scales. (d) Operator-based 
stretching with varying amplitudes over the entire CC. (e)-(g) Statistics-based 
bending of the left end, the right end, and the left half of the CC. (h) Statistics-
based bulge of the left and right thickness over the entire CC. (i) from left to 
right: (1) mean shape, (2) statistics-based bending of the left half, followed by 
(3) locally increasing the left thickness using an operator, followed by (4) 
applying an operator-based stretch and (5) an operator based bend to the right 
side of the corpus callosum. 

6.2.4 Statistical Shape Analysis by Hierarchical Regional PCA 
In many applications, prior knowledge about object shape variability is 
available or can be obtained by studying a training set of shape examples. The 
training set is typically created by labeling corresponding landmark points in 
each shape example. Principal Component Analysis (PCA) is then applied to 
the training set, resulting in a point distribution model (PDM) [Cootes1995a] 
(see Appendix B and Appendix C for more details). The PDM describes the 
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main modes of variation of the landmark positions and the amount of variation 
each mode explains. A drawback of this original approach is that the result of 
varying the weight of a single variation mode generally causes all the landmark 
positions to change. In other words, although the original PDM model 
produces only feasible shape deformations, a desirable trait, it generally 
produces global deformations over the entire object. 
 Our goal is to utilize prior knowledge and produce feasible deformations, 
while also controlling the scale and location of these deformations. Towards 
this end we perform a multiscale (Hierarchical) multi-location (Regional) PCA 
(HRPCA) on a training set of medial shape profiles.  
To achieve this, we collect spatially corresponding sub-profiles from the shape 
profiles. The length of a sub-profile reflects the scale over which the analysis is 
performed. The principal component analysis is now a function of the location, 
scale, and type of shape profile (length, orientation, or thickness). Thus, for 
each location, scale, and shape profile type, we obtain an average medial sub-
profile, the main modes of variation, and the amount of variation each mode 
explains. The result is that we can now generate a feasible stretch, bend, or 
bulge deformation at a specific location and scale4. 
 A shape profile can now be written as the sum of the average profile and 
the weighted modes of variation as follows 
 ( ) ( )

d d dls dlsp m p m M w= +  (6.6) 
where p ,d ,p , ( )

dp m ,l ,s  are defined in (6.4),  and 

dlsM  variation modes (columns of M ) for a specific d , l , and s , 

dlsw  weights of the variation modes, where the weights are typically set such 
that the variation is within three standard deviations. 
For any shape profile type, multiple variation modes can be activated by setting 
the corresponding weighting factors to non-zero values. Each variation mode 
acts at a certain location and scale, hence we obtain 
 ( ) ( )

d d dls dls
l s

p m p m M w= +∑∑  (6.7) 

In summary, varying the weights of one or more of the variation modes alters 
the length, orientation, or thickness profiles and generates statistically feasible 
stretch, bend, or bulge deformations at specific locations and scales upon 
reconstruction. Examples of statistics-based deformations are shown in Figure 
6.8(e-h). 

                                                 
4 HRPCA was also applied for generating statistics-based shape deformations in a 
physics-based shape representation and deformation technique (see Section 7.4). 



Controlled Shape Deformation via Medial Profiles 93 

6.2.5 Combining Operator- and Statistics-Based Deformations 
In general, operator- and statistics-based deformations (see equations (6.5) and 
(6.7)) can be combined as 

 d d dls dls dlst dlst
l s t

p p M w kα
 = + +   ∑∑ ∑ . (6.8) 

It is worth noting that several deformations, whether operator- or statistics-
based, may spatially overlap (something that we currently do not restrict). 
Furthermore, adding profiles of different scales, hence different vector lengths, 
is possible by padding the profiles with zeros. Figure 6.8(i) shows an example 
of combining operator- and statistics-based deformations. 

6.3 Application and Results 
To demonstrate the potential of our statistics- and operator-based controlled 
deformations, we handcrafted a deformation schedule for fitting the CC shape 
model to a mid-sagittal MRI slice of the brain. Figure 6.9 shows the resulting 
medial shape profiles after applying the fitting schedule (compare with the 
initial profiles in Figure 6.2). The initial and final CC shapes are shown in 
Figure 6.10. The schedule steps are shown in Table 6.1 and the resulting 
deformed CC shapes for each step of the schedule are shown in Figure 6.11. 
 Furthermore, in Chapter 8 (see also [Hamarneh2001c, Hamarneh2001b]) 
of this Thesis we construct a model-based system that automatically and 
robustly interprets medical images (i.e. segmentation, registration, matching, 
analysis) by explicitly searching for and fitting to stable image features. A key 
component of this system is the ability to intelligently schedule and control the 
type, location, extent, and order of intuitive model deformations during the 
fitting process something made possible by making full use of the controlled 
deformation offered by the medial-based shape profiles representations. 

6.4 Conclusion 
 In this chapter we have presented ‘medial profiles’, a medial-based shape 
representation that provides controlled shape deformation. Based on these 
profiles, we are able to construct deformation operators and generate intuitive 
localized and multiscale deformation types (stretch, bend, bulge). Furthermore, 
by introducing hierarchical regional PCA we are able to perform a multiscale 
multi-location statistical analysis of the shape profiles thus generating 
statistically feasible versions of these deformations. We demonstrate our 
approach to fit a CC model to a to mid-sagittal brain MRI slices both manually 
(in this chapter) and automatically (as will be presented in Chapter 8). 
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Figure 6.9. The resulting medial shape profiles after 
applying the fitting schedule: (a) length profile ( )L m , 
(b) orientation profile ( )O m , (c) left thickness profile 
( )lT m , and (d) right thickness profile ( )rT m . 
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Table 6.1. Deformation schedule used to fit the corpus callosum shape 
model to the MRI data (see Figure 6.11). 
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1 Translation by (▼74,►24) 
2 Rotation by 10º
3 Scaling by 1.2 
4 Bend  1 8 2 w=0.5 
5 Bend  20 8 2 w=-0.8 
6 Bend  22 6 2 w=-0.75 
7 Bend  24 4 1 w=2.2 
8 Bend  1 4 2 w=1 
9 Stretch 6 4 1 w=-1.5 
10 Stretch 26 1 1 w=2 
11 Left-bulge 15 7 1 w=3 
12 Left-bulge 18 3 1 w=2 
13 Left-bulge 6 12 1 w=3 
14 Left-bulge 5 3 1 w=3 
15 Right-squash  9 3 1 w=-1 
16 Right-bulge 13 2 1 w=0.5 
17 Left-bulge 21 3 Gaussian α=0.3 
18 Left-bulge 21 7 Gaussian α=0.1 
19 Right-squash 24 2 Gaussian α=-0.5 
20 Right-bulge 4 2 Bell α=1.7 
21 Right-bulge 6 3 Gaussian α=0.4 
22 Right-squash 1 3 Gaussian α=-2.2 
23 Right-squash 25 1 Gaussian α=-0.8 
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Figure 6.10. Close up of the initial and final 
stages of the handcrafted fitting schedule. 
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Figure 6.11. Progress of the handcrafted fitting schedule (fitting 
steps are listed in Table 6.1). 
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Powerful, flexible shape models of anatomical structures are required for 
robust, automatic analysis of medical images. In this chapter1 we 
investigate a physics-based shape representation and deformation method 
in an effort to meet these requirements. Using a medial-based spring-
mass mesh model, shape deformations are produced via the application of 
external forces or internal spring actuation. The range of deformations 
includes bulging, stretching, bending, and tapering at different locations, 
scales, and amplitudes. Springs are actuated either by applying 
deformation operators or by activating statistical modes of variation 
obtained via a hierarchical regional principal component analysis. We 
demonstrate results on both synthetic data and on a spring-mass model of 
the corpus callosum, obtained from 2D mid-sagittal brain MRI slices2. 

7.1 Introduction 
Controlling non-rigid object deformation at multiple locations and scales in an 
interactive and intuitive manner is highly desirable in medical image analysis 
tasks such as segmentation and registration. Most current deformable shape 
models [McInerney1996], are boundary-based and although provide excellent 
local shape control, lack the ability to undergo intuitive global deformation. As 
a result, it is difficult to incorporate intelligent deformation control operating at 
the right level of abstraction into the typical deformable model framework of 
energy minimization. Consequently, these models remain sensitive to initial 
conditions and spurious image features in image interpretation tasks. 
 Various hierarchical versions of boundary-based deformable models have 
been developed [Miller1991, Montagnat1997, Mandal1998, Lachaud1999] but 
again fail to provide a natural global description of an object - the multi-scale 
deformation control is constructed upon arbitrary boundary point sets and not 
upon object-relative geometry. Several global or “volume-based” shape 
representation or deformation mechanisms do exist [Barr1984, Sederberg1986, 
Coquillart1990, Singh1998b, Terzopoulos1991] but are limited either by the 
type of shapes they can represent, or the type and intuitiveness of the 
deformations they can carry out. They are also typically not defined in terms of 
the object but rather the object is unnaturally defined (or deformed) in terms of 
the representation or deformation mechanism. 
                                                 
1 This chapter is based primarily on [Hamarneh2001e]. 
2 A physics-based shape deformation tool was also developed and is detailed in 
Appendix G. 
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 Emerging trends in deformable shape modeling include medial-based 
approaches, which we believe are powerful techniques since they follow the 
geometry of the object and provide natural and intuitive deformations. 
[Pizer2000, Hamarneh2001a]. Additionally, physics based deformable shape 
models have been developed [Terzopoulos1991, Molloy2000]. The 
attractiveness of these models stems from their ability to inherently handle 
smoothness and continuity constraints. Furthermore, statistically derived shape 
models [Cootes1995, Szekely1996] are gaining wide acceptance within the 
medical image analysis community since they constrain the global shape 
deformations according to the statistical shape variations observed in a training 
set. 
 The shape representation and deformation method presented in this 
chapter is motivated by the following desirable characteristics of a deformable 
model for medical image analysis tasks. First, implementing the deformations 
within a physics-based framework that inherently handles smoothness and 
continuity constraints and facilitates intuitive user interaction. Second, using 
shape representations and deformations that follow the naturally geometry of 
the object. Third, controlling the deformations of an object shape at multiple 
locations and multiple scales. Fourth, restricting the deformations to produce 
only feasible shapes. 
 In this chapter we investigate a method that addresses all of the above 
points. First, the deformable shapes are modeled using physics-based meshes 
of connected nodes (mass-spring models) that maintain the structural integrity 
of the body as it deforms and are suitable for intuitive user interaction. Second, 
the mesh nodes and connectivity are based on the medial axis of the object. 
Third, we use either operator- or statistics-based deformations to control the 
different types of deformation at multiple locations and scales. Finally, 
statistics-based feasible deformations are derived from a Hierarchical (multi-
scale) Regional (multi-location) Principal Component Analysis (HRPCA).  

7.2 The Dynamic Mesh Model 
We use mesh models to represent object shapes (Figure 7.1 and Figure 7.2(b)). 
A mesh is made up of nodes (masses or particles) and springs (elastic links or 
connecting segments). A Mass im , position ix , velocity iv , and acceleration 

ia  are associated with each node in . Two terminal nodes in  and jn , Hook’s 
spring constant sk , damping constant dk , and rest length ijr  are associated 
with each spring ijs . 
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Figure 7.1. Examples of different spring-mass structures. 

 

 
(a) 

 
(b) 

Figure 7.2. (a) Mid-sagittal MRI brain image with the corpus callosum 
(CC) outlined in white. (b) CC mesh model. 

 



  Chapter 7 100

By applying Newton’s second law of motion and simulating the dynamics by 
time integration, the mesh nodes move deforming the object’s shape. Newton’s 
second law of motion for the node in , states that i i ia f m= , where if  is total 

force acting on in  
 Hook viscous user image

i i i i if f f f f= + + + . (7.1) 
 A spring ijs  will cause 

( ) ( )Ti j i j i jHook
si i j ij i jd

i j i j i j

x x x x x x
f k x x r k v v

x x x x x x

 − − − = − − − − −   − − − 
 (7.2) 

to be exerted at in  and Hook
if−  on jn . Viscous drag at in  is given by 

viscous
vi if k v= − . A single user applied force user

if  is implemented as the 
dynamic force resulting from a spring connecting a mesh node to the (varying) 
position of the user’s point of application. Image forces can be implemented as 
 ( )( )image

sexti if k I x∝ ∇ ∇  (7.3) 
where ( )s iI x  is the intensity of a pixel at the location of node in  in a 
smoothed version of the image. Image forces that attract the model to an image 
boundary are calculated only for boundary mesh nodes (similarly image forces 
that attract medial model nodes to medial features can also be applied). 
 Following the calculation of the node forces we compute the new 
acceleration, velocity, and position of each node given the old velocity and 
position values, as follows (explicit Euler solution with time step t∆ ) 

 
i i i

old
i i i

old
i i i

a f m

v v a t

x x v t

= = + ∆ = + ∆ 

 (7.4) 

7.3 Shape Deformation 

7.3.1 Deformation using External Forces 
As explained in section 2, deformations can be applied via external forces such 
as user interaction (Figure 7.3) or image forces. 

7.3.2 Deformation using Spring Actuation 
Other forces result from spring actuation (in a manner analogous to muscle 
actuation in animals, see Figure 7.4). Two nodes connected by a spring will 
normally change position until the spring is at its rest length. To actuate a 
spring we change its rest length while continuously simulating the mesh 
dynamics. 
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Figure 7.3. Examples of deformations via user interaction 
(‘mouse’ forces). 

 

 
Figure 7.4. Changes in body form in wormlike soft-
bodied animals. (A) The longitudinal muscles 
contracting. (B) The circular muscles contracting. (C) 
Bend deformation by contraction of the longitudinal 
muscles above while stretching the longitudinal 
muscles below [EB]. 
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Operator-based localized deformations. Bulging (radial bulge), stretching 
(directional bulge), bending, tapering, and scaling deformations are 
implemented using spring actuation. These operator-based deformations can be 
applied at different locations and scales with varying amplitudes. 
 To perform a (radial) bulge deformation we specify a center C  and a 
radius R  of a deformation region (Figure 7.5(a)) as well as a deformation 
amplitude K . We then update the rest length ijr  of each spring ijs  if at least 
one of its terminal nodes, in  or jn , lies within the deformation region, as 
follows 

 ( )( )( )( )21 1 1 1 old
ij ij

dr K r
R

θ
π

= − − − +  (7.5) 

where 0,
2
πθ  ∈   

 is the angle between ijs  and the line L  connecting the 

midpoint of the spring with the C and d  is the length of L  (Figure 7.5(a)). The 
resulting effect of the above equation is that springs closer to C  and with 
directions closer to the radial direction are affected more (Figure 7.6). 
 To perform a stretch (directional bulge) we again specify a deformation 
region and amplitude as well as a direction D

G
 (Figure 7.5(b)). We update the 

rest length of each spring as in equation (7.5) where 0,
2
πθ  ∈   

 is now defined 

as the angle between ijs  and D
G

 (Figure 7.5(b)). The resulting effect in this 
case is that springs closer to C  and with directions closer to the stretch 
deformation direction are affected more (Figure 7.6). 
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Figure 7.5. Definition of variables for (a) radial bulge, (b) directional bulge, 
and (c) localized scaling. A single is spring is shown as a thick line segment 
connecting two nodes. 
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Figure 7.6. The coefficient (white=K, black=1) by 
which oldijr  is multiplied as a function of θ  and d . 

 
A localized scaling deformation is independent of direction and requires only 
the specification of a deformation region and amplitude (Figure 7.5(c)). The 
rest length update equation then becomes 
 ( )( )( )1 1 1 old

ij ijr d R K r= − − + . (7.6) 

To perform localized bending, we specify a bending amplitude K  and two 
regions surrounding the medial axis (Figure 7.7).  The rest lengths of the 
springs on one side of the medial are increased according to 

 ( )1 1,1 1

1

2
1 1 1 old

ij ij
d

r K r
R

θ
π

    = − − +        
 (7.7) 

while the rest lengths on the other side are decreased according to 

 ( )2 2,2 2

2

2 11 1 1 old
ij ij

d
r r

R K
θ
π

    = − − +        
. (7.8) 

To perform localized tapering, we specify a tapering amplitude K  and a region 
with a base (Figure 7.8). The  rest lengths on one side of the base are increased 
according to 

 ( )1 1,1

1
1 1 old

ij ij
d

r K r
R

 = − +   
 (7.9) 

while those on the other side are decreased according to 

 ( )2 2,2

2

1 1 1 old
ij ij

d
r r

R K
 = − +   

 (7.10) 
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Figure 7.7. Definition of variables for localized 
bending deformation operator. 
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Figure 7.8. Definition of variables for tapering 
deformation operator. 
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Different examples of localized operator-based deformations are shown in 
Figure 7.9. 
 
 

 

  
(a) (b) 

  
(c) (d) 

   
(e) (f) (g) 

 
 

(h) (i) 

 
 

(j) (k) 

Figure 7.9. Examples of localized deformations. (a) Initial 
synthetic object, (b) bulge, (c) bend, (d) bend at another 
location, (e) tapering, (f) tapering followed by a bulge, and (g) 
tapering followed by a bulge and a bend deformations. CC 
model (h) before and (j) after a localized bend. (i-k) Close up 
versions of (h-j). 

 
Learned deformations. Learned or statistical deformations are also 
implemented via spring actuation. To facilitate intuitive deformations, springs 
are designed to be of different types: stretch springs, bend springs, or thickness 
springs. Stretch springs connect neighboring medial nodes, bending springs are 
hinge springs that connect non-consecutive medial nodes, and thickness springs 
connect medial nodes with boundary nodes (Figure 7.10). Actuating the stretch 
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springs causes stretch deformations, actuating hinge springs causes bend 
deformations, and actuating thickness springs causes bulging, squashing, or 
tapering deformations. 
 

Stretch
Bend
Thickness

Stretch
Bend
Thickness

 
Figure 7.10. Spring types used for statistics-based deformations. 

 
Feasible mesh deformations are obtained by actuating springs according to the 
outcome of a statistical analysis performed on the spring lengths of a training 
set (discussed in Section 7.4). 

7.3.3 Affine Transformations 
Rotation and translation are implemented via the application of external forces. 
Scaling is implemented by muscle actuation. Scaling by a factor of S  is 
performed by changing the rest length of all the springs, i.e. 
 old

ij ijr S r= ⋅ . (7.11) 
Rotation forces are applied on all nodes in a direction normal to the line 
connecting each node with the center of mass of the model, with a consistent 
clockwise/counter clockwise direction (Figure 7.11(a)). Translation forces are 
applied on all nodes in the direction of the desired translation (Figure 7.11(b)). 
Examples are shown in Figure 7.12. 
 

  
(a) (b) 

Figure 7.11. External forces for performing a (a) rotation (light 
gray circle marks center of mass) and a (b) translation. 
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(a) 

 
(b) 

Figure 7.12. Affine transformation via 
external forces. (a) Rotating a model of the 
corpus callosum. (b) Rotating and scaling a 
synthetic model. 

7.4 Hierarchical Regional PCA 
To produce feasible (i.e. similar to what has been observed in a training set) 
shape deformations at different locations and scales, we use Hierarchical 
Regional Principal Component Analysis (HRPCA). HRPCA involves 
performing traditional PCA on the spring lengths corresponding to each of the 
desired localized deformation as explained below3. 
 The set of rest lengths for the stretch springs (Figure 7.10) in a single 
example model are collected in a vector Sr , i.e. 

 { }, : stretch springsij ijS r i j s= ∀ ∈r  (7.12) 

                                                 
3 HRPCA was also applied for generating statistics-based deformations using medial 
profiles (see Section 6.2.4). 
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and similarly for the bending and left and right thickness springs (Figure 7.10) 

 

{ }
{ }
{ }

, : bend springs

, : left thickness springs

, : right thickness springs .

ij ijB

ij ijTL

ij ijTR

r i j s

r i j s

r i j s

= ∀ ∈

= ∀ ∈

= ∀ ∈

r

r

r

 (7.13) 

This gives 
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 =   
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 =   
 =   

r r r r

r r r r

r r r r

r r r r

…

…

…

…

 (7.14) 

where ,S BN N , and TN  are the numbers of stretch, bend, and left/right 
thickness springs, respectively. The springs are numbered according to their 
spatial order (i.e. moving from one end of the medial to the other we encounter 

1 2, , , SN
S S Sr r r… ). 

 Performing global (traditional) PCA (see Appendix C) on the 
corresponding rest lengths of the springs in a training set gives  

 

S S S S

B B B B

TL TL TL TL

TR TR TR TR

M

M

M

M

= +

= +

= +

= +

r r w

r r w

r r w

r r w

 (7.15) 

where the columns of , , ,S B TLM M M  and TRM  are the main modes of spring 
length variation for the stretch, bend, left and right thickness springs, 
respectively. Associated with each mode is the variance it explains. The details 
on obtaining the corpus callosum training set can be found in Section 7.5. 
 For capturing the shape variations at different locations and scales, we 
study the variations in the rest lengths of the springs in the desired localized 
region. Furthermore, to decompose the variations into different types of general 
deformations, each statistical analysis of the spring length in a localized region 
is restricted to a specific type of deformation springs (Figure 7.10). 
Accordingly, the PCA becomes a function of the deformation type, location 
and scale. For example, to analyze the local variation in object length (stretch), 
we perform a statistical analysis on the lengths of the stretch springs of that 
local region. In general, for a single deformation/location/scale- specific PCA 
we obtain 
 , , , , , , , ,def loc scl def loc scl def loc scl def loc sclM= +r r w  (7.16) 
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where def  is the deformation type being either, S (for stretch), B (for bend), 
TL (for left thickness) or TR (for right thickness). The location and scale, 
determined by the choice of loc  and scl  respectively, determine which springs 
are to be included in the analysis according to 
 1 1

, , , , ,loc loc loc scl
def loc scl def def def

+ + − =   r r r r… . (7.17) 
For example, for the bending deformation at location ‘five’ with scale ‘three’ 
( , , , 5,3def loc scl B= ) we have 
 [ ]5 6 7

, , ,5,3 , ,def loc scl B B B B= =r r r r r . (7.18) 
The average values of the spring lengths are calculated according to 

 ( ) , ,, ,
1

1 N

def loc scldef loc scl
j

j
N =

= ∑r r  (7.19) 

where ( ) , ,def loc scljr  is , ,def loc sclr obtained from the thj  training example and N  
is the number of training examples. The columns of , ,def loc sclM  are the 
eigenvectors, , ,def loc sclm , of the covariance matrix , ,def loc sclC . That is 
 { } , ,def loc sclC λ=m m  (7.20) 
where 

 ( )( ) ( )( )
1 , ,

1
1

N
T

j def loc scl

C j j
N =

   = − −  −  
∑ r r r r  (7.21) 

and where { } , ,def loc scl  denotes deformation type-,  location-, and scale- 
specific PCA variables. The global PCA can be written as a special case of the 
HRPCA by specifying 1loc =  and , ,S Bscl N N=  or TN . 
 Note that the data set needs to be aligned only with respect to scale. The 
statistical analysis of spring lengths is independent of orientation and 
translation. See the different examples in Figure 7.13 to Figure 7.16. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7.13. Sample corpus callosum mesh model deformations (1st PC 
for all deformation types over the entire CC) derived from the 
hierarchical regional PCA. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 7.14. Sample CC mesh model deformations (2nd PC for all 
deformation types over the entire CC) derived from the hierarchical 
regional PCA. 

 

 
(a) (b) (c) 

Figure 7.15. Statistical CC mesh model 
deformations: Stretching the Splenium (see 
Figure 7.2(a) for anatomy). 

 

   
(a) (b) (c) 

Figure 7.16. Statistical CC mesh 
model deformations: Bending the 
Genu (see Figure 7.2(a) for anatomy). 

 

7.5 Mesh Generation from Real Data 
From 51 MRI brain volumes, we extracted the mid-sagittal slices from the 
coronal slices. We then used human expert segmented corpus callosum images 
(Figure 7.17(a)) to compute the set of spatially ordered boundary coordinates 
(Figure 7.17(b)). We calculated a pruned skeleton using morphological 
operations (see Appendix F) to produce a medial axis (Figure 7.17(c-d)) 
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represented by spatially ordered coordinates. We then sampled the medial and 
boundary coordinates (we experimented with critical point detection algorithm 
[Zhu1995], fitting line segments [Jain1989], in addition to uniform/equal arc 
length sampling and non-uniform sampling). We then constructed the mesh by 
finding the boundary points closest to the line normal to the sampled medial 
points. Since Delaunay triangulation does not guarantee correspondence 
between the meshes in different examples and does not generate deformation 
specific springs (Figure 7.10), we hand crafted the spring connections and 
applied it to all the training data (Figure 7.17(e-f)). 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7.17. CC mesh generation: (a) expert segmented CC images, (b) 
extracted boundary pixels, (c) skeleton, (d) pruned skeleton/medial axis, 
(e) spring connections, and (f) final CC mesh model. 

7.6 Conclusion 
A key requirement of a deformable model-based medical image analysis 
system is the ability to intelligently schedule and control the type, location, 
extent, and order of intuitive model deformations during the fitting process. In 
this chapter we demonstrated the use of a physics-based shape representation 
and deformation technique to meet such a requirement. This new model can be 
used (as an alternative to the ‘Medial Profiles’ technique presented in Chapter 
6) for the lower layers of the multi-layered model-fitting system (Chapter 8). 
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CChhaapptteerr  88..  DDEEFFOORRMMAABBLLEE  OORRGGAANNIISSMMSS::  
AANN  AALLIIFFEE  AAPPPPRROOAACCHH  TTOO  MMIIAA  

In this chapter1, we introduce a new paradigm for medical image analysis 
that adopts modeling concepts from the field of artificial life. Our 
approach prescribes deformable organisms, autonomous agents whose 
objective is the segmentation and labeling of anatomical structures in 
medical images. A deformable organism is structured as a ‘muscle’-
actuated ‘body’ whose behavior is controlled by a ‘brain’ that is capable 
of making both reactive and deliberate high-level decisions. The brains 
issue ‘muscle’ actuation commands or ‘growth’ commands, resulting in 
actively controlled shape deformations of the bodies comprising skeleton 
and limbs. This intelligent deformable model possesses an ‘awareness’ of 
the segmentation process, which emerges from a conflux of perceived 
sensory data, an internal mental state, memorized knowledge, and a pre-
stored cognitive plan. The plan, which may involve interaction with other 
organisms, guides the organism to identify landmark anatomical features 
during its development. We develop a class of deformable organisms 
using a medial representation of body morphology that facilitates a 
variety of controlled Shape deformations and controlled growth at 
multiple scales and locations. The framework promises to lay the 
foundation for the construction of robust and automatic medical image 
analysis tools by combining deformable models and high-level a priori 
knowledge. We demonstrate how deformable organisms can deal with 
noise, incomplete edges, anatomical variation, and occlusion in order to 
segment and label various anatomical structures from medical images. 

8.1 Introduction 
The automatic segmentation and labeling of anatomical structures in medical 
images is a persistent problem that continues to defy solution. A substantial 
amount of knowledge is often available about anatomical structures of interest 
- shape, position, orientation, symmetry, relationship to neighboring structures, 
landmarks, etc. - as well as about the associated image intensity characteristics. 
However, MIA researchers have struggled to develop segmentation techniques 
that can take full advantage of such knowledge. There is consensus within the 
medical image analysis research community that the development of general-
purpose automatic segmentation algorithms will require not only powerful 
bottom-up, data-driven processes, but also equally powerful top-down, 

                                                 
1 This chapter is based primarily on [Hamarneh2001c] (see also [Hamarneh2001b]). 
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knowledge-driven processes within a robust decision-making framework that 
operates across multiple levels of abstraction [Duncan2000]. We contend that 
current frameworks of this sort are inflexible and do not operate at an 
appropriate level of abstraction. Consequently, not only are they unable to 
incorporate all available knowledge, but also they are incapable of effectively 
applying this knowledge (i.e., at the correct time and place during image 
analysis).  
 Deformable models, one of the most actively researched model-based 
segmentation techniques [McInerney1996], feature a potent bottom-up 
component founded in estimation theory, optimization, and physics-based 
dynamical systems, but their top-down processes have traditionally relied on 
interactive initialization and guidance by knowledgeable users (see Section 
1.2.2 Deformable Models). Attempts to fully automate deformable model 
segmentation methods have so far been less than successful at coping with the 
enormous variation in anatomical structures of interest, the significant 
variability of image data, the need for intelligent initialization conditions, etc. It 
is difficult to obtain intelligent, global (i.e., over the whole image) model 
behavior throughout the segmentation process from fundamentally local 
decisions. In essence, current deformable models have no explicit awareness of 
where they are in the image, how their parts are arranged, or what they or any 
neighboring deformable models are seeking at any time during the optimization 
process. 
 The time has come to shift our attention to what promises to be a critical 
element in any viable, highly automated solution: the decision-making 
framework itself. Existing decision-making strategies for deformable models 
are inflexible and do not operate at an appropriate level of abstraction. 
Hierarchically organized models, which shift their focus from structures 
associated with stable image features to those associated with less stable 
features, are a step in the right direction [McInerney1998, Shen2000]. 
However, high-level contextual knowledge remains largely ineffective because 
it is intertwined much too tightly with the low-level optimization-based 
mechanisms. 
 It is our contention that we must revisit ideas for incorporating 
knowledge that were explored in earlier systems (e.g., [Tsotsos1980]), and 
develop new algorithms that focus on top-down reasoning strategies which 
may best leverage the powerful bottom-up feature detection and integration 
abilities of deformable models and other modern model-based medical image 
analysis techniques. We further contend that a layered architecture is 
appropriate, where the high-level reasoning layer has knowledge about and 
control over the low-level model (or models) at all times. The reasoning layer 
should apply an active, explicit search strategy that first looks for the most 
stable image features before proceeding to less stable image features, and so 
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on. It should utilize contextual knowledge to resolve regions where there is a 
deficiency of image feature information. 
 To achieve these goals, we introduce a new paradigm for automatic 
medical image analysis that adopts concepts from the emerging field of 
Artificial Life2. In particular, we develop deformable organisms, autonomous 
agents whose objective is the segmentation and analysis of anatomical 
structures in medical images. A deformable organism is structured as a 
‘muscle’-actuated ‘body’ whose behavior is controlled by a ‘brain’ that is 
capable of making both reactive and deliberate decisions. This intelligent 
deformable model possesses a non-trivial ‘awareness’ of the segmentation 
process, which emerges from a conflux of perceived sensory data, an internal 
mental state, memorized knowledge, and a cognitive plan. By constructing 
deformable organisms in a layered fashion, we are able to separate the 
knowledge-driven model-fitting control functionality from the data-driven, 
local image feature integration functionality, exploiting both for maximal 
effectiveness. This separation allows us to construct a model-fitting controller, 
or ‘brain’, from an extensible set of standardized ‘behavior’ subroutines that 
are defined in terms of high-level anatomical features of an object rather than 
its low-level image features. The organism’s brain makes decisions at an 
appropriately high level of abstraction by integrating sensed image features, 
memorized knowledge, and a pre-stored cognitive plan. It then issues ‘muscle’ 
commands and ‘growth’ commands to realize shape deformations that 
correctly match the model to the data.  
 Our ALife approach provides us with the required flexibility to adhere to 
an active, explicit search strategy that first directs organisms to look for the 
most stable anatomical features in images before deforming or growing 
towards less stable features, and so on. The result is intelligent organisms that 
are aware of the progress of the segmentation process and of each other, 
allowing them to effectively and selectively apply prior knowledge of the 
target objects throughout their development. Our approach combines a 
common, layered architecture and a set of standard behavior subroutines 
allowing powerful and flexible ‘custom-tailored’ models to be rapidly 
constructed, providing general-purpose tools for automated medical image 
segmentation, object-based registration, and shape variation measurement. 
 The deformable organisms that we have developed to date are based on 
medial axis deformable representations, which provide their brains with precise 
control over the lower-level deformation layer, allowing a variety of controlled 
deformations and controlled growth at multiple locations and scales. We 
demonstrate the potential of our approach by releasing several such organisms 
                                                 
2 Earlier mentions of the use of ALife in conjunction with segmentation appeared in 
[Choi1997, Kagawa1999]. These methods still relied on local decision making akin to 
traditional region growing methods. 
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into 2D medical images, resulting in the robust, automatic segmentation of 
various anatomical structures. 

8.1.1 ALife for Computer Graphics 
In recent years, computer graphics researchers have been exploring the 
modeling and simulation of living systems by applying concepts from an 
emerging scientific discipline known as Artificial Life. The Artificial Life 
(ALife) modeling approach has been applied successfully to produce realistic 
computer graphics models of plants and animals (ALife) [Terzopoulos1999]. 
As is characteristic of the deformable models used in MIA, these new graphics 
models employ geometric and physics-based modeling techniques, but they 
also aspire to simulate many of the biological processes that uniquely 
characterize living systems - including birth and death, growth and 
development, natural selection, evolution, perception, locomotion, 
manipulation, adaptive behavior, learning, and intelligence. This provocative 
paradigm subsumes several avenues of research and development, including 
artificial plants and animals, behavioral modeling and animation, and 
evolutionary modeling. 
 To manage their complexity, ALife models of animals are best organized 
hierarchically (Figure 8.1), where each successive modeling layer augments the 
more primitive functionalities of underlying layers. At the base of the modeling 
hierarchy, a geometric modeling layer represents the morphology and 
appearance of the artificial animal. Next, a physical modeling layer 
incorporates biomechanical principles to constrain the geometry and simulate 
biological tissues. Further up the hierarchy is a motor control layer that 
motivates internal muscle actuators in order to synthesize lifelike locomotion. 
Behavioral and perceptual modeling layers cooperate to support a reactive 
behavioral repertoire, e.g. navigation among obstacles, foraging, etc. At the 
apex of the modeling pyramid is a cognitive modeling layer, which simulates 
the deliberative behavior of higher animals, governs what an artificial graphical 
animal knows, how that knowledge is acquired and represented, and how 
automated reasoning and planning processes can exploit it to achieve high-
level goals while producing graphical characters with some level of deliberate 
intelligence. 
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Figure 8.1. The ALife modeling pyramid (adapted 
from  [Terzopoulos1999]). 

 
 Autonomous agents known as “artificial fishes” [Terzopoulos1994] (see 
also [Tu1996]) serve to illustrate the key functional components of artificial 
animals: bodies that comprise muscle actuators, sensory organs (eyes, etc.) and, 
most importantly, brains consisting of motor, perception, behavior, learning 
and cognition centers. Motor controllers (MCs) in the brain’s motor center 
coordinate muscle actions to carry out specific motor functions, such as 
locomotion and sensor actuation. For example MCs translate natural control 
parameters such as forward speed or angle of the turn into detailed muscle 
actions in order to carry out a specific motor function, such as ‘swim-forward’ 
or ‘turn-left’. The perception center employs attention mechanisms to interpret 
sensory information about the dynamic environment3. The perceptual attention 
mechanism allows the artificial fish to train its sensors at the world in a task-
specific way, hence filtering out sensory information superfluous to its current 
behavioral needs. The behavior center realizes an adaptive sensorimotor system 
through a repertoire of behavior routines that couple perception to action in 
meaningful ways. An intention generator (or action-selection mechanism), the 
fish’s cognitive faculty, combines the fish’s innate characteristics, the mental 
state, and the incoming stream of sensory information at every simulation time 
step. It uses this information to activate behavior routines. The behavior 
                                                 
3 For a closely related biomimetic approach to active vision, see [Terzopoulos1997]. 
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routines in turn compute the appropriate motor controller parameters to carry 
the fish one step closer to fulfilling its current intention. The learning center in 
the brain enables the artificial animal to learn motor control and behavior 
through practice and sensory reinforcement. The learning center of the brain 
comprises a set of optimization-based motor learning algorithms that can 
discover and perfect motor controllers capable of producing efficient 
locomotion [Terzopoulos1996]. The cognition center enables it to ‘think’. 

8.1.2 An ALife Modeling Paradigm for MIA: Motivation 
Viewed in the context of the artificial life modeling hierarchy (Figure 8.1). 
Current automatic deformable model-based approaches to medical image 
analysis utilize geometric and physical modeling layers only. In interactive 
deformable models, such as snakes, the human operator is relied upon to 
provide suitable behavioral level and cognitive level support. At the physical 
level, deformable models interpret image data by simulating dynamics or 
minimizing energy terms, but the models themselves do not monitor or control 
this optimization process except in a most primitive way.  
 At the geometric level, aside from a few notable exceptions (e.g., 
[Staib1992, Terzopoulos1991]), deformable models are not generally designed 
with intuitive, multi-scale, multi-location deformation ‘handles’ and are often 
boundary-based and lack global shape descriptors [McInerney1996]. Their 
inability to perform global deformations, such as bending, and other global 
motions such as sliding and backing up makes it difficult to develop reasoning 
or planning strategies for these models at the correct level of abstraction. 
 In more sophisticated deformable models prior information in the form of 
measured statistical variation is used to constrain model shape and appearance 
[Cootes1995a, Cootes1999, Szekely1996]. However, these models have no 
explicit awareness of where they or their neighbors are and, consequently, the 
effectiveness of these constraints is dependent upon model initialization 
conditions. The lack of awareness also prevents the models from taking proper 
advantage of neighborhood information via model interaction and prevents 
them from knowing when to trust the image feature information and ignore the 
constraint information and vice versa. The constraint information is therefore 
applied arbitrarily. Furthermore, because there is no active, explicit search for 
stable image features, the models are prone to latching onto incorrect features 
[Cootes1999], simply due to their myopic decision-making abilities and the 
proximity of spurious features. Once this latching occurs, the lack of explicit 
control of the fitting procedure prevents the model from correcting such 
missteps. The result is that the local decisions that are made do not add up to 
intelligent global behavior. 
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 For example, when segmenting the corpus callosum (CC) in 2D mid-
sagittal images4, the ‘vocabulary’ that one uses should contain words that 
describe principal anatomical features of the CC, such as the genu, splenium, 
rostrum, fornix, ‘ribbon’ body (Figure 8.2), rather than pixels and edges. The 
deformable model should match this natural descriptiveness by grouping 
intuitive model parameters at different scales and locations within it, rather 
than providing localized boundary-based parameters only. 
 

Genu Rostrum SpleniumBody FornixGenu Rostrum SpleniumBody Fornix

 
Figure 8.2. CC anatomy overlaid on a mid-sagittal MRI brain slice. 

 
 To overcome the aforementioned deficiencies while retaining the core 
strengths of the deformable model approach, we add high-level controller 
layers (a ‘brain’) on top of the geometric and physical (or deformation) layers 
to produce an autonomous deformable organism (Figure 8.3). The planned 
activation of these lower layers allows us to control the fitting/optimization 
procedure. The layered architecture approach allows the deformable organism 
to make deformation decisions at the correct level of abstraction utilizing prior 
knowledge, memorized information, sensed image features, and inter-organism 
interaction. 
 The perception system of the deformable organism comprises a set of 
sensors that provide information. Any type of sensors can be incorporated, 
from edge strength and edge direction detectors to snake ‘feelers’. Sensors can 
be focused or trained for specific image features and image feature variation in 
a task-specific way; hence, the organism can disregard sensory information 
superfluous to its current behavioral needs. 
                                                 
4 See [Lundervold1999] as an example of previous work on, and motivation for, 
segmenting the corpus callosum. 
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Figure 8.3. A deformable organism: The brain issues ‘muscle’ actuation and 
perceptual attention commands. The organism deforms and senses image 
features, whose characteristics are conveyed to the brain. The brain makes 
decisions based on sensory input, memorized information and prior 
knowledge, and a pre stored plan, which may involve interaction with other 
organisms. 

 
 Explicit feature search requires powerful, flexible and intuitive model 
deformation control. We achieve this with a set of ‘motor’ (i.e. deformation) 
controllers, which are parameterized procedures dedicated to carrying out a 
complex deformation function, such as successively bending a portion of the 
organism over some range of angles or stretching part of the organism forward 
some distance. 
 We use a natural, intuitive medial description of object shape plus 
medial-based statistics of (localized) shape variation as our prior shape 
knowledge representation scheme. The medial-based shape descriptors may 
easily be mapped onto anatomical features of an object. A primitive cognitive 
layer activates ‘behavior’ routines (e.g., for a CC organism: find-splenium, 
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find-genu, find-upper-boundary-of-CC) according to a plan or schedule (Figure 
8.4). Customized behavior routines may be quickly constructed from a set of 
standardized subroutines. The behavior routines subsequently activate ‘motor’ 
(i.e., deformation) controller routines or growth controller routines, enabling 
the organism to fulfill its goal of object segmentation. The plan (or plans) can 
be generated with the aid of a human expert, since the behavior routines are 
defined using familiar anatomical terminology. 
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Figure 8.4. (a) A procedural representation of a fragment of a deformable 
organism’s plan or schedule. The organism goes through several behavior 
subroutines (bold path in (a)). (b) A simple example of a standard behavior 
subroutine. 

 
 An organism is ‘self-aware’ (i.e. knows where it and its parts are and 
what it is seeking at every stage) and ‘neighbor-aware’ and therefore is able to 
effectively utilize global contextual knowledge. An organism begins by 
searching for the most stable anatomical features in the image before 
proceeding to less stable features. Alternatively, an organism may ‘interact’ 
with other organisms to determine optimal initial conditions. Once stable 
features are found and labeled, an organism can selectively use prior 
knowledge or information from neighbor organisms to determine the object 
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boundary in regions known to offer little or no feature information. That is, the 
organism intelligently ‘fills in’ in ways tailored to specific regions of interest in 
the target structure. 
 Because an organism carries out active, explicit searches for stable 
anatomical features, it is not satisfied with the nearest matching feature but 
looks further within a region to find the best match, thus avoiding local 
minimum solutions. Furthermore, by carrying out explicit searches for features 
we ensure correct correspondences between the model and the data. If a feature 
cannot be found, an organism may ‘flag’ this situation (Figure 8.4(b)). In the 
future, if multiple plans exist, another plan could potentially be selected and the 
search for the missing feature postponed until further information is available. 
 The deformation capabilities are achieved with a set of ‘motor’ (i.e. 
deformation) controllers and medial-based deformation operators. Deformation 
controllers are parameterized procedures dedicated to carrying out a complex 
deformation function, such as successively bending a portion of the organism 
over some range of angle or stretching part of the organism forward some 
distance. They translate natural control parameters such as <bend_angle,
location, scale> or <stretch_length, location, scale> 
into detailed deformations. We currently use medial-based profiles (presented 
in Chapter 6) for shape representation and deformation. Other shape 
representation and deformation techniques can be utilized as long as they are 
able to provide intuitive, controlled, and statistically feasible shape 
deformations. 
 Interaction among organisms may be as simple as collision detection and 
avoidance (and hence prevention of inter-penetration between organisms 
sharing a common boundary), to one or several organisms supplying intelligent 
initial conditions to another, to the use of inter-organism statistical shape/image 
appearance constraint information.  
 Finally, an organism may begin in an ‘embryonic’ state with a simple 
proto-shape, and then undergo controlled growth as it develops into an ‘adult’, 
proceeding from one stable object feature to the next. Alternatively, an 
organism may begin in a fully developed state and undergo controlled 
deformations as it carries out its model-fitting plan. The type of organism to 
use, or whether to use some sort of hybrid organism, is dependent on the image 
and shape characteristics of the target anatomical structure. 
 In summary, the ALife modeling paradigm provides a common 
framework and standard behavior subroutines upon which to build powerful 
and flexible ‘custom-tailored’ models that offer robustness and generality. 

8.2 Deformable Organisms for Medical Image Analysis 
In this section we describe the layered-architecture of a deformable organism 
beginning with the lower layers and progressing upwards (we will make 
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reference to the detailed construction of the layered-architecture for a corpus 
callosum organism as an example). 

8.2.1 Shape Representation: Geometry 
Our organisms are based on a medial representation of body morphology that 
facilitates a variety of controlled local deformations at multiple spatial scales. 
In particular, we use the medial-based shape profiles presented in Chapter 6  
(see also [Hamarneh2001a]) to describe the body of an organism. In this shape 
representation and deformation scheme, an anatomical structure (e.g. CC) is 
described with four shape profiles derived from the primary medial axis of an 
organism’s boundary contour (e.g. CC boundary contour). The medial profiles 
describe the geometry of the structure in a natural way and provide general, 
intuitive, and independent shape measures. These profiles are: length, 
orientation, left (with respect to the medial axis) thickness, and right thickness. 
The length profile represents the distances between consecutive pairs of medial 
nodes, and the orientation profile represents the angles of the edges connecting 
the pairs of nodes. The thickness profiles represent the distances between 
medial nodes and their corresponding boundary points on both sides of the 
medial axis.  
 Other shape representation and shape deformation schemes can be 
employed in the lower layers of the modeling pyramid as long as they provide 
sufficient shape description and deformation capabilities to the upper layers. 
An alternative could be the physics-based shape representation and 
deformation technique presented in Chapter 7 (see also [Hamarneh2001e]). 

8.2.2 Motor System 
Shape deformation actuators (motor skills). In addition to the affine 
transformation abilities (translate, rotate, scale), we control the organism’s 
shape deformations by defining deformation actuators in terms of the medial 
shape profiles (or alternatively in a physically-based manner as described in 
Chapter 7). Controlled stretch (or compress), bend, and bulge (or squash) 
deformations are implemented as deformation operators acting on the length, 
orientation, or thickness profiles, respectively. Furthermore, by utilizing a 
hierarchical (multiscale) and regional principal component analysis to capture 
the shape variation statistics in a training set, we can keep the deformations 
consistent with prior knowledge of possible shape variations. Whereas general 
statistically-derived shape models produce global shape variation modes only 
[Cootes1995a, Cootes1999, Szekely1996], we are able to produce spatially-
localized feasible deformations at desired scales, thus supporting our goal of 
intelligent deformation planning. 
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 Several operators of varying types, amplitudes, scales, and locations can 
be applied to any of the length, orientation, and thickness shape profiles. 
Similarly, multiple statistical shape variation modes can be activated, where 
each mode acts on a specific shape profile with a specific amplitude, location 
and scale. In general, operator- and statistics-based deformations can be 
combined into a single expression of shape. More details and examples of 
medial-based and physics-based shape deformations can be found in Chapter 6 
and Chapter 7, respectively. 
 
Deformation (motor) controllers. The organism’s low-level motor actuators 
are controlled by motor controllers. These parameterized procedures carry out 
complex deformation functions such as sweeping over a range of rigid 
transformation parameters, sweeping over a range of stretch/bend/thickness 
amplitudes at a certain location and scale, bending at increasing scales, moving 
a bulge on the boundary, etc. Other high-level deformation capabilities include 
smoothing the medial or left or right boundaries, interpolating a missing part of 
the thickness profile, moving the medial axis (the organism’s ‘spine’) to a 
position midway between the left and right boundaries, re-sampling the model 
by including more medial and boundary nodes, and shortening or elongating 
the organism while maintaining the original thickness and orientations at 
appropriate arc lengths. 

8.2.3 Perception System 
The perception system of our organism consists of a set of sensors that provide 
image information to the deformable organisms. Sensors can be virtually 
anything - from edge strength and edge direction detectors to snake ‘feelers’. 
Sensors can be focused or trained for specific image feature and image feature 
variation in a task-specific way and hence the organism is able to disregard 
sensory information superfluous to its current behavioral needs. 
 Different parts of the organism are dynamically assigned sensing 
capabilities and thus act as sensory organs (SO) or receptors. The locations of 
the SO are typically confined to the organism’s body (on-board SO) such as at 
its medial or boundary nodes, at curves or segments connecting different 
nodes, or at other inner regions. Nevertheless, off board can be utilized as in 
the example of segmenting a vessel in an angiogram (Figure 8.14). 
 In our implementation of the Corpus Callosum organism, for example, 
the SO are made sensitive to different stimuli such as image intensity, image 
gradient magnitude and direction, a non-linearly diffused version of the image, 
an edge detected (using Canny edge detector) image, or even the result of a 
Hough transform (applied to find the top of the human skull in the MR image). 
In general, a wide variety of image processing and analysis techniques can be 
applied to the original image source and thus act as focusers or filters of the 
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‘outside world’ signals (Figure 8.5). The sensed data are fed to the cognitive 
center of the brain for processing. 
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Figure 8.5. Perception System. 

8.2.4 Behavioral/Cognitive System  
The organism’s cognitive center combines sensory information, memorized 
information and prior knowledge, and instructions from a pre-stored 
segmentation plan to carry out active, explicit searches for stable object 
features by activating ‘behavior’ routines (Figure 8.4). Currently a single fixed 
plan is used, multiple plans with a plan selection scheme could also be 
implemented. Behavior routines are designed based on available organism 
motor skills, perception capabilities, and available anatomical landmarks. For 
example, the routines implemented for the CC organism include: find-top-of-
head, find-upper-boundary-of-CC, find-genu, find-rostrum, find-splenium, 
latch-to-upper-boundary, latch-to-lower-boundary, find-fornix, thicken-right-
side, thicken-left-side, back-up. The behavior routines subsequently activate 
the deformation or growth controllers to complete a stage in the plan and bring 
an organism closer to its intention of object segmentation. 
 The segmentation plan provides a means for human experts to intuitively 
incorporate global contextual knowledge. It contains instructions on how best 
to achieve a correct segmentation by optimally prioritizing behaviors. If we 
know, for example, that the corner-shaped rostrum of the CC is always very 
clearly defined in an MRI image, then the find-rostrum behavior should be 
given a very high priority. Adhering to the segmentation plan and defining it at 
a behavioral level imbues the organism with awareness of the segmentation 
process. This enables it to make very effective use of prior shape knowledge - 
it is applied only in anatomical regions of the target object where there is a 
high level of noise or known gaps in the object boundary edges etc. 

8.3 Results 
We first present a detailed segmentation plan for the CC organism that serves 
to illustrate the ability to harness global contextual knowledge. A CC organism 
is released into a 2D mid-sagittal MRI brain image from an initial default 
position (Figure 8.6.1). It then goes though different ‘behaviors’ as it 
progresses towards its goal. As the upper boundary of the CC is very well 
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defined and can be easily located with respect to the top of the head, the 
cognitive center of the CC activates behaviors to first locate the top of the head 
(Figure 8.6.2-3) then move downwards through the gray and white matter in 
the image space to locate the upper boundary (Figure 8.6.4-7). The organism 
then bends to latch to the upper boundary (Figure 8.6.8) and activates a find-
genu routine (refer to Figure 8.2 for CC anatomy) causing the CC organism to 
stretch and grow along this boundary towards the genu (Figure 8.6.9-11). It 
then activates the find-rostrum routine causing the organism to back up, 
thicken (Figure 8.6.12), and track the lower boundary until reaching the 
distinctive rostrum (Figure 8.6.13-15). Once the rostrum is located, the find-
splenium routine is activated and the organism stretches and grows in the other 
direction (Figure 8.6.15-16). The genu and splenium are easily detected by 
looking for a sudden change in direction of the upper boundary towards the 
middle of the head.  At the splenium end of the CC, the organism backs up and 
finds the center of a circle that approximates the splenium end cap (Figure 
8.6.17). The lower boundary is then progressively tracked from the rostrum to 
the splenium while maintaining parallelism with the organism’s medial axis in 
order to avoid latching to the potentially occluding fornix (Figure 8.6.18-21). 
Nevertheless, the lower boundary might still dip towards the fornix so a 
successive step of locating where, if any, the fornix does occlude the CC is 
performed by activating the find-fornix routine (making use of edge strength 
along the lower boundary, its parallelism to the medial axis, and statistical 
thickness values). Thus, prior knowledge is applied only when and where 
required. If the fornix does indeed occlude the CC, any detected dip in the 
organism’s boundary is repaired by interpolation using neighboring thickness 
values (Figure 8.9). The thickness of the upper boundary is then adjusted to 
latch to the corresponding boundary in the image (Figure 8.6.22-26). At this 
point the boundary of the CC is located (Figure 8.6.26) and the CC organism 
has almost reached its goal. However, at this stage the medial axis is not in the 
middle of the CC organism (Figure 8.6.27) so it is re-parameterized until the 
medial nodes are halfway between the boundary nodes (Figure 8.6.28-30). 
Finally the upper and lower boundaries, which were reset in the previous step, 
are re-located (Figure 8.6.31-36) to obtain the final segmentation result (Figure 
8.6.36). Other CC segmentation (Figure 8.7), validation results (Figure 8.8), 
and a demonstration of the organism’s self-awareness (Figure 8.10) are 
presented. 
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Figure 8.6. Deformable corpus callosum organism progressing through a 
sequence of behaviors to segment the CC (results continued on next page). 
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Results continued from previous page. 
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Figure 8.7. Segmentation results 
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Figure 8.8. Segmentation results (left), also shown (in black) over 
manually segmented (gray) corpora callosa (right). 



Deformable Organisms: An ALife Approach to MIA 131

 

 
(a) 
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Figure 8.9. Segmentation result (a) before, (b) after 
detecting and repairing the fornix dip. (c) Note the weak 
gradient magnitude where the fornix overlaps the CC. 

 

 
Figure 8.10. The CC organism’s self-awareness 
enables it to identify landmark parts. 
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Figure 8.11.  The lateral ventricle, caudate nucleus, and putamen shown in 
transversal brain MRI slice. 

 
 Other interacting organisms were also created to locate the lateral 
ventricles, caudate nuclei, and putamina in the left and right halves of 
transversal MR brain images (Figure 8.11). Since the ventricles are the most 
stable of the above structures, a ventricle organism is first released (Figure 
8.12.1). It proceeds to locate the top of the ventricle (Figure 8.12.2) and its 
inner and outer (with respect to the brain) boundaries (Figure 8.12.3-5). Both 
ends of the ventricle organism are actively stretched to locate both the upper 
and the lower lobes of the ventricle (Figure 8.12.6). The ventricle organism 
then passes information about the shape and location of the segmented 
ventricle (Figure 8.12.7) to the caudate nucleus (CN) organism, which is 
initialized accordingly in a suitable position (Figure 8.12.8). The CN organism 
segments the CN by stretching to locate its upper and lower limits (Figure 
8.12.9) and thickening to latch to its inner and outer boundaries (Figure 
8.12.10). The CN organism passes information about the location of its lowest 
point (in the image) to the putamen organism, which is initialized accordingly 
(Figure 8.12.11). The putamen organism moves towards the putamen in the 
brain image (Figure 8.12.12) and then rotates and bends to latch to the nearer 
putamen boundary (Figure 8.12.13). It then stretches and grows along the 
boundary until reaching the upper- and lower-most ends of the putamen 
(Figure 8.12.14), which identifies the medial axis of the putamen (Figure 
8.12.15). Since the edges of the putamen boundary near the gray matter are 
usually weak, the organism activates an explicit search for an arc 
(parameterized only by one parameter controlling its curvature) that best fits 
the weak, sparse edge data in that region (Figure 8.12.16). 
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Figure 8.12.  Deformable lateral ventricles (1-16), caudate nuclei
(CN) (8-16), and putamina (11-16) organisms progressing through a
sequence of behaviors to locate the corresponding structures in an
MR brain image (results continued on next page). 
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Results continued from previous page. 
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 We also present the result of segmenting vessels in an angiogram (Figure 
8.13) using an ‘artery crawler’. Without proper constraints the vessel organism 
latches onto the wrong overlapping vessel (Figure 8.13(a)). However, adding 
additional sensors and high-level constraints enables the organism to 
distinguish between overlapping vessels and bifurcations (Figure 8.13(b)). 
When the latter is encountered two new organisms are born from the original 
main branch organism, one for each branch (Figure 8.13(c)). Figure 8.14 
demonstrates how this decision (overlap or bifurcate) strategy is implemented. 
 

 

Overlap 

Bifurcation 

 
(a) (b) 

  
(c) (d) 

Figure 8.13. Segmenting vessels in an angiogram. (a) A deformable organism
turning right and latching onto the wrong overlapping vessel. (b) High-level
constraints enable the organism to differentiate between overlapping vessels and
bifurcations. (c) Two new organisms are born upon identifying a bifurcation. (d)
The segmented main vessel and its two branches. 
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Figure 8.14. Off-board sensors (the arc of white nodes in (a) and (b)) measure 
image intensity (along the arc). This results in an intensity profile exhibiting 
three distinct peeks when an overlapping vessel is ahead  (c) and only two 
peeks in the case of a bifurcation (d). 

 

8.4 Conclusion 
Robust, automatic medical image analysis requires the incorporation and 
intelligent utilization of global contextual knowledge. We have introduced a 
promising new paradigm for medical image analysis that applies concepts from 
artificial life modeling to meet this requirement. By architecting a deformable 
model-based framework in a layered fashion, we are able to separate the 
‘global’ top-down, model-fitting control functionality from the local, bottom-
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up, feature integration functionality. This separation allows us to define a 
model-fitting controller or ‘brain’ in terms of the high-level anatomical features 
of an object rather than low-level image features. The layered-architecture also 
provides the brain layer with precise control over the lower-level model 
deformation layer. The result is a deformable organism that is continuously 
aware of the progress of the segmentation, allowing it to apply effectively prior 
knowledge of the target object. We have demonstrated the potential of our 
novel approach by constructing several deformable organisms (corpus 
callosum worm, artery crawler, interacting lateral ventricle, caudate nucleus, 
and putamen organisms) and releasing them into several medical images in 
order to segment and label various structures. 
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CChhaapptteerr  99..  FFUUTTUURREE  RREESSEEAARRCCHH  

There’s always room for improvement. In this chapter we mention 
remaining outstanding issues and potential improvements that we believe 
are interesting and deserve future investigation. 

9.1 Specific Improvements 
Choosing the weights and parameters of the snake model is an important and 
often tedious task. When applying snakes to the problem of segmenting oral 
lesions in color images (Chapter 2), great variability was encountered between 
the appearances (boundary shape, texture, color) of different lesions. This 
means that the same snake parameters will not necessarily be optimal for all 
cases. A potential solution to the optimal estimation of the internal snake 
parameters, with respect to all images, may benefit from methods that better 
utilize expert delineated results, such as Reinforcement Learning (RL) 
[Peng1998]. An alternative approach would be to design different snakes for 
different medical cases. In particular, we have found it more difficult to detect 
boundaries of reticular lichenoid reactions, since their shapes are usually more 
complex. Further potential investigations include the use of vector snakes 
[Sapiro1996], using parameters that change along the snake contour, and 
producing more elaborate quantitative results. Generally, we believe that to 
further automate and improve segmentation, additional or enhanced energy 
terms and more human knowledge should be incorporated into the snakes 
design. 
 Using the 1D Discrete Wavelet Transform (DWT) as opposed to the 
Discrete Cosine Transform (DCT) (in Chapter 3) for representing the 
coordinate functions ( )x s  and ( )y s  of the contour is worth investigating. 
Particularly since the DWT coefficients contain more localized information 
about the spatial behavior of the contour. 
 In Chapter 4, an additional optical flow-based force is introduced and 
utilized for tracking the leading edge of injected contrast agent in an 
echocardiographic image sequence. In our implementation, the optical flow 
field was calculated over the entire image space, we could reduce 
computational complexity and gain speed by calculating optical flow only 
where needed, i.e. around the snake nodes that define the contrast front. Other 
suggested future work can be found in [Althoff2001]. 
 In our extension of ASM to 2D+time (Chapter 5) we performed elaborate 
testing using synthetic images. More work is needed to fully evaluate the 
method’s applicability to real-life imagery. Usefulness of multi-resolution 
search was demonstrated for 2D ASM, we believe a similar extension to 2D+T 
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would be equally beneficial (possibly including multiple temporal resolutions). 
Extending the current work to include temporal translation and temporal 
scaling parameters may assist in searching through longer image sequences for 
target dynamic shapes of varying velocities. In the current segmentation 
implementation using dynamic programming, equal temporal discontinuity 
costs were assigned to all landmarks throughout all the frames. A possible 
improvement may be the utilization of prior information about the velocities of 
the landmarks in different regions of the object. Another possible direction for 
investigation is the use of different gray level information models, possibly 
similar to Active Appearance Models but extended to 2D+T, resulting in a 
mean 3D (2D+T) intensity template along with the main modes of variation. 
 Medial-based shape profiles (Chapter 6) provide us with intuitive, 
controlled, and independent 2D shape deformation controllers, nevertheless, a 
number of interesting issues remain to be tackled. Currently, the medial 
profiles are constructed only from the primary medial axis and secondary axes 
are not considered. This prevents the model from accurately representing 
highly asymmetrical (with respect to the primary axis) shapes. Thus, the 
extension of the approach to handle objects with multiple medial axes (i.e. 
objects with protrusions) is important. The boundary near the terminals/end 
caps of the model, where the left boundary meets the right boundary, requires 
special consideration to prevent loss of continuity. We currently perform cubic 
B-spline interpolation of the boundary nodes. Alternative boundary 
representation methods could also prove useful. Another enhancement may be 
the incorporation of boundary-based displacements to accommodate objects 
with irregular boundaries. Extending the developed 2D scheme that uses 1D 
medial-based shape profiles to 3D, amounts to using 2D shape profiles or 
‘medial patches’ (replacing the 1D profiles) for describing 3D shape 
characteristics. Medial patches encompass thickness and two-dimensional 
elongation and orientation values with respect to the medial surface. A similar 
yet more involved scheme of medial-based shape patches, operators, and 
statistical analysis is already underway (see Figure 9.1). Pizer et al [Pizer2000, 
Pizer1998, Pizer1999] have done extensive work on medial-based 
representations; a thorough investigation of how to make full use of this 
considerable body of work is advantageous. 
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Figure 9.1. Preliminary investigation into ‘medial patches’. (a) A flat 
medial surface reconstructed from medial patches, (b) bending the 
surface along the x-axis, (c) multiple bends along the x and y-axis, 
(d) multiple bends along arbitrary directions. 

 
 Several interesting issues regarding the physics-based shape deformation 
technique (Chapter 7) exist and deserve further exploration. For example, the 
circular deformation region may be too restrictive for more complex-shaped 
mesh models. Similar methods for carrying out physics-based deformations to 
3D meshes are also needed. We have noticed that sometimes the 2D mesh 
model may fold on itself or become unstable, particularly upon the application 
of extreme deformations. To remedy such possible behavior one can resort to 
the inclusion of additional springs (for example, sheer springs [Provot1995]), 
or gradually changing the rest lengths, or even the use of springs that have a 
rest orientation not only a rest length. Another interesting extension is a layered 
spring-mass system where different layers correspond to different scales or 
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resolution of deformation. Including topological changes in a spring-mass 
system is also desirable. For example, springs that come under too much 
tension break or snap causing a change in topology. Triangulation algorithms 
to automate the generation of corresponding meshes would also be very 
beneficial. While mass-spring models do offer some advantages, such as speed 
and reduced computational complexity, continuum models (such as Finite 
Element Methods [Fagan1992]) offer higher accuracy and are worth further 
investigation. 

9.2 An ALife Paradigm for Medical Image Analysis 
We believe that the new artificial life paradigm for medical image analysis that 
we have proposed in Chapter 8 opens the way for new and exciting avenues of 
future research. We summarize a number of interesting aspects of our 
deformable organisms that deserve further exploration, these include: 
Extending our model to 3D (which would involve generating 3D medial-based 
shape representation and deformation techniques, providing intuitive 
deformation handles capable of producing controlled deformations, as in the 
‘medial patches’ discussed in the previous section). Designing a motion 
tracking plan and releasing an organism into 4D dynamic ‘environments’ (i.e. 
4D images). Exploring the use of multiple plans and plan selection schemes for 
example the application of learning algorithms, such as Genetic Algorithms 
(GA), to assist human experts in the generation of optimal plans. Developing 
more sophisticated organism interactions; we only demonstrated simple 
organism interaction. The layered architecture also provides the option of 
adding higher levels of cognitive modeling, knowledge representation, 
reasoning, and planning. On a more specific note, we anticipate further 
developing the ‘artery crawler’ (Figure 8.13) allowing it to ‘crawl’ along 
arteries, looking for branches, stenoses and aneurysms, when released into the 
central artery of angiographic images.  

9.3 Towards Intelligent Deformable Models for MIA 
Human’s natural cognitive abilities are utilized to provide current deformable 
models with guidance towards proper medical image analysis results via, for 
example, model initialization and interaction. Intelligent Deformable Models 
(IDM), however, attempt to mimic such cognitive abilities by incorporating 
higher layers of (artificial) intelligence atop the geometry and physics 
modeling layers (Figure 9.2). IDM would not only provide powerful bottom-
up, data-driven processes, but also equally powerful top-down, knowledge-
driven processes within a robust decision-making framework that operates 
across multiple levels of abstraction. The subsequent sections describe some of 
the issues involved in developing IDM for segmentation and labeling of an 
anatomical structure (or a set of structures) from medical imagery. 
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Figure 9.2. (a) Deformable models (incorporating geometry and physics 
layers) guided by an expert human operator. (b) Intelligent deformable 
models attempt to model the cognitive abilities of human operators (by 
including higher cognitive layers). 

9.3.1 Knowledge and Knowledge Representation 
An initial phase pertaining to the quest for knowledge about the MIA problem 
in hand may be fundamental. Such knowledge includes: knowledge about 
structures (physical properties, appearance, etc.), relations between structures 
(inter-object knowledge may include properties about correlations in 
deformations, variations in relative positions, physical connections, etc.), and 
other expert knowledge about the segmentation problem (which features are 
the most stable, where a tumor is likely to appear, etc.). We believe that the 
acquisition and appropriate representation of high-level knowledge, about 
anatomical organs and structures and their interactions, is of high importance 
for developing IDM for medical image analysis. Knowledge representations 
should be flexible and intuitive facilitating future additions of information of 
different natures. Standardized methods for describing the properties of the 
objects, and how they relate to their appearance in images could be necessary. 
Mechanisms for converting high-level knowledge (possibly from natural 
language) to a set of lower level rules or guidelines may also be needed. 

9.3.2 Deformable ‘Anatomical’ Models 
Another challenging and vital phase would involve creating models of organs 
and structures that embrace as much of the available relevant knowledge as 
possible. Once created, such models may define artificial anatomical organs. 
For example a complete artificial model of the anatomy (not physiology) of the 
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brain would be made up of different sub-structure models (lateral ventricles, 
corpora callosa, etc.). Properties of the real structure may need to be embedded 
in the model, such as geometrical and physical composition and properties, 
resulting in quantitative description of shape (along with shape variability and 
deformability), pose, texture, and properties relating to structure interaction. 
Additionally, landmark anatomical features should be built into these models to 
ensure proper matching upon segmentation (intrinsic point correspondence). 

9.3.3 Use of Knowledge 
The deformable organisms we created were responsible for a specific 
anatomical structure and the plans they followed to locate the structures were 
fixed. Genetic algorithms, reinforcement learning, or other learning methods 
may be used, which utilize prior anatomical knowledge and information about 
the deformation capabilities of the models, in order to find optimal 
segmentation schedules. Lowering the dimensionality of the model parameter 
search space can be obtained by providing sets of standardized, natural, and 
intuitive deformation and image-search behaviors (or subroutines). These 
behaviors would be described by few intuitive parameters, which in turn 
activate lower level physical and geometrical shape deformations. Image 
search may involve matching according to statistical/prior knowledge of shape 
variation, appearance (intensity-based features), geometrical features (e.g. 
points, curves such as crest lines, curvature, etc.), anatomical landmarks, and 
shape (or deformation) features (e.g. a bend at a certain scale in a certain 
location). The behavior of multiple interacting models may be achieved via  
modeling physical connections, sending and receiving force activation 
commands, statistical correlation, etc. A layered architecture provides the 
option of adding higher levels of cognitive modeling, reasoning, and planning. 
 Different scientific disciplines may be related to the creation and function 
of IDM: Geometry- and physics-based modeling may be used for shape 
representation and deformation. Image processing and scale space theory can 
be utilized through the IDM focus attention mechanism; the IDM filters out 
sensory information superfluous to its current behavioral needs by, for 
example, only considering the image data at a certain level in scale space. 
Image analysis and pattern recognition may be utilized during image search 
behaviors. For example, feature detection and classification techniques are 
used during IDM search for an anatomical landmark described by, say, high 
edge curvature and bright texture intensity. Optimization methods may be used, 
for example, for finding the best set of deformation parameters that fit a part of 
the model to image data. Machine learning may be utilized for constructing the 
IDM segmentation schedule. For example, human experts are first trained to 
manipulate the shape of the model via its ‘deformation handles’. The experts’ 
actions (deformation parameters) during manually segmenting a structure, 
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along with image features in the vicinity of the model, are input to 
segmentation schedule learning algorithms (via e.g. GA, RL). Artificial 
intelligence can be utilized at the IDM cognitive layers. Computer graphics 
techniques may be used for visualization and producing realistic anatomic 
structure behaviors. For example, deformable anatomical models (IDM with 
higher level cognitive layers turned off) are manipulated by hand for training 
on a medical procedure (surgical simulation). 
 From another viewpoint, the field of medical imaging is continuously 
under advancement and possibly new and improved imaging technologies and 
devices may be developed that use prior knowledge to generate images of 
(partially) segmented structures, by making use of the physical/chemical 
properties of the structures under investigation. 
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Appendix A. Deformable Models 

A.1. Energy-Minimizing Deformable Models - Snakes 
Active Contour Models or snakes, the classical deformable model, gained large 
acceptance as a segmentation tool due to the way snakes consider the boundary 
as a single, inherently connected, and smooth structure. In short, ACM are 
energy minimizing parametric contours with smoothness constraints deformed 
according to image data. ACM are designed to be semi-automatic tools 
supporting intuitive interactive mechanisms for guiding the segmentation 
deformations. Some of the problems of the classical snakes are initialization 
sensitivity and lack of high level automatic control that cause the snakes, for 
example, to leak or latch to erroneous edges. Without manual intervention one 
runs the snake and ‘hopes for the best’. In this appendix, the mathematical 
formulation of snakes, dynamic deformable models, numerical simulation, and 
probabilistic deformable modes are treated.  
 In active contour models, a contour is initiated on the image and left to 
deform in a way that, firstly, moves it toward features of interest in the image 
and, secondly, maintains a certain degree of smoothness in the contour. In 
order to favor this type of contour deformation, an energy term is associated 
with the contour and designed to be inversely proportional to the contour’s 
smoothness and to the model fit to desired image features. The deformation of 
the contour in the image plane will change its energy, thus one can imagine an 
energy (potential) surface on top of which the contour moves (in a way that 
resembles the slithering of a snake and hence the name) seeking valleys of low 
energy. 
 A snake in the continuous spatial domain is represented as a 2D 
parametric contour curve � � � � � �� �,s x s y s�v  where � �0,1s � . In order to 
fit the snake model to the image data we associate energy terms with the snake 
and aim to deform the snake in a way that minimizes its total energy. The 
energy of the snake, � , depends on both the shape of the contour and the 
image data ( , )I x y  reflected via the internal and external energy terms, � �� v  
and � �� v , respectively. The total snake energy is written as 
 � � � � � �� � �� �v v v . (A.1) 
The internal energy term is given as 

 � � � � � �

1 22 2

1 2 2
0

w s w s ds
s s

�

� �
� �

� �
�

v vv . (A.2) 
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The weighting functions 1w  and 2w  control the tension and flexibility of the 
contour, respectively. The external energy term is given as 

 � � � �� �

1

0

P s ds� � �v v . (A.3) 

For the contour to be attracted to image features, the function � �,P x y  is 
designed such that it has minima where the features have maxima. For 
example, for the contour to be attracted to high intensity changes (high 
gradients) we can choose 
 � � � �� �, ,P x y c G I x y

�
� � � �  (A.4) 

where G I
�
�  denotes the image convolved with a smoothing (e.g. Gaussian) 

filter with a parameter �  controlling the extent of the smoothing (e.g. variance 
of Gaussian). 
 The contour � �sv  that minimizes the energy �  must, according to the 
calculus of variations1, satisfy the vector-valued partial differential (Euler-
Lagrange) equation 

 � � � �� �

2 2

1 22 2w w P s
s s s s

� �� � � � ��� � �� 	�� ���� � � �
 �

v v v 0 . (A.5) 

A.2. Dynamic Deformable Models 
In order to attack the problem of tracking non-rigid time-varying objects, 
deformable models were extended to dynamic deformable models. These 
describe the shape changes (with time) in a single model that evolves through 
time to reach a state of equilibrium where internal forces representing 
constraints on shape smoothness balance the external image forces and the 
contour comes to rest. In this case the time-varying (dynamic) contour is 
written as � � � � � �� �, , , ,s t x s t y s t�v  where � �0,1s �  and the corresponding 
constraint equation becomes 

� � � � � � � �� �
2 2 2

1 22 2 2 ,s s w w P s t
t s st s s

� �
� �� � � � � � ��� � � � � 	�� ���� � �� � �
 �

v v v v v 0  (A.6) 

where � �s�  and � �s�  are mass and damping densities, respectively. 
 

                                                 
1 Calculus of variations is a branch of mathematics concerned with the problem of 
finding a function for which the value of a certain integral is either the largest or the 
smallest possible. Many problems of this kind are easy to state, but their solutions 
commonly involve difficult procedures related to differential calculus and differential 
equations [EB]. 
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A.3. Discretization and Numerical Simulation 
Polygonal snake. For a polygonal snake contour the discrete version of (A.6) 
can be written as 
 � � � � � � � � � �� �1 2i i i i it t w t w t P t� � �� ����� � � �� �v v v v v 0�� �  (A.7) 
where � � � � � �� �� � 1,2, ,,i i i i Nt x t y t

�

�v
�

 are the nodes of the snake polygon. 

t  is used here as the discrete time variable and i  is the snake node index. v�  
and v��  are the first and second derivates of v  with respect to t . ��v  and ����v  
are second and fourth derivates of v  with respect to i . Setting the mass density 
to zero2 ( 0i� �� � ) and the damping density to a constant ( i� �� ), we 
rewrite equation (A.7) for simulating the deformations of the discrete snake as 
 � � � � � �tensile flexural external

i i i it t t� � �� � �v F F F�  (A.8) 
where �  and �  are weighting factors. � �tensile

i tF  is a tensile force (resisting 
stretching) acting on node i  at time t  and is given by 
 � � � � � � � �1 12tensile

i i i it t t t
� �

� � �F v v v  (A.9) 
� �flexural

i tF  is a flexural force (resisting bending) and is given by 
 � � � � � � � �1 12flexural tensile tensile tensile

i i i it t t t
� �

� � �F F F F  (A.10) 
� �external

i tF  is an external (image-derived) force. It is derived in a way that 
causes the snake node to move towards regions of higher intensity gradient in 
the image and is given by 
 � � � � � �� �,external

i i it P x t y t� �F  (A.11) 
where � � � �� �,i iP x t y t  is given in (A.4). 
 In addition to the above forces, an inflation force, � �inflation

i tF , is 
commonly utilized allowing, in many cases, the initialization of the snake 
farther away from the target boundary. � �inflation

i tF  is given by 
 � � � �� � � �,inflation

si i i it F I x y t�F n  (A.12) 
where � �i tn  is the unit vector in the direction normal to the contour at node i  
and the binary function 

 � �� �
� �1  ,

,
1

if I x y T
F I x y

otherwise

� ����� �
����

 (A.13) 

links the inflation force to the image data, and T  is an image intensity 
threshold. Consequently equation (A.8) becomes 

                                                 
2 In static shape recovery problems not involving time-varying data, the mass density 
is often set to zero, resulting in simplified equations of motion and a snake that comes 
to rest as soon as the internal forces balance the external forces [McInerney2000]. 
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 � � � � � � � �tensile flexural external inflation
i i i i it t t t� � �� � � �v F F F F� . (A.14) 

The equation used for updating the position of any snake node i  can be 
obtained from (A.14) by using a finite difference derivative approximation 

� � � �� �i i it t t t� �� � �v v v� , where t�  is a finite time step, yielding  

� � � � � � � � � � � �( )tensile flexural external inflation
i i i i i i

t
t t t t t t t� �

�

�
�� � � � � �v v F F F F . (A.15) 

Moreover, certain forces can be designed (or derived from energy terms) in a 
way that the resulting contour deformations will reduce its energy, thus 
yielding a smooth contour located along desired nearby image features such as 
edges. For example, another way to derive the tensile snake force above is by 
first defining an energy term that increases with increased stretching and then 
seeking the force that causes the snake node to change its position to a location 
that minimizes this energy. For example, the tensile energy is chosen to be  

� � � � � � � � � �� � � � � �� �
2 22

1 1 1
1 1

N N
tensile

n n nn n n
n n

E t t t x t x t y t y t
� � �

� �

� � � � � �� �v v  (A.16) 

and the tensile force � �tensile
i tF  acting on � �1i t �v  according to (A.15) and 

updating its position to � �i tv  is defined as in 
 � � � � � �1 tensile

i i it t k t� � �v v F  (A.17) 
where k  is a constant. To find � �tensile

i tF , we find � � � � � �� �,i i it x t y t�v  
that minimizes � �tensileE t . To find � �ix t  we write � � � � 0tensile

iE t x t� � � , 

which gives 

� � � �� �

� �

� � � �� � � � � �� �
� �

1
2

221
1 1 0

i

n n
i ii in i

i i

x t x t
x t x t x t x t

x t x t

�

�

� ��

� �
� � � �

� �
� �

�
, (A.18) 

which can be rewritten as 
� � � � � � � � � � � � � � � �� �2 2 2 2

1 1 1 12 2
0i i i ii i i i

i

x t x t x t x t x t x t x t x t
x

� � � �
� � � � � �

�
�

 (A.19) 

yielding � � � � � �1 14 2 2 0i i ix t x t x t
� �

� � �  and hence 
� � � � � �� �1 1 2i i ix t x t x t

� �
� �  and similarly for � �iy t  we get 

� � � � � �� �1 1 2i i iy t y t y t
� �

� � . This finally gives 

 � � � � � �� �1 1 2i i it t t
� �

� �v v v . (A.20) 

Substituting (A.20) into (A.17) and solving for � �tensile
i tF  gives 

 � � � � � � � �1 12tensile
i i i it t t t

� �
� � �F v v v . (A.21) 

In a similar manner other energy terms can be defined and forces derived (or 
designed). 
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Shape parameters. A vector of shape parameters u  can also be used to 
represent the continuous geometric contour model ( )sv . These shape 
parameters are generally associated with some local-support basis functions 
(such as splines and finite elements) or global-support basis functions (such as 
Fourier bases). In this case the discrete form of ( )� v  may be written as 

 1( ) ( )
2
TE � � � �u u u u  (A.22) 

where �  is called the stiffness matrix and ( )� u  is the discrete version of the 
external potential ( ( ))P sv . The contour parameters that minimize the energy 
function can now be obtained by solving the set of algebraic equations 
 � � ���u . (A.23) 
The motion equation for the contour (represented by u ) can be written as  
 � � � � � � ���u u u�� �  (A.24) 
where �  and �  are mass and damping matrices, respectively. 

A.4. Probabilistic Deformable Models 
A probabilistic formulation is an alternative view of deformable models. The 
deformable model can be fitted to the image data by finding the model shape 
parameters u  that maximize the posterior probability (maximum a posteriori 
or MAP solution) expressed using Bayes’ theorem as 

 ( | ) ( )( | )
( )

p I pp I
p I

�

u uu . (A.25) 

where ( )p u  is the prior probability density of the model shape parameters: a 
mechanism for probabilistic regularization. ( | )p I u  is the probability of 
producing an image I  given the parametersu : an imaging (sensor) model. 
( )p u  and ( | )p I u  can be written (in the form of Gibbs distribution) as 

 1( ) exp( ( ))p k� ��u u  (A.26) 
 2( | ) exp( ( ))p I k� ��u u  (A.27) 
where 1k  and 2k  are normalizing constants and ( )� u  is the discrete version of 
the internal energy ( )� v  and ( )� u  is the discrete version of the external 
potential ( ( ))P sv .  
 
Snakes segmentation examples (using adaptive inflation reversal and damping, 
see Section 2.2.1) are shown in Figure A.1-4. 
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(a) (b) 

  
(c) (d) 

Figure A.1. Snake segmentation progress from (a) to (d), of a 
synthetic image. 

 

   
(a) (b) (c) 

Figure A.2. Snake segmentation progress from (a) to (c), of a 
man made object. 
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(a) (b) (c) 

Figure A.3. Snake segmentation progress from (a) to (c), of a 
man made object. 

 
 
 

  
(a) (b) (c) (d) 

Figure A.4. Snake segmentation progress from (a) to (d) of a synthetic 
image. 

 





 

Appendix B. Active Shape Models 

This appendix presents an overview of the steps involved in generating a Point 
Distribution Model (PDM) and the use of Active Shape Models (ASM) for 
image search. 
 A representative training set of images that convey the shape variations 
we wish to study is collected. A number of landmarks, say L , are chosen to 
describe the training shapes [Cootes1992]. The driving principals governing 
the behavior of the variations of the training shapes can be found using 
Principal Component Analysis (Appendix C). An object shape is then 
represented by the sum of a mean shape and a linear combination of, say t , 
principal components, i.e., 
 � �x x Pb  (B.1) 
where x  is the vector of landmark coordinates, x  is the mean shape, P  is the 
matrix of principal components, b  is a vector of weighting parameters, also 
called shape parameters. x  and x  are each of length 2L .  P is 2L t�  and b  is 
a vector of length t . 
 Constraints are put on these weighting parameters to insure that only 
allowable shapes are produced, belonging to the Allowable Shape Domain 
(ASD). This model of the distribution of the landmarks points (or variation of 
the shapes) is referred to as the Point Distribution Model (PDM). 
 PDM are an essential component of Active Shape Models 
(ASM)[Cootes1995a], an image segmentation technique. In ASM, it is required 
to find the proposed movement of the landmarks of a current shape estimate to 
new and better locations. The gray level information (image data) is essential 
to finding such suggested movements. This implies that we need to model the 
gray level information and make such a model available during image search. 
This may be done by examining the intensity profiles at each landmark and 
normal to the boundary created by the landmark and its neighbors. Then the 
intensity profiles are used to derive a normalized intensity difference (gradient, 
or derivative) profile giving invariance to the offsets and uniform scaling of the 
gray levels [Cootes1993].  With L  landmarks representing each shape, N  
training shapes, and N  training images, we derive N  profiles for each 
landmark, one from each image, and calculate the mean profile for each 
landmark using 

 
1

1 N

j ij
iN �

� �y y  (B.2) 

where ijy  is the normalized derivative profile for the thj  landmark in the thi  

image and jy  is the mean normalized derivative profile for the thj   landmark. 
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 Given a new image, the basic idea is to start with an initial estimate, then 
examine the neighborhood of the landmarks aiming at finding better locations 
for the landmarks. The shape and the pose of the current estimate are hence 
changed to better fit the new locations of the landmarks while producing in the 
process a new acceptable or allowable shape. 
The pose parameters are first found by aligning the current estimate to the new 
proposed shape (as explained in Appendix D). The remaining landmark 
position modifications generally span 2L -dimensions, whereas the shape 
variations obtained from the model are only t-dimensional. A least-squares 
solution can be used to solve the following equation for the changes in shape 
parameters db  (with orthonormal column of P  we have T

�P P I ) 
 1( )T T Td d d d d�

� � � �x P b b P P P x P x  (B.3) 
where dx  is a vector containing the remaining landmark position 
modifications, db  is a vector of changes in the shape parameters, and P  is the 
matrix of principal components. 
 Finally, the shape variations are limited to obtain an acceptable or 
allowable shape within the ASD by applying the constraints on the shape 
parameters. With this step we complete a single iteration. In a similar fashion, 
we obtain new estimates and re-iterate until we assume convergence (when the 
parameter changes are insignificant). 
 



 

Appendix C. Principal Component Analysis 

Given a set of multivariate observations, applying Principal Component 
Analysis (PCA) generates a new set of variables called the principal 
components. Each principal component is a linear combination of the original 
variables (referred to as a Standardized Linear Combination). All the principal 
components are orthogonal to each other so there is no redundant information. 
The principal components as a whole form an orthogonal basis for the space of 
data. The first principal component is a single axis in space. When projecting 
each of the observations on this axis, the resulting values form a new variable. 
The variance of this variable is the maximum along all possible choices of this 
axis. The second component is another axis in space, perpendicular to the first.  
Projecting the observations on this axis generates another new variable. The 
variance of this variable is the maximum among all possible choices of this 
second axis. The dimension of both the full set of principal components and the 
original set of variables is the same. 
 In many applications it can be assumed that the first few principal 
components describe a high percentage of the total variance of the original 
data. Hence, the dimension of the model can be reduced and the variations 
described by a smaller number of variables; that is performing what is referred 
to as “parsimonious summarization”. For more on PCA the reader is referred to 
[Mardia1995, Bradley1997, Jackson1991]. 
 Given an observation matrix 1 2 m

� �� � �� �
X x x x�  of size n�m, 

where m is the number of observations and n is the number of variables in each 
observation, i.e. each row of the observation matrix is a variable and each 
column is an observation. The principal components are the eigenvectors of the 
covariance matrix of the observations. The covariance matrix is given by 

 
1

1 ( ) ( )
1

m
T

i i
im
�

� � �

�
�S x x x x  (C.1) 

where  

 
1

1 m

i
im �

� �x x . (C.2) 

The unit eigenvectors kp , 1 k n� � , of S  are such that 
 k k k��Sp p  (C.3) 

where k�  is the thk eigenvalue of S , 1k k� �
�

�  , and 1T
k k �p p . 

 Assuming that the observations form a hyper-ellipsoid in n  dimensions, 
then the eigenvectors of the covariance matrix corresponding to the largest 
eigenvalues describe the longest axes of the ellipsoid, and thus the most 
significant modes of variations in the variables used to derive the covariance 
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matrix. The variance explained by each eigenvector is equal to the 
corresponding eigenvalue. We can approximate the n  dimensional ellipsoid by 
a t dimensional ellipsoid, and thus take the first t  eigenvectors as the first t  
principal components. 
 Another method to obtain the principal components is by performing a 
Singular Value Decomposition (SVD) of the observation matrix centered 
around its mean [Jackson1991]. First, we center the observation matrix X  
around its mean and obtain 
 Tc � � �X X x 1  (C.4) 
where 1 1 ... 1T � �� � �� �

1  and is of length m . Then we perform an ‘economy 

size’ SVD of 1
1

c
m �

X  and obtain , ,U S V  

 � �
1( ,0)

1
c, , svd

m
�

�

U S V X  (C.5) 

such that 
 Tc � � �X U S V  (C.6) 
where the principal components are the columns of the V  matrix, and the 
eigenvalues of the covariance are contained inS . 
 



 

Appendix D. Aligning 2D Shapes 

Given two shapes, 1x  and 1x , represented by landmarks, i.e. 

1 11 11 12 12 1 1
T

L Lx y x y x y� �� � �� �
x �  and 

2 21 21 22 22 2 2
T

L Lx y x y x y� �� � �� �
x �  

we want to find the rotation angle, � , the scaling factor, s , and the value of  
the translation in both directions, ( , )x yt t , that will align 2x  to 1x . This is done 

by mapping 2x  to 2 21 21 22 22 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ
T

L Lx y x y x y� �� � �� �
x �  using  

 � �� �2 2ˆ ,M s �� �x x t  (D.1) 
where � �� �2,M s � x  is a rotated and scaled version of 2x  (by �  and s  

respectively) and 
T

x y x y x yt t t t t t� �� � �� �
t �  is the translation vector 

of length 2L . The weighted distance between the two shapes 1x  and 2x̂ , is 
given by: 
 2

2 1 2 1ˆ12
ˆ ˆ( ) ( )T Td � � �x x W W x x  (D.2)  

where W  is an appropriate weighting matrix. Substituting (D.1) in (D.2) we 
have 
 � �� � � �� �

2
2 1 2 1ˆ12

( , ) ( , )T Td M s M s� �� � � � �x t x W W x t x . (D.3) 

For the rotation, scaling and translation of a single coordinate 2 2( , )k kx y  we 
have 

 � �
2 2 2

2 22

ˆ cos( ) sin( )
, .

ˆ sin( ) cos( )
x xk k k

y yk kk

x x s s xt t
M s y yt ty s s

� �

�
� �

� � �� � � � � �� � � �
� �� � � � � �� � � �� � � �� �� � � � � �� � � �� 	 � 	� � � 	 � 	� �� 	 � 	

. (D.4) 

By denoting 

 
cos( )

sin( )
x

y

a s

a s

�

�

� ��
��
�
�� ���

 (D.5) 

we have  

 
2 2

22

ˆ
.

ˆ
x y xk k

y x ykk

x a a x t
a a y ty

�� � � �� � � �
� � � �� � � �� �
� � � �� � � �� 	 � 	� � � 	� 	

. (D.6) 

Substituting (D.6) for all coordinates of 2x̂ in  (D.1) we obtain 
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�� �
� � � �
� � � �
� � � �
� � � � � ��� �� � � � � �� � � � �� �� � � � �	� � � � �� � � � �� � � � �� � � �� �� �� � �� �
� � � �
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�
�
�
�
�

, (D.7) 

which can be put in the form 
 2ˆ �x Az  (D.8) 
where 

 

21 21

21 21

22 22

22 22

2 2

2 2

1 0

0 1

1 0

0 1

1 0

0 1
L L

L L

x y

y x
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y x
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y x

�� �
� �
� �
� �
� �

�� �
� �
� ��
� �
� �
� �
� �

�� �
� �
� �
� �� �

A
� � � �

 (D.9) 

and 

 
T

x y x ya a t t� �� � �� �
z . (D.10) 

Substituting (D.8) in (D.2) we get 
 2

1 1ˆ12
( ) ( )T Td � � �Az x W W Az x . (D.11) 

Solving for z  that minimizes 2
ˆ12
d , which is the least squares solution to 

1�WAz Wx , [Strang1988], we get 
1 1

1 1(( ) ( )) ( ) ) ( )T T T T T T� �

� �z WA WA WA Wx A W WA A W Wx . (D.12) 
Once z  is known, s  and �  can be found since (refer to (D.5) and (D.10)) 

 sin( ) tan( )
cos( )

y

x

a s
a s

�
�

�
� � . 

This gives 

 arctan( )y
x

a
a

� �  (D.13) 

and with cos( )xa s ��  we have 

 
cos(arctan( ))

x
y

x

as a
a

� . (D.14) 
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In [Cootes1995a] a different route is followed for aligning two shapes 1x  and 

2x . Here, (D.3) is differentiated with respect to the variables xa , ya , xt , and 
yt  and then arriving at the following set of four linear equations, which can be 

solved for the same variables using standard matrix methods, 

 

2 2 1

2 2 1

2 2 1

2 2 2

0

0

0

0

x

y

x

y

X Y W Xa
Y X W a Y

tZ X Y C
tZ Y X C

�� � � �
� �� � � �
� �� � � �
� �� � � �
� � �� � � �
� �� � � �
� �� � � �
� �� � � �� � �� � � �� � � �

 (D.15) 

where 

 
1

L

i k ik
k

X w x
�

� �  (D.16) 

 
1

L

i k ik
k

Y w y
�

� �  (D.17) 

 � �2 2
2 2

1

L

k k k
k

Z w x y
�

� ��  (D.18) 

 
1

L

k
k

W w
�

� �  (D.19) 

 � �1 1 2 1 2
1

L

k k k k k
k

C w x x y y
�

� ��  (D.20) 

 � �2 1 2 1 2
1

L

k k k k k
k

C w y x x y
�

� ��  (D.21) 

and 
 � �1 1 2 2 L Ldiag w w w w w w�W � . (D.22) 

 
Another approach [Cootes1997] for aligning two shapes, 1x  and 2x , assuming 
they are centered at the origin (i.e. 1 2 0T T

� �1 x 1 x ) is by finding only the 
scaling factor and the rotation angle to minimize � �� �2 1,M s � �x x . This 
yields 
 2 2 2s a b� �  (D.23) 
and 
 � �arctan b a� �  (D.24) 

where 
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� �1 2

2
2

T

a �

x x
x

 (D.25) 

and 

 
� �2 1 2 1

1
2

2

L

k k k k
k
x y y x

b �

�

�

�

x
. (D.26) 

 The previous discussion dealt only with the problem of aligning one 
shape to another. However, the training stage of ASM requires aligning all the 
set of shape examples. The following algorithm is used for aligning the set of N 
shapes to each other [Cootes1995a]: 
 

Align each shape to one of the shapes
(e.g. first shape)

Calculate the mean of the aligned shapes.

Normalize the pose of the resulting mean shape.

Realign each shape to the normalized mean.

Convergence?

Yes

Done! Shapes aligned.

No

 
The pose of a shape is described by its scaling, rotation, and translation, with 
respect to a known reference. Normalization of the pose implies (a) scaling of 
the shape so that the distance between two points becomes a certain constant, 
(b) rotating the shape so that the line joining two pre-specified landmarks is 
directed in a certain direction, and (c) translating the shape so that it becomes 
centered at a certain coordinate. Normalization is carried out in order to force 
the process to converge. Otherwise the mean shape may translate or expand (or 
shrink) indefinitely. Convergence is established if the shapes are not changing 
more than a pre-defined threshold. 
 



 

Appendix E. Aligning Spatio-Temporal Shapes 

Aligning ST-shapes amounts to rotating, scaling and translating the shape in 
each frame of the ST-shape by an amount that is fixed within one ST-shape. 
Scaling of time could also be performed, but here we assume that the frame-
rate and the total sequence acquisition time is the same for different ST-shapes, 
thus there is no need for aligning in the temporal dimension. We first solve the 
problem of aligning only two ST-shapes then we will explain how to align all 
the ST-shapes. 
 Given two vectors, 1S  and 2S , representing two ST-shapes we would 
like to find the rotation angle: � , the scaling factor: s , and the value of the 
translation ( , )x yt t  that will align 2S  to 1S . The two ST-shapes are written as 
(from Section 5.2.1). This gives 

� �1 111 111 121 12111 11 12 12 1 1 1 1 1 1, , , , , , , , , , , , , , ,L L L L F F FL FLS x y x y x y x y x y x y� � � �� �
 (E.1) 

� �2 211 211 221 22121 21 22 22 2 1 2 1 2 2, , , , , , , , , , , , , , ,L L L L F F FL FLS x y x y x y x y x y x y� � � �� �
 (E.2) 

where each vector contains the ( , )x y  coordinates of L  landmarks in F  
frames. For aligning 2S  to 1S , 2S  is mapped to  

� �2 211 211 221 22121 21 22 22 2 1 2 1 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , , , , , , , ,L L L L F F FL FLS x y x y x y x y x y x y� � � �� �
 (E.3) 

Using 
 � �� �2 2

ˆ ,S M s S�� � t  (E.4) 
where 

� �� �2,M s S�  is a rotated then scaled version of  each coordinate of 2S  (by �  

and s  respectively) and ...
T

x y x y x yt t t t t t� �� � �� �
t  is the translation 

vector and is of length 2FL . The weighted distance between the two ST-
shapes 1S  and 2̂S  in the 2FL  (x  and y  coordinates of L  landmarks in F  
frames) dimensional space is given by 
 2

2 1 2 1ˆ12
ˆ ˆ( ) ( )T Td S S S S� � �W W  (E.5) 

where  
11 11 21 211 1 2 2 1 1( , , , , , , , , , , , , , , , )x y x yLx Ly Lx Ly F x F y FLx FLydiag w w w w w w w w w w w w�W � � �� �

(E.6) 
The elements of W  can be chosen to reflect our trust in each coordinate. The 
identity matrix can be used for equal weighting of all coordinates. Substituting 
(E.4) in (E.5) we have 
 � �� � � �� �2

2 1 2 1ˆ12
( , ) ( , )T Td M s S S M s S S� �� � � � �t W W t . (E.7) 

For the rotation (around the origin), scaling and translation of a single 
coordinate 2 2( , )kl klx y  we have 
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and denoting 
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we have 
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Now, we can rewrite 2̂S  as 
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or 
 2̂S � Az  (E.11) 
with 
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and 
 � �, , , T

x y x ya a t t�z . (E.13) 
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Substituting (E.11) in (E.5) we obtain 
 2

1 1ˆ12
( ) ( )T Td S S� � �Az W W Az . (E.14) 

Now, we can solve for z  that minimizes 2
ˆ12
d , which is the least-squares solution 

to 1S�WAz W , [Strang1988], 
1 1

1 1(( ) ( )) ( ) ) ( )T T T T T TS S� �

� �z WA WA WA W A W WA A W W  (E.15) 
Once z  is known, s  and �  can be found since ((E.9) and (E.13)) 
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which gives 

 arctan( )y
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� �  (E.17) 

and with cos( )xa s �� we have 

 
cos(arctan( ))
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x

as a
a

� . (E.18) 

 
The following algorithm is used for aligning the set of N  ST-shapes: 
 
1. Choose an arbitrary ST-shape and align all the others to it. 
2. Calculate the mean of the aligned ST-shapes. 
3. Normalize the resulting mean ST-shape. 
4. Re-align each ST-shape to the normalized mean. 
5. Check for convergence. If convergence is not reached go to step 2. 
6. Done! ST-shapes aligned. 
 
Notes: 
 
(a) The pose of an ST-shape is described by the scaling, rotation, and 

translation of all its shapes with respect to a known reference. 
(b) One way to normalize the mean ST-shape is by aligning it to the first ST-

shape. 
(c) Normalization is carried out in order to force the process to converge, 

otherwise the mean ST-shape may translate or expand (or shrink) 
indefinitely. 

(d) Convergence is established if the ST-shapes are not changing more than a 
pre-defined threshold. 

(e) The mean of a set of ST-shapes is found by 
1

1 N

i
i

S S
N

�

� � . 

 





 

Appendix F. Skeleton Pruning for Medial Axis 
Extraction 

This appendix describes the method we developed and performed to extract the 
primary medial axis from expert segmented images (binary images) of the 
corpus callosum (CC). Extracting the medial axis is necessary for the 
representation and the statistical analysis of the CC shapes for both the medial-
based shape profiles (Chapter 6) and for the physics-based (spring-mass) mesh 
model (Chapter 7).  
 Using the binary expert segmented image as input, we first extract the 
skeleton using a standard technique (morphological operations to remove 
pixels on the boundaries of objects without allowing objects to break apart). 
Then, we find all branches by looking for terminal points or terminal pixels. 
We find the terminal pixels by utilizing six 3×3 terminal detection masks (see 
Table F.1 and first row of Figure F.1) at each image pixel of the binary image 
containing the skeleton. 

Table F.1. Six terminal detection masks. 
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(a) (b) (c) (d) (e) (f) 

Figure F.1. The 24 terminal detection masks. Each 
column shows the four rotated versions of a single mask.

 
For example in the mask in Table F.1(a), the mid-point corresponds to a 
terminal point pointing upwards. Three other masks are generated from each of 
the six masks by applying 90 degrees rotations totaling 24 masks (Figure F.1).  
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For example, rotating mask (a) by 90 degrees counterclockwise will give a 
similar terminal-detection mask used for detecting terminal points that are 

directed to the left: ( )

0 0 0
0 1 1
0 0 0

� �
� �
� �
� �

. 

 Each terminal point detected on the skeleton is considered to be the tip of 
one branch. Now, each branch is pruned with all other original branches still 
existing until the branch is so short that no terminal point is found.  Pruning 
one branch after removing a previous branch gives unacceptable results since 
the location where the pruning of a single branch stops depends on the where 
the others are.  All locations of the pruned pixels are collected in a matrix and 
then removed from the original skeleton image when all branches are pruned. 
In some structures (unlike the corpus callosum case) we may need to specify a 
minimum primary medial axis length of the (minimum length of the main 
branch). 
 



 

Appendix G. Physics-Based Shape Deformation Tool 

This appendix complements Chapter 7 by presenting details about the 
implementation of a tool for physics-based shape deformations in MATLAB. 
 In addition to the properties of the nodes (mass, position, velocity, and 
acceleration) and springs (terminal nodes, Hook’s spring constant, damping 
constant, and rest length) mentioned in Section 7.2, other options or properties 
are implemented for example: nodes can be im/movable, boundary/medial 
(inner) node, un/freeze-able, and springs can be un/accept-able.  
 The un/freeze-able property of a node determines whether or not the node 
is affected by the accept action: an action that sets the velocity, acceleration, 
and forces of a node to zero. The un/accept-able property of a spring 
determines whether or not the spring is affected by the freeze action: an action 
that sets the rest length of a spring to the value of its current length. The setting 
of the values of these two properties was found to be useful for “sculpting” the 
shape of different mesh models (for manual segmentation, for example) by 
simulating a heated plastic like behavior of the mesh or parts of it. 
 Other application dependent forces can be incorporated, for example 
gravity (weight) and wall (or image boundary) reflection (with the choice of 
the restitution coefficient) were implemented. Others such as universal 
gravitation, electrostatic forces, etc. can also be easily added. Rotation and 
translation forces can also be set to decay at a certain rate and last for a number 
of iterations. 
 The physics-based shape deformation tool was equipped with other 
features such as: the choice of explicit or semi-implicit [Tu1996, pp. 41-52] 
Euler dynamic simulation with a settable time step, pausing/running the time 
integration simulation, random and rectangular grid generation of mesh nodes, 
wiggle action and auto-wiggle that generate random forces at the mesh nodes, 
capturing movie sessions, loading and restoring node positions or mesh 
models. 
 The tool was also equipped with a facility to run pre-scheduled 
deformations by reading them from a script file. We ran simple synthetic image 
segmentation examples where nodes sense image searching for certain features 
and resulting mismatch values evaluated during the scheduled deformations, 
followed by a decision-making phase. The schedules (script files) can include 
both learned (e.g. main modes of variation) and unlearned deformations 
commands (e.g. bend, stretch, etc.) applied at different scales and locations. A 
list of possible physics-based deformations scripting language commands is 
given in Table G.1. An example use of the commands in a script file is shown 
in Table G.2. Figure G.1 shows the graphical user interface of the tool 
developed. Figure G.2 shows sample iteration results during a scheduled 
segmentation of a synthetic object.  
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Table G.1. Physics-based deformations, scripting language commands. 
STRETCH from (x,y)
<tttt> stretch_xy--- <prm> <x> <y> <dx> <dy> <rad> <mag>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 6.
x,y the center of deformation (infleunce region measured w.r.t.

this point)
dx,dy specify stretching direction
rad radius of influence
mag magnitude of stretching

STRETCH from node
<tttt> stretch_nd--- <prm> <node> <dx> <dy> <rad> <mag>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 5.
node this node will be the center of deformation (infleunce region

measured w.r.t. this point)
dx,dy specify stretching direction
rad radius of influence
mag magnitude of stretching

STRETCH from node in direction of nodes
<tttt> stretch_ndnd- <prm> <node> <dirnd1> <dirnd2> <rad> <mag>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 5.
node this node will be the center of deformation (infleunce region

measured w.r.t. this point)
dirnd1/2 specify stretching direction,i.e. dirnd1 ---> dirn2
rad radius of influence
mag magnitude of stretching

BULGE from (x,y)
<tttt> bulge_xy----- <prm> <x> <y> <rad> <mag>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 5.
x,y the center of deformation (infleunce region measured w.r.t.

this point)
node this node will be the center of deformation (infleunce region

measured w.r.t. this point)
rad radius of influence
mag magnitude of stretching

BULGE from node
<tttt> bulge_xy----- <prm> <node> <rad> <mag>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 3.
node this node will be the center of deformation (infleunce region

measured w.r.t. this point)
rad radius of influence
mag magnitude of stretching

SCALE
<tttt> scale-------- <prm> <amount>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 1.
amount amount of scaling
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ROTATE
<tttt> rotate------- <prm> <amount> <decay> <duration>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 3.
amount amount of scaling
decay rotation force decay factor (0-1)
durtion how many iterations should the force stay active

TAPER from xys
<tttt> taper-------- <prm> <x1> <y1> <x2> <y2> <x3> <y3> <x4> <y4> <stretch
1> <stretch 2>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 10.
x1-x4 springs with nodes in the quadrilateral defined by (x1,y1)-

(x4,y4) will
y1-y4 be shrunk or extended according to their distance from the

side 1-2
stretch1 amount of stretching (or shrinking) for springs close to side

1-2
stretch2 amount of stretching (or shrinking) for springs far away from

side 1-2

TAPER from nodes
<tttt> taper-------- <prm> <n1> <n2> <n3> <n4> <stretch 1> <stretch 2>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 6.
n1-n4 springs with nodes in the quadrilateral defined by the nodes

n1-n4 will be shrunk or extended according to their distance
from the side 1-2

stretch1 amount of stretching (or shrinking) for springs close to side
1-2

stretch2 amount of stretching (or shrinking) for springs far away from
side 1-2

BENDING from xys
<tttt> taper-------- <prm> <x1> <y1> <x2> <y2> <x3> <y3> <x4> <y4> <x5> <y5>
<x6> <y6> <amount>
tttt: timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 13.
x1-x6 springs with nodes in the quadrilateral 1234(xy's) will shrunk

and those
y1-y6 in 3456 will be elongated
amount amount of bending

BENDING from nodes
<tttt> taper-------- <prm> <n1> <n2> <n3> <n4> <n5> <n6> <amount>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 6.
n1-n6 springs with nodes in the quadrilateral 1234(nodes) will be

shrunk and those in 3456 will be elongated
amount amount of bending

FREEZING (F,A,V set to zeros)
<tttt> freeze------- <prm>
tttt timer value, after how many iterations this command runs
prm number of parameters to follow, should be set to --> 0.
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STORING (store nodesXY)
<tttt> storeXY------ <prm>
tttt timer value, after how many iterations this command runs
prm number of parameters to follow, should be set to --> 0.

RETRIEVING (load nodesXY)
<tttt> retrieveXY--- <prm>
tttt timer value, after how many iterations this command runs
prm number of parameters to follow, should be set to --> 0.

FIXING NODES (or releasing)
<tttt> fixNodes----- <prm> <fix/rls> <nodes>
tttt timer value, after how many iterations this command runs
prm number of parameters to follow, should be set to --> 2.
fix/rls fix or release nodes, 1:fix, 0: rls
nodes vector of nodes to fix or release.

MATLAB COMMAND
<tttt> MATLABcmd---- <prm> <cmd>
tttt timer value, after how many iterations this command runs
prm number of parameters to follow, should be set to --> 1.
cmd MATLAB command.

SENSE
<tttt> sense-------- <prm> <info>
tttt timer value, after how many iterations this command runs
prm number of parameters to follow, should be set to --> 1.
info info is a cell array that contains {filter,sensor

nodes,source} source can be: 'image' or 'grad'

DECIDE
<tttt> decide------- <prm> <func>
tttt timer value, after how many iterations this command runs
prm number of parameters to follow, should be set to --> 1.
info info is a cell array that contains the decision maker function

name {'dm_fname'} that takes sensed data as input and returns
the best deformation: function cmdNum=dm_fname(sensData)

ACTUATE SPRINGS
<tttt> actsprings--- <prm> <sprnums> <fracts>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 2.
sprnums vector of spring numbers
fracts vector of amount of change in rest lengths e.g. 1 means no

change, 2 doubles and 0.5 halves the rest lengths

ACTUATE SPRINGS RELATIVE
<tttt> actspringsrl- <prm> <sprnums> <refspr> <fracts>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 3.
sprnums vector of spring numbers to be actuated
refspr vector of reference spring numbers
fracts vector of amount of change in rest lengths as a fraction of

the rest length of reference springs

ACTUATE SPRINGS ABSOLUTE
<tttt> actspringsab- <prm> <sprnums> <lengths>
tttt timer value, after how many iterations this deformation starts
prm number of parameters to follow, should be set to --> 2.
sprnums vector of spring numbers to be actuated
lengths vector of length values
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SETTING FREEZABLE NODES (or unfreezable)
<tttt> frznodes----- <prm> <frz/unfrz> <nodes>
tttt timer value, after how many iterations this command runs
prm number of parameters to follow, should be set to --> 2.
frz/unfrz freezable or unfreezable nodes, 1:frz, 0: unfrz
nodes vector of nodes to set the freezable property.

SETTING ACCEPT-ABLE SPRINGS (or un-accept-able)
<tttt> accsprings--- <prm> <acc/unacc> <springs>
tttt timer value, after how many iterations this command runs
prm number of parameters to follow, should be set to --> 2.
acc/unacc accept-able or un-accept-able nodes, 1:acc, 0: unacc
nodes vector of springs to set the accept-able property

 
 
 

Table G.2. Physics-based shape deformation, example schedule (script file).
0000 bend_nd------ 06 1 2 3 4 5 6 1.3
0040 bend_xy------ 13 100 50 200 50 200 150 100 150 100 200 200 200 1.3
0040 taper_xy----- 10 50 200 50 50 200 50 200 200 1.2 0.8
0030 taper_nd----- 06 1 2 3 4 1.2 0.8
0030 scale-------- 01 1.8
0030 rotate------- 03 80 0.9 30
0030 translate---- 04 50 80 0.9 30
0030 bulge_xy----- 04 100 100 30 2
0030 bulge_nd----- 03 4 30 2
0030 stretch_xy--- 06 100 100 40 40 30 3
0030 stretch_nd--- 05 4 40 40 30 .2
0010 stretch_ndnd- 05 3 6 1 30 3
0000 storeXY------ 00
0000 freeze------- 00
0030 retrieveXY--- 00
0000 fixNodes----- 02 1 [1 2 3 10 13]
0000 MATLABcmd---- 01 a=3;a+5,clear a;
0000 sense-------- 01 {fspecial('log',5),[1 2 6 8 10],'image'};
0010 decide------- 01 {'dm_synth2'}
0010 actsprings--- 02 [1 2 3 6 7 8] [1.1 1.2 1.1 .8 .8 .7]
0010 actspringsrl- 03 [53 58 63] [51 56 61] [1.0 1.0 1.0]
0010 actspringsab- 02 [53 58 63] [10 12 10]
0010 accsprings--- 02 1 [2 4 5]
0010 frznodes----- 02 1 [1 2 3 9 11]
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Figure G.1. Graphical user interface of the 
physics-based deformation tool. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure G.2. Sample iteration results during a scheduled 
segmentation of a synthetic object (from (a) to (h)). 
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