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Abstract

We introduce the STEAM DTI analysis engine: a whole brain voxel-based analysis technique for the examination of
diffusion tensor images (DTIs). Our STEAM analysis technique consists of two parts. First, we introduce a collection of
statistical templates that represent the distribution of DTIs for a normative population. These templates include various
diffusion measures from the full tensor, to fractional anisotropy, to 12 other tensor features. Second, we propose a voxel-
based analysis (VBA) pipeline that is reliable enough to identify areas in individual DTI scans that differ significantly
from the normative group represented in the STEAM statistical templates. We identify and justify choices in the VBA
pipeline relating to multiple comparison correction, image smoothing, and dealing with non-normally distributed data.
Finally, we provide a proof of concept for the utility of STEAM on a cohort of 134 very preterm infants. We generated
templates from scans of 55 very preterm infants whose T1 MRI scans show no abnormalities and who have normal
neurodevelopmental outcome. The remaining 79 infants were then compared to the templates using our VBA technique.
We show: (a) that our statistical templates display the white matter development expected over the modeled time period,
and (b) that our VBA results detect abnormalities in the diffusion measurements that relate significantly with both the
presence of white matter lesions and with neurodevelopmental outcomes at 18 months. Most notably, we show that
STEAM produces personalized results while also being able to highlight abnormalities across the whole brain and at the
scale of individual voxels. While we show the value of STEAM on DTI scans from a preterm infant cohort, STEAM can
be equally applied to other cohorts as well. To facilitate this whole-brain personalized DTI analysis, we made STEAM
publicly available at http://www.sfu.ca/~bgb2/steam.

Keywords:

Diffusion Tensor Imaging, Preterm Infants, Brain Development, Statistical modeling, Voxel-based Analysis, Outcome
Prediction

1. Introduction

Worldwide, more than one in ten infants are born pre-
maturely (earlier than 37 weeks gestational age) and are
at high risk of adverse neurodevelopmental outcome [1].
This abnormal neurodevelopment is believed to be due to
white matter dysmaturation or injuries acquired over the
period of the infant’s neonatal intensive care [2, 3]. As a
result, there has been a strong effort in identifying these
white matter abnormalities early. The earlier these abnor-
malities are detected, the sooner clinicians can intervene
and either improve a preterm infant’s neurodevelopmental
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health, or set up appropriate rehabilitative care to aid in
that child’s growth and maturation.

Diffusion tensor imaging (DTI) provides us with the
ability to probe both white matter organization and in-
tegrity, potentially making it a valuable tool to identify
such white matter abnormalities. That potential has been
examined in recent studies with various links being identi-
fied between diffusion measures (like fractional anisotropy
[FA] and mean diffusivity [MD]) and neurodevelopmental
outcome [4, 5, 6, 7, 8, 9, 10, 11]. These group-based stud-
ies have provided us with a further understanding of how
DTI-based abnormalities could indicate future neurode-
velopmental delay, but they stop short of applying those
conclusions to individual cases. As a result, there’s still the
open question of, “Given the DTI scan of a single preterm
infant, what cues can we extract from that one scan to
gauge whether that infant will have an adverse neurode-
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Figure 1: Popular preterm infant DTI analysis techniques presented according to the amount of the brain included in the analysis (coverage),
the resolution at which the statistical analysis is undertaken (scale), and whether the analysis technique is group-based or personalized. Note
that our proposed techinque, STEAM, is the only technique that provides a personalized, fine-scale analysis of the whole brain.

velopmental outcome?”

The question of subject-specific outcome projection has
been examined in structural MRI with observer rating sys-
tems being proposed based on the number and size of white
matter lesions [12] or on the presence of intraventricular
hemorrhages (IVH) [13]. However, these techniques are
specific to structural MRI and do not harness the po-
tential DTI has of providing additional diagnostic infor-
mation. Alternatively, an argument could be made that
recent DTI group studies, like those cited earlier, iden-
tify where to look and what to look for. Unfortunately if
an experimental group contains a wide variety of abnor-
malities (compared to a control group), that experimental
group variance makes it a challenge to identify statistically
significant differences in group studies. This limitation in
group studies is a concern with preterm infants as recent
studies have noted that adverse neurodevelopmental out-
comes in preterm infants can manifest themselves in multi-
ple ways [2]. This intra-group variability in preterm infant
group-level analysis might be masking certain outcome-
predictive image cues. To capture this intra-group vari-
ability and determine its relevance, we require a technique
that produces a personalized result. By identifying abnor-

mal diffusion measurements at the level of an individual
DTI scan, we would have the potential to identify and
examine the impact of variability within experimental or
control groups.

Our goal is to generate a subject-specific DTI analysis
technique which can flag brain regions with abnormal DTI
measurements that are indicative of future neurodevelop-
mental delay. Such an analysis technique can take on many
forms, as is evidenced by the presence of multiple compara-
ble group-based analysis techniques. Figure 1 summarizes
group-based analysis techniques, placing them according
to their scale (i.e., the spatial resolution at which the sta-
tistical analysis is performed) and their coverage (i.e., the
amount of the DTI scan that is analyzed). In terms of
scale, existing techniques range from computing statistics
at the level of each scan (e.g., connectome mapping [14]),
to the level of each segmented region (e.g., tractography-
based [8] or atlas-based [11]), to the level of individual
voxels (e.g., Tract-based Spatial Statistics [7]). In terms
of coverage, we see techniques that cover small regions
of interest (e.g., ROI-based analysis [9, 10]), to the white
matter skeleton (e.g., Tract-based Spatial Statistics [7]),
to the whole brain (e.g., Voxel-based analysis [4]).
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Different choices of scale and coverage result in algo-
rithms with different strengths. While a fine scale analy-
sis technique has the ability to accurately localize specific
abnormalities, a coarse scale analysis technique can de-
tect small but widespread changes in the brain [15]. Simi-
larly, a full-brain analysis is valuable in an exploratory set-
ting where the location of structural abnormalities are not
known a priori. On the other hand, a localized analysis al-
lows for the examination of specific brain structures with-
out introducing potential confounding factors from the rest
of the brain.
In our context of subject-specific DTI screening, we

would prefer an exploratory analysis technique that can
localize potential abnormalities. Covering the whole brain
would be valuable as recent ROI-based studies in sub-
cortical white matter [10] and cortical gray matter [16]
suggest that not only are patterns of maturation observ-
able within those regions on a DTI scan, but also that
deviation from the normal maturation pattern could be in-
dicative of adverse neurodevelopmental outcome. Adding
those regions to the more frequently studied deep white
matter would provide us with greater potential to iden-
tify clinically valuable abnormalities. Equally, analyzing a
DTI scan at the scale of its individual voxels would give us
a greater ability to identify and localize regions with ab-
normal diffusion measurements. This advantage features
prominently in the voxel-based analysis works of Aeby et
al. [4] and Gimenez et al. [17] where diffusion measure-
ments in small, but clinically important, brain regions were
identified as being related to neurodevelopmental outcome.
It is evident from Figure 1 that voxel-based analysis

(VBA) [18] provides the greatest coverage and finest scale
of analysis compared to other techniques. Using two
groups of scans, VBA spatially aligns all scans from both
groups, then computes statistical tests at each voxel, re-
sulting in a fine-scale, group-based, statistical analysis of
diffusion measurements over the whole brain. While VBA
is attractive due to its ability to maximize scale and cov-
erage, it is currently limited to group-based studies and
is susceptible to various design decisions in the analysis
pipeline [19, 20]. In particular, the choice of image regis-
tration algorithm, the size of the image smoothing kernel,
the choice of multiple comparison correction scheme, and
the decision of how to handle non-normally distributed
data can all impact the conclusions that one draws from a
VBA analysis [19]. As a result of these VBA susceptibil-
ities, one has to take care in setting up and documenting
a VBA pipeline.
With these points in mind, we desire the ability to per-

form a subject-specific analysis of a DTI scan in a similar
fashion to VBA while obtaining a reliable result that can
be related to neurodevelopmental outcome. It is towards
this goal that we introduce STEAM: Statistical Template
Estimation for Abnormality Mapping. The STEAM tech-
nique consists of two parts. First, we generate a collec-
tion of 3D statistical template images that capture, at the
scale of each individual voxel, the distribution of diffusion

measurements for a group a preterm infants with normal
developmental outcome. This template collection acts as
our normative statistical model and can be computed of-
fline (i.e., during downtime) from a control group’s DTI
scans. Second, we use these statistical templates to per-
form VBA by spatially aligning a new DTI scan to the
corresponding template and applying single-sample statis-
tical tests. In this fashion, we are able - for the first time -
to compare a single preterm infant’s DTI scan to a norma-
tive preterm population and generate results at the level of
individual voxels. As part of this VBA-style analysis, we
provide a thorough review of what choices we make in our
analysis pipeline to ensure a reliable outcome for this form
of whole brain DTI analysis. We also provide the code
for STEAM, as well as our statistical templates, online to
those who wish to use this analysis technique1. Finally,
we show that our STEAM analysis engine - the incorpora-
tion of our preterm statistical DTI templates into a VBA
pipeline - can provide further insights into how abnormal
diffusion measurements can impact the neurodevelopment
of individual subjects, a benefit that existing analysis tech-
nique cannot provide.
The remainder of the paper is organized as follows. Sec-

tion 2 provides an overview of our STEAM analysis en-
gine, including the creation of statistical templates (in Sec-
tion 2.1), the voxel-based analysis (in Section 2.2), and the
generation of a full collection of DTI templates (in Sec-
tion 2.3). Section 3 provides an overview of the cohort we
scanned to validate this technique, the imaging parame-
ters we used, and the decisions made on which DTI scans
to include in the statistical templates. Section 4, we ex-
amine and validate STEAM by comparing our statistical
templates and VBA results to existing literature. Finally,
in Section 5, we conclude with a discussion on the suitabil-
ity of VBA for preterm DTI analysis and the potential for
this technique in future studies.

2. Methods: The STEAM Analysis Engine

At a high level, STEAM works by producing a statistical
model for the DTI scans of healthy preterm infant brains,
then compares a new DTI scan to that model. We refer to
the model creation step as statistical template estimation

(i.e., the STE in STEAM) while we call the model compar-
ison step abnormality mapping (i.e., the AM in STEAM).
We present both steps in the following sub-sections be-
fore rounding out STEAM by addressing different diffusion
measurements (e.g., FA, MD, etc...) and different image
scales.

2.1. Statistical Template Estimation

To facilitate subject-specific VBA for preterm infants,
we first establish a statistical reference model for the nor-
mative preterm DTI brain scan. We provide this model

1http://www.sfu.ca/~bgb2/steam
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Figure 2: Flow diagram of the template creation procedure of Guimond et al. [21]. The subject’s scans are aligned to a given target image and
averaged. The corresponding image transformations are inverted, averaged, then applied to the average image to adjust the template to an
unbiased shape and size. Multiple iterations are then done to reduce registration error. Each step in the pipeline is colour-coded by section,
with the image alignment (yellow) discussed in Section 2.1.1, the model fitting (red) discussed in Section 2.1.2, and the bias correction steps
(blue) discussed in Section 2.1.3.

through the construction of population-specific statistical
templates. These templates are computed offline from a
collection of DTI scans from a normative control group, re-
sulting in a succinct statistical model of a normal preterm
infant population.

The templates are generated using a DTI-extended ver-
sion of the scalar image atlas-building technique of Gui-
mond et al. [21]. An overview of the technique is presented
in Figure 2. The technique of Guimond et al. involves three
basic steps: (a) aligning all given scans to a chosen tar-
get image T ; (b) computing, at each voxel x, the mean
M(x) and (co-)variance S(x) of the image data, and (c)
transforming the resulting mean and (co-)variance images
to an “average” frame of reference that is not biased by
the choice of the initial target image T .

2.1.1. Image alignment

The template creation procedure of Guimond et al. be-
gins with a sample set of DTI scans, W = {I1, · · · , Ik},
from a control group and the objective of spatially align-
ing all scans to the same frame of reference. In order to
begin this alignment process, a scan from the group is se-
lected as our initial target image T and all other DT images
Ii(i ∈ [1, k]) are registered to the target using the state of
the art in DT image registration techniques. While the
choice of target introduces a bias on brain shape and size,
we discuss how to correct for that bias in Section 2.1.3.

The registration is performed by independently aligning
each DTI scan Ii to the chosen target image T in two steps.
First, we perform an affine registration using FSL’s Linear
Image Registration Tool (FLIRT) [22, 23] to remove any
pose or scale differences between the given image Ii and
the target T . The affine transformation obtained from this

registration step was one that maximized the normalized
mutual information between the FA of the given image
Ii and that of the target T . Thus, this registration step
aligns each image to the target image as best as possible
without non-linearly warping the images themselves.

The affine registration is then followed by a deformable
registration using DT-REFinD [24]: a full tensor ver-
sion of the deformable demons algorithm [25]. The re-
sulting deformation from DT-REFinD minimizes the log-
Euclidean [26] sum-squared difference between the given
tensor image Ii and the target T . We relaxed the smooth-
ness parameters for the DT-REFinD registration (using
σdef = 1, σupdate = 0.0, max. step length = 2.0 vox-
els [24]) as they were found, by qualitative inspection, to
give good results over a variety of ventricle sizes. This reg-
istration step introduces non-linear warping to the sample
DTI scans Ii(j ∈ [1, k]) in order to better align them to the
target image T . Note that DT-REFinD operates using the
full diffusion tensor and not a measure, like FA, that is de-
rived from the tensors. The use of the full diffusion tensor
in image registration has been shown to significantly im-
prove registration accuracy [27] over the use of individual
tensor features.

2.1.2. Voxel-wise Model Fitting

Once all DTI scans have been anatomically aligned, we
proceed with fitting a multivariate Gaussian distribution
to the tensor data at each voxel. The choice of Gaussian
distribution here is equivalent to the commonly-used t-test
in standard VBA frameworks and comes with the same
assumptions of normalcy on the image data.

It has been well established that tensors do not form
a vector space [28] and so algebraic operations on ten-
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sors are not guaranteed to give a tensor as a result. Due
to this constraint, we model the tensor data in the log-
Euclidean space, thereby ensuring that we respect the
manifold of positive semi-definite 2nd order tensors [26].
The log-Euclidean mean tensor image M is computed as

M(x) =
1

k

k∑

i=1

logm (φi ◦ Ii(x)) . (1)

where φi is the concatenation of the affine and non-rigid
deformations for the scan Ii, and matrix logarithm func-
tion logm(·) is used to map the tensors to log-Euclidean
space. The log-Euclidean tensor covariance image S(x) is
computed as well, though with the limited number of im-
ages commonly used in preterm DTI analysis studies, we
rely on the shrinkage approach of Schäfer and Strimmer to
get a more reliable estimate of the voxel-by-voxel covari-
ance matrices than the maximum likelihood estimator can
provide [29]. Note that the mean and covariance images
are kept in the log-Euclidean space throughout this work
to ensure that the tensors are manipulated properly.
As each multivariate Gaussian distribution is fit at each

voxel, it becomes important to record whether the log-
Euclidean tensors at a voxel are indeed well represented
by a multivariate Gaussian distribution. Therefore, we
employ a Henze-Zirkler multivariate normalcy test at each
voxel to determine the probability that the given log-
Euclidean tensors were obtained from a multivariate Gaus-
sian distribution [30]. These probabilities are captured in
an image, P , for each template and can then be taken into
consideration when performing VBA. We will discuss how
P can be used while performing VBA in Section 2.2.1.

2.1.3. Removing Target Image Bias

Once the Gaussian distributions are fit at each voxel,
the resulting mean and covariance images are still in the
reference space of the chosen target image T . Therefore,
the choice of target image impacts the size and shape of
the brain in the resulting mean and covariance images. In
order to remove this bias to the target, it is necessary to
deform both the mean imageM and covariance image S so
that the brain shape and size in both images more closely
resembles the shape and size of the average brain of the
population.
As given by Guimond et al., the target image bias cor-

rection can be computed from the computed deformations
φj (j ∈ [1, k]):

φ̄−1(x) =
1

k

k∑

i=1

φ−1
i (x) (2)

where φ−1
i is the inverse of the deformation that warps

image Ii to the target. By inverting those deformations,
we obtain warps that deform the target towards each in-
dividual sample image Ii. Averaging these inverted defor-
mations generates the correction warp φ̄−1 that deforms
the template towards an “average” brain shape and size.

Figure 3: STEAM centers around a 3D statistical template model-
ing the DTI scan of a healthy preterm infant brain. This template
consists of the three 3D images seen on the left: a mean image M , a
covariance image S, and a normalcy p-value image P . To conserve
space, we will refer to a 3D statistical template using the stacked
visualization on the right.

The correction warp is applied to the mean image M to
obtain a new target image T

T = φ̄−1 ◦M (3)

and the atlas-creation process then repeats itself, using
this new target, in order to remove any errors that may
be caused by the registration algorithm limited ability
to match to a target image far from the average brain
shape and size. The template-creation procedure is re-
peated three times as this number of iterations has been
empirically shown to be enough for the algorithm to con-
verge [21, 27]. By doing this correction, the initial choice
of target image T does not bias the final template [21].
Note that the computation of the covariance image S is
only required for the final iteration when the bias correc-
tion steps have been applied and so it does not need to be
corrected as the mean image is in (3).
Together, the mean image M , covariance image S, and

p-value image P , form a single statistical template for the
given normative population. An example of a statistical
template is visualized in Figure 3. Note that the tem-
plate provides a distribution of the diffusion tensors at
each voxel as well as a measure of how trustworthy those
distributions are, resulting in a full statistical description
of what a normal preterm infant brain looks like on a DTI
scan.

2.2. Abnormality Mapping

Our statistical template provides us with a model of how
the preterm infant brain should look on an early DTI scan.
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Figure 4: The proposed analysis pipeline for VBA. A new DTI scan is aligned to the STEAM statistical template, then values at each voxel
are compared to the Gaussian distributions in the template using a χ

2-test. The voxels whose tensors are significantly different than their
corresponding Gaussian distribution, after multiple comparison correction, are identified and visualized.

Such a model becomes valuable in its ability to assess the
normality of a newly-obtained preterm DTI scan. This
new scan can be aligned to that template and voxel-by-
voxel statistical tests can be done to identify regions of the
brain where the measured diffusion is significantly different
from what we see in “normal” preterm infant population.
This notion of aligning scans and detecting outliers at a
voxel-by-voxel level is what underpins the concept of VBA.

The VBA framework consists of two main tasks: im-
age alignment and voxel-by-voxel comparisons (Figure 4).
Typically, VBA is done by aligning images from both the
experimental and control groups, then performing a paired
t-test (or T 2-test in the case of multivariate data) at each
voxel to identify group differences [18]. In our case, we al-
ready have our statistical template as a normative model.
As a result, we propose aligning individual scans to our
template and performing single-sample statistical tests to
identify voxels with significantly abnormal diffusion. By
performing the VBA in this way, we are uniquely able to
produce a subject-specific abnormality map that highlights
where the diffusion abnormalities are. We are also able to
shift the majority of the time-consuming registration steps
to the template creation process, a process which can be
run offline.

Given a new DTI scan Itest, our VBA process begins
by aligning it to the mean image M in our statistical tem-
plate. This image alignment step is performed in the same
manner as in Section 2.1.1. First, we perform an affine reg-
istration with FA images to align image Itest to the mean
image M of the template using FSL FLIRT [22, 23]. This
registration step is followed by a full tensor deformable reg-
istration using DT-REFinD [24]. As in the atlas-creation
step, these registration algorithms were selected and tuned
to make use of all the information in the diffusion tensor
during the image alignment process.

Once aligned to the template’s image space, we can per-

form voxel-by-voxel statistical tests to identify outliers.
For full tensor images we compute the Mahalanobis dis-
tance at each voxel x in log-Euclidean space:

d(x) =vec (logm (Itest(x))−M(x))T S−1(x)

vec (logm (Itest(x))−M(x)) (4)

where vec(·) is the matrix vectorization function. Note
thatM is already in the log-Euclidean space (as mentioned
in Section 2.1.2) and does not require matrix logarithm
transformation. Conceptually, the Mahalanobis distance
can be seen as a multi-dimensional version of a z-score:
a distance between a sample and a distribution’s mean,
divided by the variance of the distribution (in this case
captured by the inverse of S).

To identify outliers, we first assume the tensors in the
new scan Itest are from the same distributions represented
by the template. Under this assumption, the Mahalanobis
distances from (4) follow a Chi-squared distribution χ

2
p

with p = 6 degrees of freedom (as there are six unique ele-
ments in each tensor) [31]. If these Mahalanobis distances
fall outside the (1 − α)-quantile of the distribution χ

2
6,

then those distances are outliers of the distribution. For
these outliers, we can reject (with confidence 1−α) the as-
sumption that their log-Euclidean tensor values come from
the distributions described in the preterm infant statistical
template [31].

While this voxel-wise test above provides us with a way
of identifying statistical outliers, it comes with two ma-
jor caveats. First, it is possible that tensors at certain
voxels in our statistical template are unlikely to follow a
Gaussian distribution. For those voxels, the results of our
statistical test may be unreliable, which raises questions
about how those results should be reported. Second, we
are performing multiple statistical tests and we have to
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make our significance threshold α more stringent to ac-
count for these multiple comparisons. VBA results, like
the ones STEAM produces, are known to be susceptible
to these two design decisions [19], so we examine these two
points in greater detail and justify the decisions we make
with respect to both of them.

2.2.1. Addressing Non-Gaussian Data

When generating a statistical DTI template, we assume
that at each voxel, the distribution of diffusion measure-
ments can be modeled as Gaussian. In previous DTI VBA
studies, this has been shown not to be the case [19]. Con-
sequently, when creating the statistical templates, we test
for normalcy at each voxel and provided the probability of
the data being normally distributed through the image P

(see Section 2.1.2). We can then see if the diffusion data
at voxel x is normally distributed by checking whether
P (x) > α, where α is a multiple comparison corrected
significance threshold.
We should be wary of statistics computed at voxels

where P (x) < α as the normal distributions fit at these
voxel locations do not accurately represent the underlying
distribution of possible diffusion measurements. Depend-
ing on how conservative we want to be, we could discard
the statistics computed at these voxels, weight the con-
tribution of the statistics at these voxels by how likely
their data is to be normally distributed, or simply use the
statistics despite the lack of normalcy in the data at those
locations.

2.2.2. Multiple Comparison Correction

When performing multiple statistical tests, as we are
doing at each voxel in an image, there is always the poten-
tial that a certain fraction of voxel values will be marked
as outliers by chance. For example, if we select α = 0.05
for our Chi-squared Mahalanobis test above, then on av-
erage, 5% of the voxels in Itest will be marked as outliers
when they shouldn’t be. To address this phenomenon and
obtain a more reliable threshold for detecting outliers, we
can use various techniques to correct for multiple compar-
isons [32].
Generally, there is no consensus on how to perform mul-

tiple comparison correction [33]. Still, four techniques are
commonly seen in the VBA community: (a) Bonferroni
correction [34], (b) Gaussian Random Field Theory [35],
(c) False Discovery Rate [36], and (d) Permutation test-
ing [37]. The most conservative correction approach is
Bonferroni correction which assumes that the Mahalanobis
distances computed in (4) are independent from one voxel
to another. When performing VBA, this assumption is
overly strict as the values at image voxels are usually sim-
ilar to their neighbors [33]. As a result, Bonferroni cor-
rection is rarely used as it can miss certain outliers by
ignoring this neighborhood correlation.
Gaussian Random Field (GRF) Theory shares some sim-

ilarities with Bonferroni correction as it scales the signif-
icance threshold α by the number of independent statis-

tical comparisons. However, GRF theory assumes that
the neighboring image values follow a Gaussian-like pro-
file (i.e., smooth), thereby allowing us to more accurately
estimate the number of independent statistical compar-
isons [35]. Unfortunately, due to sharp transitions be-
tween narrow fiber tracts, the typical DTI scan is usually
not smooth enough for GRF theory to provide a notably
less conservative correction scheme than Bonferroni [33].
Smoothing the DT images with a Gaussian kernel would
alleviate this problem, but the amount of smoothing re-
quired to get a less conservative significance threshold is
relatively high (greater than 6 mm full width at half-max
Gaussian smoothing given our cohort size) [33]. Such ex-
tensive smoothing would also blur out narrow fiber tracts,
making it more difficult to localize abnormalities with our
statistical template2. For these reasons, GRF theory is ill-
suited to correct for multiple comparisons in DTI studies.
Permutation testing is popular for multiple comparison

correction when performing group studies as it makes few
assumptions about the relationships between input statis-
tics [37]. Instead, permutation tests computes statistical
group differences for various random permutations of la-
belings for the group members. The significance threshold
is then chosen from the distribution of these group dif-
ferences so that only a fraction (α) of the random group
label permutations were above this threshold. Permuta-
tion testing has become popular as it is based on distance
metrics and not any specific distribution. This condition
has allowed for some preprocessing of statistical maps as is
done in Threshold-Free Cluster Enhancement [38]. Unfor-
tunately, applying permutation testing in STEAM would
require maintaining two groups: one group containing only
Itest, and the other containing all the DTI scans used
to create the statistical template. Maintaining these two
groups may be cumbersome if the number of scans used to
create the template is large. Also, retaining the DTI scans
used for template creation leads to redundancy between
those scans and the template itself. For these reasons,
permutation testing is not ideal for multiple comparison
correction in STEAM.
As a result of the limitations of these other methods, we

use False Discovery Rate (FDR) to perform multiple com-
parison correction. Like permutation testing, FDR does
not make any assumptions on the relationships between
input statistics or on the smoothness of the images, yet
it is less conservative than Bonferroni correction or GRF
theory [36]. FDR also has the benefit of being applicable
to the single-sample statistical tests that are performed in
STEAM.
By taking into consideration multiple comparison cor-

rection, as well as non-Gaussian distributed data, the
STEAM analysis engine address two major caveats sur-
rounding voxel-based analysis, resulting in a technique

2Note that this GRF-based smoothing for multiple-comparison
correction is different from the scale-space smoothing discussed later
in section 2.3.2.
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Figure 5: A visualization of the various diffusion tensor measures for which we generated preterm infant statistical templates. Among these
measures are mean diffusivity (MD), the tensor shape measures (cl, cp, cs) defined in [39], fractional anisotropy (FA), log-Euclidean FA (LFA),
relative anisotropy (RA), each individual eigenvalue (λ1, λ2, λ3) of the diffusion tensor, radial diffusivity (RD), tensor norm (‖D‖F ), and
volume ratio (VR). Note that templates for all of these measures are computed at multiple spatial scales.

that can be used to identify abnormalities at the voxel
level in a single DTI scan.

2.3. Completing the Template Collection

While we have presented STEAM with respect to a full
tensor statistical template, it has been common to examine
preterm infant DTI scans using simpler features of interest
from the diffusion tensors, in particular FA and MD [4, 17].
It is also common in VBA to smooth the images being an-
alyzed in order to examine their content at different spa-
tial scales [20]. STEAM also provides this functionality
through an expansion of its statistical template collection,
a collection that we describe below.

2.3.1. Templates for Diffusion Features

While we described STEAM’s template-creation tech-
nique with respect to the full diffusion tensor image, the
same technique is used to generate statistical templates
for various tensor features including fractional anisotropy,
mean diffusivity, and all others shown in Figure 5. As
in the full tensor case, the DTI scans are aligned using
a combination of FSL FLIRT and DT-REFinD to obtain
the same deformations φi (i ∈ [1, k]) as in the full tensor
analysis. Once the scans are aligned, the scalar diffusion
feature (e.g., FA, MD) are computed from the aligned ten-
sor images φi ◦ Ii(i ∈ [1, k]). The model fitting step then
simplifies to computing scalar mean and variances at each
voxel, while using the Lilliefors test for normalcy at each
voxel [40]. The template bias correction is then computed
from the deformations φi (i ∈ [1, k]) in the same way as in
the full tensor case.
We refer to these individual scalar templates by their

mean image Mf , variance image Sf , and normalcy p-value
image Pf , where f is the tensor feature being modeled
(e.g., f = FA, or f = MD, etc...). STEAM can compute

statistical templates for 14 different diffusion features (in-
cluding the full log-Euclidean tensor), obtaining the mean,
(co-) variance, and p-value images shown in Figure 5.
When a new DTI scan needs to be analyzed on a specific

tensor feature of interest, STEAM performs the analysis
in a similar fashion to the full tensor case. The DTI scan is
aligned to the mean image of the full tensor template using
FSL FLIRT and DT-REFinD. Once aligned, we compute
the scalar diffusion feature (e.g., FA, MD) from the aligned
test image and compare it to the statistical template for
that feature. Note that since the same image registration
algorithms were used regardless of the choice of template,
each template should be anatomically aligned. The sta-
tistical test for the scalar images simplifies to the z-test
and the same multiple comparison correction is applied.
In this way, STEAM produces VBA results for individual
tensor features from a single DTI scan.

2.3.2. Templates for Different Image Scales

It has also been general practice in the VBA commu-
nity to smooth images before performing VBA. The ratio-
nale behind performing this smoothing is to (a) reduce the
number of false outliers identified due to misregistration,
(b) to make the image data at each voxel more likely to be
normally distributed, and (c) to introduce a spatial scale
to the analysis [20]. Unfortunately, it has been well noted
that different levels of smoothing can result in very differ-
ent conclusions being drawn from a VBA analysis [19, 20].
It has been suggested that when VBA is performed on
DTI scans, researchers should provide results for a range
of smoothing scales [20].
In order to accommodate different spatial scales, we ex-

pand STEAM to produce templates at various smooth-
ing scales. Specifically, Gaussian smoothing is applied to
the aligned images φi ◦ Ii(i ∈ [1, k]) prior to the compu-

8



192
Quality

DTI Scans

Presence
of WMI
on T1?

Presence
of IVH
on T1?

Bayley-III
Score
< 85?

PDMS-II
Score
< 85?

Control
Group

76 Scans

43 Scans 31 Scans 34 Scans 8 Scans
Experimental

Group
113 Scans

yes

no

yes

no

yes

no

yes

no

Figure 6: Exclusion criteria for the group of preterm infant DTI scans used to create the normative statistical templates. The number of
scans excluded by each criteria are listed below the corresponding criteria (WMI = white matter injury, IVH = intraventricular hemmorhage,
Bayley-III = Bayley Scales of Infant and Toddler Development, PDMS-II = Peabody Developmental Motor Scales). Excluded scans of
sufficient quality were used to validate the VBA aspect of STEAM. A more detailed description of that VBA test set is given with the
corresponding experiments in Section 4. Note that scans were included in the template only if the infant’s measures of neurodevelopment are
within 1 standard deviation of the normal mean (> 85). Further details on these exclusion criteria are given in Section 3.2.

tation of the mean and (co-) variance images described
earlier. STEAM can create templates smoothed with a
range of Gaussian filters whose full width at half max-
imum (FWHM) values have been seen in previous DTI
VBA literature [20]. When a new DTI scan Itest is ob-
tained for analysis, STEAM can smooth Itest with the
equivalent Gaussian function, then perform VBA at that
spatial scale in the same manner as described earlier. In
this fashion, STEAM can perform VBA and report results
across multiple spatial scales.
By introducing n spatial scales, and 14 different diffu-

sion features, a full STEAM analysis engine includes 14n
statistical templates, each of which include a mean, (co-)
variance, and p-value images as shown in Figure 5. These
additional templates give STEAM the added flexibility to
isolate specific diffusion abnormalities that manifest at dif-
ferent spatial scales.

3. Materials: Cohort and Imaging

To validate STEAM, we make use of an existing co-
hort of 195 premature newborns born between 24 to 32
weeks gestational age (GA) at the Childrens & Womens
Health Centre of British Columbia, 177 are described in
Chau et al. [10] and an additional 18 infants recruited
since that work was published. Cohort exclusion crite-
ria included 1) congenital malformation or syndrome; 2)
antenatal infection; or 3) large parenchymal hemorrhagic
infarction (> 2 cm) detected using head ultrasound scan-
ning. This prospective study was approved by the Univer-
sity of British Columbia Clinical Research Ethics Board.
The newborns enrolled in this cohort were evaluated with
MRI scans in the neonatal period (outlined below) and
had neurodevelopmental assessments at a corrected age
of 18 months with the Bayley Scales of Infant and Tod-
dler Development, Third Edition (Bayley-III) [41] and
the Peabody Developmental Motor Scales, Second Edition
(PDMS-II) [42]. The 3 composite scores (cognitive, lan-
guage and motor scores) of the Bayley-III have a mean of
100 and standard deviation of 15. The PDMS-II provides a

Table 1: Deomgraphics of the experimental and control groups for
the preterm infant cohort used in this paper to validate STEAM.
Experimental and control groups are defined in Section 3.2. P-values
are shown between the two groups. Note that there are no significant
differences in birth age, scan age, sex, or brain volume between the
experimental and control groups.

Cohort Control Experimental P-Value
Demographic Group Group

Number of Subjects 55 79 –
Number of Scans 76 113 –
Sex (M/F) 30 / 25 38 / 41 –
Avg. GA at Birth 28.3251 27.9127 0.2882
Avg. PMA at Scan 35.1952 35.2002 0.9390
Brain Volume (cm3) 286.25 269.83 0.3129

more sensitive assessment of motor function yielding gross,
fine and total motor scores with a mean of 100 and stan-
dard deviation of 15.

3.1. Magnetic Resonance Imaging

Of the 195 very preterm neonates, 170 were scanned
within the first weeks of life once they were clinically sta-
ble. One hundred and fifty-two (152) of these 170 infants
were scanned again at term-equivalent age, with 0.85 to
15.28 (7.98±3.32) weeks between scans. The resulting 322
diffusion MRI scans cover the age range of 27.86 to 46.42
(36.38±4.89) weeks post-menstrual age (PMA).
Our MRI studies were carried out on a Siemens (Er-

langen, Germany) 1.5T Avanto using VB 13A software
and included the following sequences: 3D coronal volu-
metric T1-weighted images (repetition time [TR], 36 ms;
echo time [TE], 9.2 ms; field of view [FOV], 200 mm; slice
thickness, 1 mm, no gap) and a multi-slice 2D axial EPI
diffusion MR acquisition (TR 4900 ms; TE 104 ms; FOV
160 mm; slice thickness, 3 mm; no gap) with 3 averages
of 12 non-colinear gradient directions, resulting in an in-
plane resolution of 0.625 mm. The DTI acquisition was
repeated twice, once with a diffusion weighting (b-value)
of 600 s/mm2 and once with a diffusion weighting of 700
s/mm2. The two DTI acquisitions were then combined
to create a single diffusion tensor image. The combined

9



Table 2: Demographics for the preterm infant cohort divided by age window for which we created a statistical template. Numbers are
provided for the control group first, followed by the experimental group, with the p-value (1-way ANOVA) of the group differences shown in
brackets. Note that there are significant age differences (highlighted in bold) between experimental and control groups for the second and
fourth-youngest statistical template age windows.

Demographics Template Post-Menstrual Age (PMA) Groups
control/exp (p-val) 28-31 weeks 32-36 weeks 37-40 weeks 41-45 weeks

Number of Subjects 24 / 28 22 / 43 16 / 23 14 / 17
Males - Females 12-12 / 16-12 12-10 / 21-22 9-7 / 13-10 8-6 / 7-10
Number of Scans 24 / 28 22 / 45 16 / 23 14 / 17
Avg. GA at Birth 27.39 / 27.69 (0.55) 29.31 / 27.83 (0.03) 28.05 / 26.97 (0.13) 28.40 / 29.76 (0.04)
Avg. PMA at Scan 29.92 / 30.11 (0.32) 32.84 / 33.86 (0.003) 38.92 / 39.13 (0.43) 42.90 / 43.02 (0.68)
Brain Volume (cm3) 169.54 / 177.57 (0.31) 220.92 / 240.05 (0.06) 388.08 / 336.87 (0.03) 445.23 / 430.92 (0.55)

diffusion weighted image set was preprocessed (i.e., eddy
current corrected and skull stripped) using the FSL Dif-
fusion Toolbox (FDT) pipeline3 and tensors were then fit
using RESTORE [43]: a weighted least-squares tensor fit-
ting algorithm implemented in the Camino toolkit4.
An experienced neuroradiologist (K.J.P.) reviewed the

resulting MR images for presence of white matter in-
jury (WMI), intraventricular hemorrhages (IVH), ven-
triculomegaly (VM), and poor image quality. The full
neuroradiological review was performed on the T1 images
using the following protocols. The presence of WMI was
identified using a system found to be predictive of ad-
verse neurodevelopmental outcome at 12 to 18 months of
age [12]. We noted IVH using the grading of Papile et
al. [13] and VM using the grading system of Cardoza et
al. [44].
We employ a high standard for image quality by visibly

checking for evidence of motion corruption and various
image artifacts discussed in Tournier et al. [45] and Gal-
lichan et al. [46]. To avoid corrupting our DTI analysis of
the whole brain, we included a scan in our study only if
the entire scan is free of all degradations. Of the 322 scans
we collected, 192 of them met that stringent criteria and
were included in this study. Of the 130 excluded scans, 42
we excluded due to excessive motion, 76 were removed due
to vibrational artifacts similar to those described by Gal-
lichan et al. [46], and the remaining 12 were removed due
to the presence of other artifacts described by Tournier et
al. [45].

3.2. Defining Experimental and Control Groups

To generate a set of statistical templates that capture
the range of “normal” brain development, we first must
define what criteria we use to decide whether an infant’s
DTI scan and neurodevelopmental outcome are normal,
then determine which scans in our cohort fit that criteria.
Those scans that fit these criteria will comprise our control
group from which our statistical templates will be built.
The full control group selection criteria is shown in Fig-

ure 6. Infants were included in the control group if their

3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
4http://cmic.cs.ucl.ac.uk/camino/

Figure 7: The distribution of DTI scans used to generate each sta-
tistical preterm infant template. Bars are color-coded based on the
age windows used for each template (see Section 3.2).

scores on all six composite measures of neurodevelopment
(Bayley-III and PDMS-II) where at least within 1 stan-
dard deviation of the normal mean (> 85). Of those in-
fants that met this criteria, we further excluded any in-
fants that showed they acquired brain injury, either white
matter lesions or intraventricular hemorrhage, on MRI (as
identified by the protocols described in Section 3.1). In
our cohort, we obtained 76 scans from 55 infants that sat-
isfied these criteria. The distribution by PMA of the DTI
scans in the control group is given in Figure 7. Full demo-
graphics of these infants are given in Table 1.

Given a control group consisting of 55 infants and 76
scans, we have the luxury to sub-divide our control group
according to PMA at time of scan. By performing this sub-
division, we are able to reduce the amount of variance in
our statistical templates that is caused by PMA, resulting
in a greater ability to identify statistical abnormalities.
We chose to sub-divide our control group into roughly 4-5
week time windows as highlighted by the different colors in
Figure 7. This sub-division allows us to maintain a similar
number of scans (i.e., similar statistical power) in each
time window while also optimizing the trade-off between
the number of scans per time window and the age-related
image variance within each window. Full demographics for
each sub-group are given in Table 2.

As can be seen in Table 2, the experimental and con-
trol sub-groups are generally similar to each other, with
only the four bolded comparisons showing significant dif-
ferences. As far as demographic differences across time
windows, we saw the control group for the earliest age win-
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Figure 8: Axial, coronal, and saggital slices of the mean color FA maps for our four preterm infant DTI templates. Note that all figures are
drawn with the same scaling so any change in size is due to brain development. Also note the template quality makes it easy to distinguish
major fiber tracts.

dow had a significantly lower GA at birth than the second
(32-36 weeks PMA, p = 0.0016) and fourth (41-45 weeks
PMA, p = 0.0459) age windows, but no other significant
differences were found between GA at birth for any pair of
templates (smallest p = 0.1112). No other significant dif-
ferences in demographics were found for the control groups
across time windows.

4. Experimental Results

Our proposed STEAM analysis engine contains two
steps: the creation of a normative statistical template col-
lection, and a VBA pipeline to identify areas of abnormal-
ity in a single DTI scan. The following sections present
results on both these steps, specifically how these results
compare with known anatomical findings as well as how
STEAM-generated results compare to existing single-scan
evaluations of preterm infants (e.g., [12]). We examine the
hypotheses that STEAM:

• Generates statistical templates that show the growth,
development, and inter-subject variability we would
expect to see in the normal preterm infant brain over
the examined time period.

• Generates subject-specific abnormality maps that can

be reliably interpreted and are consistent with a sub-
ject’s structural MR evaluation (e.g., [12]).

• Identifies brain abnormalities that relate to neurode-
velopmental outcome at a corrected age of 18 months.

• Identifies brain abnormalities that are separate to, yet
complement those, that can be identified on structural
MRI.

The results that follow support these hypotheses but
should not be considered a full clinical evaluation of
STEAM. Our goal is simply to show a broad proof of con-
cept.

4.1. Validation of Normative Statistical Templates

Our STEAM statistical template creation procedure
generated the four preterm DTI templates whose mean
images, M , are displayed in Figure 8. Qualitatively, the
templates displayed the expected anatomical organization
of major fiber tracts with the Genu, Splenium, Optic Ra-
diations, and Corticospinal Tracts clearly identifiable from
each mean image. Further, we see greater lateral growth of
these tracts as post-menstrual age increases, which agrees
with earlier DTI findings [11, 47, 48]. This lateral growth
is also consistent with histological findings that have iden-
tified a reduction of the subplate zone and an expansion
of the white matter over this period [49].
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Figure 9: Axial, coronal, and saggital slices of the FA coefficient of variation for our four preterm infant DTI templates. Note that as the
brain develops the inter-subject variability increases. Also, the variability is greater in the posterior part of the brain, suggesting greater
development in that part of the brain over this 28-45 week PMA time period.

We also saw increased contrast between the major fiber
tracts and the rest of the brain as gestational age increases.
This result was expected as the maturation of the ma-
jor fiber tracts during this period increases the FA within
those tracts [3]. This increase in FA contrast is also aided
by a decrease of FA in cortical and sub-cortical regions, a
decrease that is consistent with a decrease in the radial or-
ganization of neurons [48]. This FA decrease has also been
reported in an ROI-based study [16] and is likely due to
dendritic arborization of neurons in the subplate zone [50].
For each of our templates, we also examined the covari-

ance at each voxel to determine where we see the greatest
variability within the normal preterm infant brain. In par-
ticular, we examined the coefficient of variation images

c(x) =
σ(x)

µ(x)
(5)

where the standard deviation, σ at each voxel x is dis-
played as a fraction of the mean value µ. Figure 9 shows
a representative example: the coefficient of variation im-
ages for the FA templates. Qualitatively, we saw greater
variation in FA in the posterior portion of the brain, which
agrees with greater development of the occipital lobes dur-
ing this time period [51, 52]. This greater development in
the occipital lobes has also been shown in earlier DTI stud-
ies [14, 11, 48].

We further observed an increase in the coefficient of
variation over time, suggesting that the brain structure of
preterm infants becomes more diverse over time. This re-
sult agrees with the work of Brown et al. which showed in-
creased variability in connectome measures over the same
time period [14]. This result also agrees with the devel-
opment of sulci over this age period [53] and that sulci
have features that are unique to each individual [54]. We
note that this trend appears to be independent of age at
birth. Only the first template control group showed a sig-
nificantly lower distribution of birth age compared to other
templates (see Section 3.2), yet the coefficient of variation
increases across the four templates.

To avoid excessive clutter in this paper, we have
posted all our templates on the STEAM project website
(www.sfu.ca/~bgb2/steam) where they can be viewed on-
line (via a web-based 3D image viewer) and downloaded.
The observations identified here were generally consistent
across diffusion features, specifically the lateral growth of
white matter tracts, the decreased radial organization for
neurons in cortical regions, and greater variability in the
posterior region of the brain. The consistency of these
results with existing DTI and histological studies suggest
that our STEAM templates capture the expected growth
and variability previously identified in the normal preterm
infant brain over the examined time period.
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FA MD RD λ1

(a) Widespread STEAM-detected abnormalities identified in deep gray and white matter

MD FA

(b) Infant T1 rigidly-registered to template (c) Blended Images: Subject and Template Mean

(white matter lesions shown in red) (subject in purple, template in green)

MRI-based Scores Bayley-III Test Scores
(32 wks. PMA) (18 mo. corrected)

WMI [12] IVH [13] VM [44] Cognitive Motor
2 - Moderate 0 - Absent 1 - Mild 55 46

Figure 10: A case study of how STEAM can be used to identify DTI abnormalities and how those detected abnormalities compare to structural
MRI abnormalities and outcome. The results from STEAM’s voxel-based analysis for FA, MD, RD, and λ1 are shown in (a). These results
show abnormally high MD, RD, and λ1 over a large region encompassing deep gray and white matter. These results are consistant both with
the presence of white matter lesions on the infant’s T1 scan shown in (b) and the infant’s significantly reduced neurodevelopmal test scores
at 18 months corrected age (shown in the table above). The registration accuracy between the infant’s DTI scan at the STEAM statistical
template is shown in (c). We do see some misregistration around the posterior portion of the ventricles on the MD blended image, which is a
result of ventriculomegaly. However, this misregistration is small in comparison to the STEAM-detected DTI abnormalities. The combination
of all these results suggest that STEAM is identifying a true structural abnormality in this infant.

4.2. Subject-Specific Abnormality Maps: Proof of Concept

We further generated abnormality maps for the 113 DTI
scans in our experimental group by comparing them to the
STEAM templates of the appropriate postmenstrual age.
These 113 scans were analyzed using our VBA pipelines
for four common diffusion measures: fractional anisotropy
(FA), mean diffusivity (MD), radial diffusivity (RD), and
axial diffusivity (λ1). We focused on these four diffusion

measures as they have been the focus of many previous
preterm DTI studies [4, 10, 47, 55], allowing us to exam-
ine our results in the context of that earlier work. To
account for multiple imaging scales, we generated abnor-
mality maps for all scales from 0−8mm (at 1mm intervals)
and marked a voxel as abnormal if its value was signifi-
cantly different from the STEAM template on a majority
of image scales.
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FA MD RD λ1

(a) Widespread STEAM-detected abnormalities identified in sub-cortical gray and white matter

MD FA

(b) Infant T1 rigidly-registered to template (c) Blended Images: Subject and Template Mean

(white matter lesions shown in red) (subject in purple, template in green)

MRI-based Scores Bayley-III Test Scores
(29 wks. PMA) (18 mo. corrected)

WMI [12] IVH [13] VM [44] Cognitive Motor
3 - Severe 2 - Moderate 0 - Absent 110 67

Figure 11: A second case study of how STEAM can be used to identify DTI abnormalities and how those detected abnormalities compare
to structural MRI abnormalities and outcome. The results from STEAM’s voxel-based analysis for FA, MD, RD, and λ1 are shown in (a).
These results show abnormally high FA and λ1 in areas of cortical gray matter and superficial white matter on the left side of the brain.
These results are consistant with the presence of nearby white matter lesions on the infant’s T1 scan shown in (b) as well as the infant’s
significantly reduced motor test scores at 18 months corrected age (shown in the table above). The registration accuracy between the infant’s
DTI scan at the STEAM statistical template is shown in (c). While some of the abnormalities are around the cortex, there is no discernable
registration error in these regions. The combination of all these results suggest that STEAM is identifying a true structural abnormality in
this infant.

As a proof of concept, we present two notable cases to
highlight how STEAM-generated abnormality maps can
be interpreted and how they can be used to inform on
the presence of anatomical abnormalities. The first case
is shown in Figure 10. The STEAM-generated abnormal-
ity maps for the four diffusion measures are presented in
Figure 10(a) and show the presence of widespread abnor-
malities in MD, RD, and axial diffusivity. The infant’s

corresponding T1 scan was rigidly aligned to the template
space and is displayed in Figure 10(b). This infant’s T1
scan showed the presence of multiple small hyperintense
lesions, all of which were manually identified by a trained
expert and highlighted in red. Finally, Figure 10(c) show
the FA and MD images from the subject and the template
mean in the complementary colors of purple and green re-
spectively. The blending of these images results in shades
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of gray where the images match and highlights differences
between the aligned scans in one of the two image colors.
These blended images allow us to examine for the presence
of image registration errors that may impact the abnormal-
ity maps STEAM generates (e.g., neighboring green and
purple structures would imply misalignment. A more thor-
ough introduction to image blending can be found in [56]).
The infant’s T1 MRI scores, as well as their neurodevel-
opmental test scores at 18 months are shown in the table
at the bottom of Figure 10.
As an initial step in interpreting these STEAM-

generated abnormality maps, we looked for the possibility
of image registration errors. By examining Figure 10(c),
we do see purple regions around the posterior portion of
the ventricles, suggesting that, after aligning to the tem-
plate, the ventricles in the infant’s DTI scan remained
slightly larger than those in the template’s mean image.
This result is not surprising as this infant showed presence
of mild ventriculomegaly (VM) that, apparently, our image
registration techniques could not fully account for. Even
so, the misregistration is limited to a much smaller region
than the abnormalities present on the STEAM-generated
abnormality maps. These detected abnormalities extend
well beyond the periventricular region and into regions oc-
cupied by major white matter fiber tracts (e.g., splenium),
and those major tracts are well-aligned as evidenced in
the blended FA image in Figure 10(c). While misregistra-
tion would account for some of the detected abnormalities
near the posterior portion of the ventricles, it alone can-
not explain the widespread MD, RD, and axial diffusivity
abnormalities identified by STEAM.
Instead, the infant’s T1 scan provides some additional

clues that corroborate the abnormalities identified by
STEAM. Specifically, multiple hyperintense white matter
lesions appear scattered in the same areas as the abnormal-
ities identified by STEAM. It is believed that these lesions
are an indication of a more widespread diffuse white mat-
ter injury in the neighboring tissue [2]. The abnormalities
identified by STEAM match that description, suggesting
that we are capturing a greater extent of the diffuse white
matter injury than the lesions display on the T1 scan. This
interpretation also agrees with the low neurodevelopmen-
tal test scores obtained at 18 months as one would expect
that such widespread brain abnormalities would have a
profound impact on later neurodevelopmental outcome.
The STEAM-generated results for a second infant are

shown in Figure 11(a) along with their T1 scan in Fig-
ure 11(b), the blended FA and MD images in Figure 11(c),
and the infant’s T1 evaluation and neurodevelopmental
scores in the corresponding table. The STEAM results
suggest increased FA and axial diffusivity in the left occip-
ital lobe, the left frontal-temporal lobe, and in various cor-
tical regions. The blended MD image in Figure 11(c) shows
no notable image registration error, while the blended FA
image shows clear FA differences but none appear to be
due to anatomical misalignment (which would appear as
neighboring purple and green structures). The lack of reg-

istration error suggests that the abnormalities identified
by STEAM are indicative of anatomical abnormalities.

Comparing the STEAM abnormality maps to the in-
fant’s T1 scan, we see that the larger regions of STEAM-
detected abnormalities are in the proximity of a large white
matter lesion in the left hemisphere. This proximity sug-
gests a relationship between the lesion and the nearby FA
abnormalities that is consistent with previous findings [2].
Further, the increased FA in these parts of the subplate
zone suggest a reduced maturation of those regions, a re-
sult commonly seen in the presence of injury [48]. One
would hypothesize that the extent of these abnormalities
would predict neurodevelopmental outcome as reflected in
the lower than expected motor function at 18 months.

While these two cases show what abnormalities STEAM
captures at the level of a single scan, further insights can
be gathered by considering both scans together. First, we
note that these two scans show very different patterns of
abnormality despite the fact that both have T1 scans show-
ing white matter lesions and both have altered functional
outcomes at 18 months corrected age. If we performed
a group-based study where the experimental group con-
tained both of these infant’s scans, the best that study
would be able to do is identify brain regions where the over-
whelming majority of experimental group scans were dif-
ferent than the corresponding control group. That group
study would not capture potentially large intra-group dif-
ferences as displayed in these two cases.

Further, it is interesting to note that the infant in Fig-
ure 10 showed a greater amount of STEAM-detected ab-
normalities, as well as lower neurodevelopmental scores at
18 months, than the infant in Figure 11. The amount
of abnormality identified by STEAM in these two cases
agrees with their later neurodevelopmental outcome. The
same cannot be said for the scores obtained from the T1
scan. The T1 scan for the second infant (in Figure 11)
showed a greater presence of white matter lesions than the
first infant (in Figure 10), as well as presence of intraven-
tricular hemorrhage, yet the second infant showed better
on neurodevelopmental tests at 18 months corrected age.
While these results are only for two cases out of many,
it raises the question of whether the volume of STEAM-
detected abnormalities may be, in part, indicative of future
neurodevelopmental outcome. We examine the potential
of that abnormality-outcome relationship in the following
section.

4.3. Relating STEAM Abnormalities to Outcome

While STEAM can be used to generate personalized ab-
normality maps, the question remains as to whether the
abnormalities identified by STEAM are indeed meaning-
ful and clinically relevant. We saw in the previous section
that the volume of STEAM-detected abnormalities was in-
dicative of neurodevelopmental outcome for two selected
infants. Here, we examine whether that trend holds for
our cohort as a whole. As a proof of concept, we narrow
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(a) FA (b) MD (c) RD (d) λ1

Figure 12: Comparison of STEAM-detected abnormalities in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and
axial diffusivity (λ1) between infants with normal and abnormal motor development. P-values were computed using two-way ANCOVA
with sex, birth age, and brain volume included as covariates. Note that for all diffusion features except FA, the extent of STEAM-detected
abnormalities is significantly higher for the infants with abnormal motor outcome.

our goal to identifying whether the volume of STEAM-
detected abnormalities can be used to differentiate be-
tween infants with normal and abnormal motor outcomes.
Table 3 lists our cohort’s experimental group accord-

ing to Bayley Motor Score (18 months corrected age) and
PMA at scan. Within this experimental group, we iden-
tify three main sub-groups based on outcome: those with a
normal motor outcome (Bayley score > 85, highlighted in
green), those with a clinically abnormal outcome (Bayley
score ≤ 70, highlighted in red), and borderline cases (high-
lighted in yellow). To compare the volume of STEAM-
detected abnormalities between the normal and abnormal
groups, we first quantify the extent of STEAM-detected
abnormalities as,

Extent =
V olume of Abnormal Region (in voxels)

Brain V olume (in voxels)
(6)

so that the volume of STEAM-detected abnormalities is
normalized by the brain volume. We then hypothesize that
the extent of STEAM abnormalities should be significantly
higher in the abnormal group than in the normal group.
To test for this group difference, we perform a two-way

ANCOVA (analysis of covariance) with sex, age at birth,
and brain volume included as covariates. We note that
each of these three covariates have been identified as hav-
ing an impact on infant neurodevelopment [9, 57, 58, 59]
and we wish to isolate the effect of these covariates from
the group differences that STEAM may identify.
The two-way ANCOVA results are presented in the box-

plots in Figure 12 for the four most commonly studied
diffusion measures: FA, MD, RD, and λ1. For three of
the four diffusion measures, we saw a significantly higher
extent of STEAM-detected abnormalities in the abnormal
outcome group than in the normal outcome group (MD:
p = 0.0127, RD: p = 0.0126, λ1: p = 0.0067). In the
case of FA, the p-value of 0.0895 was not significant, but
was still small enough to suggest that a group difference
could exist depending on the cohort and on the template
settings. We discuss this point further in Section 5. Note

Table 3: The DTI scans used to test the relationship between our
voxel-based analysis and motor outcome at 18 months corrected age.
The number of scans are grouped according to post-menstrual age
and Bayley motor score. Scans with clinically abnormal motor out-
comes are highlighted in red while scans with normal motor outcomes
are highlighted in green. Borderline, or “low normal”, cases are high-
lighted in yellow.

Bayley Post-Menstrual Age (wks.) Scan
Motor Score 27-31 32-36 37-40 41-45 Total

> 100 5 8 7 3 23

86− 100 14 23 11 9 57

71− 85 7 7 3 5 22

≤ 70 2 7 2 0 11

Scan Total 28 45 23 17 113

that the experimental group does not include the scans
used to create the statistical templates, so the group dif-
ferences identified here are present despite of the fact that
the scans in the normal motor outcome group showed ab-
normalities that eliminated them from being used in the
templates themselves. Had our experimental group con-
tained scans that met our control group criteria, we hy-
pothesize that the group difference would be even larger.

With regard to the covariates of sex, age at birth, and
brain volume, we found no significant relationships be-
tween them and the extent of STEAM detected abnor-
malities (smallest p-value = 0.0880 for brain volume and
RD abnormalities, largest p-value = 0.8453 for birth age
and λ1 abnormalities). We believe that the lack of signifi-
cant results for these covariates is a result of the fact that
the templates do not differ along the dimensions of these
covariates. When generating the statistical templates, all
“healthy” scans are used equally and so the variability due
to sex, age at birth, and brain volume is incorporated into
the template itself, making it difficult to identify abnor-
malities related to those factors.

While the extent of STEAM abnormalities is able to
differentiate, on average, between infants with normal and
abnormal motor outcomes, we do note with red circles in
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(a) FA (b) MD (c) RD (d) λ1

Figure 13: Comparison of STEAM-detected abnormalities in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and
axial diffusivity (λ1) between infants with and without white matter lesions. P-values were computed using two-way ANCOVA with sex, birth
age, and brain volume included as covariates. Note that for all diffusion features except FA, the extent of STEAM-detected abnormalities is
significantly higher for the infants with white matter lesions, which is consistent with previous literature [2].

Figure 12 the presence of outlier results (i.e., false posi-
tives) for the normal outcome group. These outliers can
be explained by the fact that the normal motor outcome
group is comprised of scans that displayed at least one
other measure of abnormality. Of the ten scans identified
as outliers, three were from infants that had moderate to
severe white matter injury as scored using [12], two were
from infants that had low Bayley language scores (< 85),
one showed presence of moderate IVH, and one was an out-
lier due to poor image registration (this outlier is shown
in Figure 15 and discussed further in Section 5.1). The
remaining three outlier scans were only outliers on the FA
measure where the group difference was not significant.
Finally, we note that while the group differences were

significant, the correlations between the extent of STEAM-
detected abnormalities and Bayley motor scores were not
(lowest p-value = 0.087 for axial diffusivity; p-value com-
puted using a linear mixed effects model to account for
the presence of multiple scans from the same infants). As
a result, we cannot guarantee that the extent of STEAM-
detected abnormalities are sufficient to predict motor out-
come. It is likely that abnormality severity and location
may also play roles for more refined predictions of outcome.
Even so, these group differences are consistent with the re-
sults from the previous section and suggest that STEAM
is capturing meaningful abnormalities across our cohort.

4.4. Comparing STEAM Abnormalities to T1 Abnormal-

ities

While we have shown examples of how STEAM can gen-
erate personalized results and have shown that those re-
sults can be related to neurodevelopmental outcome, we
have yet to look at how STEAM compares to existing ways
of grading a preterm infant’s individual MR scan. In par-
ticular, we are interested in knowing if the results obtained
from STEAM are consistent with those obtained from an-
other MRI grading system and whether STEAM provides
any additional information over such a grading system. To
examine this issue, we compare STEAM to a white matter

Table 4: The DTI scans used to test the relationship between our
voxel-based analysis and the presence of white matter injury (WMI)
scored according to [12]. The number of scans are grouped according
to post-menstrual age and WMI score. Scans with significant white
matter lesions are highlighted in red while lesion-free scans are high-
lighted in green. Scans with single, small lesions are highlighted in
yellow.

WMI Post-Menstrual Age (wks.) Scan
Grade [12] 27-31 32-36 37-40 41-45 Total

0 - Absent 14 30 16 10 70

1 - Mild 3 6 5 3 17

2 - Moderate 6 8 2 1 17

3 - Severe 5 1 0 3 9

Scan Total 28 45 23 17 113

injury (WMI) grading system that was found to be pre-
dictive of adverse neurodevelopmental outcome in preterm
infants at 12 to 18 months of age [12]. This WMI grading
system is based on the examination of the size and number
of hyperintense white matter lesions seen on the infant’s
T1 MRI. These lesions have been identified as being in-
dicative of axonal dematuration [2]. Given these lesion
grades, we expect to see the extent of STEAM-detected
abnormalities increase in the presence of lesions.

Table 4 lists our cohort’s experimental group accord-
ing to their white matter injury grade as defined in [12].
Lesion-free scans are identified in green while scans with a
significant number of lesions are highlighted in red. More
marginal cases containing single, small lesions (less than
2mm in diameter) are highlighted in yellow. To test
whether the presence of lesions affects STEAM-detected
abnormalities, we perform a two-way ANCOVA between
the lesion-free group (in green) and the group of scans con-
taining the presence of significant lesions (in red). We use
ANCOVA here to test for a difference in STEAM-detected
abnormalities between these groups while isolating the ef-
fects of sex, age at birth, and brain volume as covariates.

The two-way ANCOVA results are presented as boxplots
in Figure 13 for the four studied diffusion measures: FA,

17



MD, RD, and λ1. In all cases, we saw a larger amount
of STEAM-detected abnormalities in the group with le-
sions than in the group without lesions. Excluding FA,
the group differences were statistically significant (MD:
p = 0.0282, RD: p = 0.0235, λ1: p = 0.0277). In the
case of FA, the larger STEAM-detected abnormalities in
the group with lesions was not suggestive of a true group
difference (p = 0.3841). Once again, note that these group
differences are present despite the fact that our experimen-
tal group does not contain any of the scans used to create
the statistical templates. As a result, the lesion-free scans
used in this analysis still contain some abnormalities that
eliminated them from being used to create the templates
themselves.
While we are able to use STEAM abnormality extent to

differentiate between lesion and non-lesion groups, we once
again note the presence of outliers. These outlier scans in
the non-lesion group can also be explained by some other
measure of abnormality. Of the 12 scans identified as out-
liers, six were from infants with low Bayley motor scores
(< 85), two were from infants with low Bayley Language
scores (< 85), one showed presence of moderate IVH, and
one scan was an outlier due to poor registration (this is
the same outlier shown in Figure 15). The two remain-
ing scans were only outliers on the FA measure where the
group difference was not significant.
The presence of these outliers make it impossible for us

to guarantee that the presence of white matter lesions al-
ways results in a greater extent of STEAM-detected abnor-
malities. In fact, Figures 10 and 11 show examples of scans
where a greater lesion volume actually resulted in a lower
extent of STEAM-detected abnormalities. That said, the
group differences reported in Figure 13 do agree with the
literature reviewed in [2] suggesting a link between hyper-
intense T1 lesions and more diffuse brain injuries.

5. Discussion

We have introduced herein the STEAM technique for
the personalized analysis of DTI scans of the developing
preterm infant brain. STEAM consists of two parts. First,
we created a collection of statistical DTI templates for
both the full diffusion tensor as well as a range of fea-
tures derived from the diffusion tensors (e.g., FA, MD).
Our template-creation pipeline is based on the technique
of Guimond et al. and ensures an unbiased estimate of the
average DTI scan of a population [21]. As part of that tem-
plate estimation, we employed DT-REFinD, a full tensor
DTI registration algorithm, to obtain the greatest accu-
racy we could in aligning anatomical structures across the
DTI scans from our control group. The resulting templates
contained the mean, variance, and normalcy p-value esti-
mates at each voxel for a normative preterm infant pop-
ulation. This template estimation allows us to generate
a statistical model offline, which reduces the amount of
image registrations and statistical computations that need
to be done to analyze a DTI scan on-the-fly.

The second component of STEAM is a full VBA process-
ing pipeline that involves aligning an individual DTI scan
to the template, then performing voxel-by-voxel statisti-
cal tests to identify abnormalities. Following the advice
given in [19, 20], we examined various choices involved in
setting up a VBA pipeline, in particular the multiple com-
parison correction scheme, what level of image smoothing
to perform, and what to do with data that is not normally
distributed. In all three cases, we followed the accepted
convention in the VBA field and in the latter two cases,
proposed the use of normalcy p-value images Pi and a col-
lection of smoothed templates that capture a range spatial
scales. The results from our STEAM analysis engine are
summarized subject-specific abnormality maps, maps that
no other existing technique provides.
We evaluated STEAM first qualitatively by showing

that our generated templates display the type of brain
development that is consistent with the reduction of the
subplate zone [49, 11], the increased dendritic arborization
in the cortex [16, 50], and the rapid development of the oc-
cipital lobes [48, 51, 52] that has been observed in previous
DTI, MRI, and histological studies. We also showed qual-
itative examples of STEAM’s voxel-based analysis on four
common diffusion features (FA, MD, RD, λ1) and identi-
fied how the resulting abnormality maps both corroborate
and expand upon the results seen on T1 MRI scans [2].
We further evaluated STEAM quantitatively by per-

forming VBA on the 113 DTI scans from our cohort that
were not used in the creation of our templates. We showed
that there exists a relationship between the extent of ab-
normalities detected by STEAM and neurodevelopmental
outcome at 18 months corrected age. We also identified a
relationship between the presence of white matter lesions
and an increased volume of STEAM-detected abnormali-
ties, which is consistent with existing literature [2]. These
results serve as a proof of concept and show that STEAM
is sufficiently reliable to be useful for preterm DTI analy-
sis.
Finally, we have made our STEAM templates, as

well as the source code for STEAM, publicly avail-
able to further facilitate research involving preterm DTI
analysis. The code and templates are available at
http://www.sfu.ca/~bgb2/steam. This STEAM website
allows users to download the whole template collection, the
source code, or even individual templates (Figure 14(a)).
When a request is submitted (Figure 14(b)), a PHP script
collects the requested files (in the case of the template im-
ages, they are provided in nifti format) into a single zip
archive and emails a link to the archive to the request-
ing user. The STEAM website also allows for online 3D
viewing of the STEAM templates used in this work (Fig-
ure 14(c)). Every image in our STEAM experiments can
be viewed through this online image viewer and users can
browse between different diffusion measures, age ranges,
statistics, and image scales (Figure 14(d)). While we do
provide access to our statistical templates, we recommend
that users create their own templates for their studies as
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Figure 14: A collection of views from the STEAM website. From the website, one can download the STEAM source code, template collections
(a) or even individual templates within each the collection (b). Also, the STEAM website boasts an online image viewer (c) that allows an
interested user to examine each STEAM statistical template used in this work (d).

the choice of scanner and imaging protocol can impact dif-
fusion measurements [60].

5.1. Limitations of STEAM

While STEAM has the strength of providing a fine-
scale, personalized assessment of DTI abnormality over
the whole brain, it is not without limitations. The abnor-
mality detection that STEAM performs is based on VBA:
a technique that has seen its share of criticism over the
years [61, 20, 19]. The primary criticism has been the im-
pact of registration quality on VBA results. If the image
registration step does not succeed in aligning the anatomy
in the DTI scans, the resulting statistical tests would not
be comparing properties of the same anatomical region.
The result of this registration error in the template cre-
ation step would be increased variance in the template,
variance that could hide true abnormalities from being
detected by STEAM. If there is registration error when
comparing a new scan to the template, then misaligned
structures would be identified as abnormalities. One such
example was shown in Figure 10(c) where the posterior
portion of an infant’s ventricles did not align to the tem-
plate’s mean image.

We have attempted to mitigate the impact of image
registration errors in multiple ways. First, we used DT-
REFinD: a state-of-the-art tensor image registration algo-
rithm that uses the full diffusion tensor to guide the im-
age registration process [24]. In doing so, DT-REFinD is
able to provide a more accurate structural alignment than
registration algorithms based only on FA or some feature
derived from the tensors [27]. Further, DT-REFinD is
a non-linear registration algorithm that allows us to de-
form and align images with greater freedom than a linear
registration algorithm like FSL FLIRT [22, 23]. Even so,
results in Figure 10 suggest that registration error can still
persist in STEAM, potentially because topological differ-
ences may exist between brains that image registration
algorithms have difficulty addressing [62]. It is for this
reason that we recommend examining the registration ac-
curacy as part of the evaluation of STEAM results, as we
did for both case studies in Figures 10 and 11.

To assess the impact of image misalignment on the
STEAM abnormality maps, we recommend comparing
the resulting abnormality maps (like those shown in Fig-
ure 10a) to the blended subject and template images (like
those shown in Figure 10c). If the pattern of STEAM-
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(a) FA STEAM abnormality map (b) Blended FA images

(subject in purple, template in green)

Figure 15: An example of image misregistration leading to false positives in the STEAM abnormality maps. In (a), a large region of FA
abnormality is identified by STEAM around the right corticospinal tract (shown highlighted by blue arrows). In (b), we see in the same
area that the subject’s right corticospinal tract (in purple) does not align with the corresponding tract in the template (again highlighted
by blue arrows). In this case, the misalignment pattern matches the abnormality pattern, strongly suggesting that these STEAM-detected
abnormalities are false positives.

detected abnormalities matches the pattern of misalign-
ment, then it is best to consider those abnormalities to be
false positives. One example whose FA results fit this de-
scription, and was the worst case in terms of misalignment
in our cohort, is shown in Figure 15. Note that the abnor-
malities around the right corticospinal tract (highlighted
by the blue arrows) match the evidence of misalignment
in purple in the blended images. In a case like this, it
would be appropriate to mark these abnormalities as false
positives. On the other hand, if the pattern of STEAM-
detected abnormalities extends well beyond the regions of
misalignment, as they did in Figure 10, then there is rea-
son to believe that the abnormalities are genuine.

The second criticism regarding VBA has to do with the
large number of statistical tests that VBA performs, lead-
ing to the concern that a conservative multiple comparison
correction scheme will cause some voxels with real diffusion
differences to be marked as not being significantly differ-
ent [61]. While this situation has not changed, we have
made an effort to use a less conservative multiple compar-
ison correction scheme in the false discovery rate. Further,
we were able to show significant relationships between our
VBA results and later neurodevelopmental outcome de-
spite this concern. These results suggest that the large
number of statistical tests VBA performs does not hin-
der our ability to identify abnormalities that could lead to
future cognitive or motor impairment.

Additional concerns have been raised about VBA for
diffusion tensor imaging, specifically with regards to the
amount of image smoothing [20] and what to do with non-
normally distributed data [19]. To address the first con-
cern, we created templates of various scales of smooth-
ing (from 0–8 mm) to facilitate a multi-scale VBA tech-
nique. We further used all scales in our experiments and
aggregated the results from all scales before generating
conclusions. We agree with Jones et al. [20] that exam-

ining multiple scales is arguably the most consistent way
of performing VBA with diffusion tensor data. As for the
second concern of non-normally distributed data, we gen-
erate p-value images from normalcy tests to allow for the
removal of statistics computed at voxels where the assump-
tion of normalcy is not valid. We recognize that removing
these voxels from VBA means that there will be certain
points in the brain where we would not be able to per-
form statistical tests. However, we found that over our
entire range of templates, only 7.0% percent of the vox-
els would be removed from a STEAM analysis for not
having normally-distributed diffusion data (this percent-
age decreases to 5.2% if we exclude volume ratio, VR in
Figure 5).

Beyond the traditional concerns with the VBA of dif-
fusion tensor images, there remain open questions with
regards to template creation. Ideally, we would like to
create statistical templates from a control group whose
demographics match as closely as possible to the infants
who are compared to that template. In that way, we would
avoid differences, and template variance, that are due to
confounding factors such as sex, GA at birth, or PMA at
scan. However, this ideal situation is difficult to meet with
a limited number of DTI scans. At the same time, too few
scans can also lead to errors when estimating the means
and (co-)variances at each voxel in the template. In our
experiments, we attempted to trade-off these limitations
in two ways. First, we split our control group into four
different age windows, allowing us to reduce variance in
the templates due to age at scan while still having enough
scans from which we could compute template statistics.
Second, we modeled the effects of multiple confounding
factors in our statistical analyses, specifically sex, birth
age, and brain volume. By taking these two steps, we
were able to maintain large enough control groups to es-
timate statistical templates while also mitigating, to some
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degree, the impact of confounding factors on our STEAM
analysis engine.
Similarly, differences in scanners, imaging protocols, and

tensor fitting software can also introduce variability be-
tween DTI scans [60]. The presence of these confounding
factors makes it unlikely that a single statistical template
collection, like the one created here, would properly model
a normative population acquired at a different site. In this
work, we ensured that the DTI scans used in our templates
and in our evaluation of STEAM were all acquired using
the same scanner, imaging protocol, and processed using
the same software packages (see Section 3.1). By fixing
these three factors, we were able to eliminate their impact
from our STEAM analysis engine.
Finally, we acknowledge that STEAM is based on the

diffusion tensor model, a model that has limitations, most
prominently the inability to model more than one fiber
tract at a voxel [45]. More recent diffusion modeling tech-
niques, including HARDI (high angular resolution diffu-
sion imaging [63]), DKI (diffusion kurtosis imaging [64]),
and DSI (diffusion spectrum imaging [65]), are address-
ing this concern to the point where a shift away from
the diffusion tensor model may be warranted. If such an
imaging shift occurs, STEAM will be able to accommodate
that change. The two aspects of STEAM that are tensor-
specific are the registration technique (DT-REFinD [24])
and the log-Euclidean mapping [26] that maps tensors
to a vector space. Any other diffusion model, or even
imaging modality, can be used in the STEAM analysis
engine by simply swapping out those two pieces of the
pipeline (i.e., the registration and vector space mapping)
with ones that are specific to the new imaging type. In
the case of newer diffusion models, such registration meth-
ods and vector space mappings are already being devel-
oped [66, 67, 68, 69, 70].

5.2. Future Work

While we have presented STEAM and shown that it can
work as a personalized DTI evaluation technique, limita-
tions in STEAM, and a full clinical evaluation of STEAM,
remain. As a result, there remains various avenues for
future work.
When it comes to the creation of statistical templates,

future work will look at generating templates that are less
impacted by confounding factors. In the short term, we
continue to expand our cohort, which will increase the
number of scans we have to generate statistical templates.
Increasing the number of scans from our control group will
allow us to generate templates along different dimensions,
from sex, to birth age, to age at scan. Over the long term,
we intend to examine whether scans can be weighted dif-
ferently in order to account for confounding factors when
computing mean and (co-) variance images. For exam-
ple, Serag et al. employed a weighting technique for atlas
creation, albeit with a single covariate (age at scan) [71].
Additional future work can also be done to address con-

founding factors such as differing scanner types, imaging

protocols, and preprocessing software. The impact of dif-
ferent scanner types on a STEAM analysis may be the
most limiting of these confounding factors. While a site-
specific template can be made to circumvent this issue,
such a template requires - and is built from - a normative
DTI dataset acquired at that site. Acquiring this dataset
may be a challenge for certain research groups, thereby
limiting STEAM’s usability. Future work will focus on
measuring the impact of scanner choice on a STEAM anal-
ysis. Further, one may explore the introduction of an in-
tensity normalization step to the preprocessing of diffusion
weighted images as a way of addressing these confounding
factors. A similar technique is commonly applied to struc-
tural MRI studies where images are acquired from multiple
sites (e.g., [72]). Alternatively, transfer learning may also
be helpful in identifying, through the use of a training set,
an intensity mapping that corrects for these confounding
factors [73].
When it comes to the voxel-based analysis, future work

will focus on improving image registration techniques and
highlighting areas of high registration uncertainty (or
high predicted error). A recent review of image regis-
tration techniques has highlighted various future direc-
tions [74], including varying how registration algorithms
trade-off image similarity and the rigidity of the defor-
mation (e.g., [75]), as well as merging results from differ-
ent image registration algorithms to generate a more accu-
rate image alignment (an idea known as meta-registration)
(e.g., [76]). Further, more recent works have quantified im-
age registration uncertainty, exposed correlations between
uncertainty and error, and used registration confidence
(i.e., lack of uncertainty) measures to improve image reg-
istration [77, 78]. We intend to follow these developments
and examine their impact on the accuracy of the results
STEAM generates.
Further, we recognize that the experiments presented

here provide merely a proof of concept. We have only
shown a sample of the wide variety of experimental group-
ings, clinical measures, motor, cognitive, behavioral and
other neurodevelopmental outcomes which we can exam-
ine with STEAM. Also, while we have examined the extent
of STEAM-detected abnormalities, other aspects of the
VBA results - like magnitude, direction, and abnormal-
ity location - may also provide valuable clues regarding a
preterm infant’s neurodevelopmental outcome. STEAM’s
VBA-based features provides a wealth of new information
that, once fully exploited, may have the potential to pre-
dict future neurodevelopmental outcome. We intend to use
these new features to complement our recent connectome-
based predictor of motor outcome [79] to develop a more
holistic predictor of preterm brain health.
While we have presented STEAM in the context of

preterm infant DTI analysis, STEAM can be equally ap-
plied to other cohorts provided that a normative group
of DTI scans are available for template estimation. That
said, certain settings in the STEAM analysis engine – par-
ticularly the choices of image smoothing, registration tech-
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nique, and multiple comparison correction scheme – may
be application-specific [19, 20]. Future use of STEAM
should include fine tuning of these pipeline settings.

Finally, the number of test scans in our cohort, par-
ticularly from infants with abnormal neurodevelopmental
outcomes, is modest at this time. As the number of these
cases increase, we will be able to say with greater certainty
just how important STEAM-detected abnormalities are in
the understanding of preterm brain health.

6. Conclusion

STEAM provides a personalized technique for analyz-
ing diffusion measurements at a fine scale over the whole
preterm infant brain, something other techniques have yet
to claim. The technique is based on generating statistical
template images for a normative population, then compar-
ing new scans to those templates using voxel-based anal-
ysis. The result of this analysis is an abnormality map
that highlights areas of significantly abnormal brain de-
velopment. We have made the source code for STEAM
publicly available as well as statistical templates of the
preterm infant brain that were generated in this study5. It
is our hope that these contributions can further the field’s
progress towards imaging biomarkers for preterm brain in-
jury and the prediction of neurodevelopmental outcomes.
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