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Abstract

Preterm infants develop differently than those born at term and are at higher risk of brain pathology. Thus, an
understanding of their development is of particular importance. Diffusion tensor imaging (DTI) of preterm infants offers
a window into brain development at a very early age, an age at which that development is not yet fully understood.
Recent works have used DTI to analyze structural connectome of the brain scans using network analysis. These studies
have shown that, even from infancy, the brain exhibits small-world properties. Here we examine a cohort of 47 normal
preterm neonates (i.e., without brain injury and with normal neurodevelopment at 18 months of age) scanned between 27
and 45 weeks post-menstrual age to further the understanding of how the structural connectome develops. We use full-
brain tractography to find white matter tracts between the 90 cortical and sub-cortical regions defined in the University
of North Carolina Chapel Hill neonatal atlas. We then analyze the resulting connectomes and explore the differences
between weighting edges by tract count versus fractional anisotropy. We observe that the brain networks in preterm
infants, much like infants born at term, show high efficiency and clustering measures across a range of network scales.
Further, the development of many individual region-pair connections, particularly in the frontal and occipital lobes, is
significantly correlated with age. Finally, we observe that the preterm infant connectome remains highly efficient yet
becomes more clustered across this age range, leading to a significant increase in its small-world structure.
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1. Introduction

The early configuration and development of the brain’s
structural network is not yet well understood. In vivo
analysis of white matter connections typically requires a
diffusion magnetic resonance (dMR) image of the brain
which, for in utero subjects, presents significant chal-
lenges [28]. Preterm neonatal subjects provide an oppor-
tunity to study the early connectome without the difficul-
ties associated with in utero imaging. Understanding the
connectomes of these infants is doubly important due to
the risk factors associated with preterm birth, including
white matter injury and abnormal neurodevelopment [17].
Here, we examine a normative cohort of preterm neonatal
infants scanned between 27 and 45 weeks post-menstrual
age (PMA) and identify consistent topological and devel-
opmental trends in their structural brain networks. Our
goal is to develop a better understanding of early brain
configuration and growth which will enable future studies
to better characterize abnormal development and injury.
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Previous works have examined white matter develop-
ment in young infants. Many early studies focused on
voxel-wise measures of fractional anisotropy (FA) and
mean diffusivity (MD) [10, 24, 35]. These works discussed
the effects of myelination and reduction in brain water over
time on increasing FA and decreasing MD [17, 21].

Many other studies have looked at functional network
development in young infants [19, 20, 22, 56]. Fransson
et al., in particular, examined the resting-state functional
network architecture of very young preterm infants (25
weeks mean gestational age) and found that only half of
the number of resting-state sub-networks found in healthy
adults were present at the preterm stage [20]. Recently,
van der Heuvel et al. found that functional networks in
preterm infants agreed well with the underlying anatom-
ical structure [54]. In general, the relationship between
functional networks and structural networks is complex
and still not fully understood and there is still much work
being done trying to explain causal relationships between
the two [9, 49].

Some other recent works have focused on the exami-
nation of the structural connectome of young infants by
performing tractography between numerous anatomical re-
gions in the brain [3, 41, 50, 52, 53, 58, 54]. Takahashi
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et al. examined results of full-brain tractography quali-
tatively and described trends across postmortem infants
between 17 and 40 weeks [50]. In order to quantify and
organize tractography results, many studies abstract the
connections in the brain as a network, where nodes typ-
ically represent anatomical regions and edges represent
some measure of connectivity between those regions. Ball
et al. examined connections in the thalamocortical network
of preterm infants and showed that early birth correlated
with reduced connectivity [3]. Pandit et al. studied the
change in connection strengths across scan age and birth
age on a cohort of preterm infants scanned as early as 47
weeks post-conception [41]. They reported that the frontal
lobe showed a higher rate of development than other re-
gions across their age group. They further noted that ba-
bies born prematurely showed lower overall cortical and
sub-cortical connectivity than infants born at term.

Other preterm infant studies have looked into summariz-
ing structural connectomes using network measures. Yap
et al. examined the development of connectomes in young
children, across a range of ages between 2 weeks and 2
years, using measures of network integration and segrega-
tion [58]. Tymofiyeva et al. used an atlas-free approach
to analyze connectome development in preterm infants,
children and adults, also employing network measures to
capture topological changes [52, 53]. Very recently, Ball et
al. studied a specific network measure known as rich-club
organization in a cohort of preterm infants [2]. They found
that this rich-club structure, known to be present in adult
brain networks, emerges as early as 30 weeks PMA.

Such network measures allow high-level summaries of
brain network topology which have been shown to be use-
ful, reliable bio-markers in discriminating normal and ab-
normal brain networks [32, 40, 47]. Rubinov and Sporns
recently presented a comprehensive summary of such mea-
sures in relation to their use on structural and functional
brain networks [44].

To date, network analysis of the entire preterm in-
fant connectome, particularly over anatomically defined
regions, has not been done for gestational ages earlier than
term equivalent age. This gap is likely because of the dif-
ficulties in acquiring a large dataset of subjects at such
a young age and because, until recently, brain atlases of
young infants were not available. It is possible to perform
a similar analysis without an atlas, as demonstrated by
Tymofiyeva et al., however, this strategy makes it difficult
to identify the anatomical significance of specific connec-
tions and sub-networks.

In this work, we compute structural brain networks for a
cohort of young preterm neonates and analyze both local
and global longitudinal trends. In performing this anal-
ysis, we observe that the brain networks of preterm in-
fants show high efficiency and clustering measures across
a range of network scales, a result seen in analogous stud-
ies of term infants at slightly older ages. We also note
that the development of individual region-pair connections
is often significantly correlated with age. In particular,

Table 1: Ages and counts for subjects and subject scans. Post-
menstrual ages at birth are shown for the subjects while ages at
time of scan are displayed for the scans.

Counts Post-Menst. Age (wks)

Total M F Mean SD Min Max

Subjects 47 28 19 28.19 2.12 24 32
Scans 70 40 30 35.8 5.29 27 45

we find that connections in the frontal and occipital lobes
show high rates of development during this period. Fi-
nally, using established brain network measures [44], we
see that the preterm infant connectome remains highly ef-
ficient and becomes more clustered across this age range,
leading to a significant increase in small-worldness. As far
as we are aware, this is the first connectome analysis of
subjects as young as 27 weeks PMA and the first work to
look at whole-brain network integration and segregation
in a large, normative cohort of preterm infants.

2. Materials and Method

2.1. Study Population

To establish normative development of preterm struc-
tural brain connectivity, we selected “normal” infants from
a prospective cohort described in Chau et al. [15]. This
cohort consists of premature newborns born between 24
to 32 weeks post-menstrual age at the Childrens & Wom-
ens Health Centre of British Columbia. Exclusion cri-
teria included 1) congenital malformation or syndrome;
2) antenatal infection; or 3) large parenchymal hemor-
rhagic infarction (> 2 cm) on head ultrasound scanning.
This prospective study was approved by the University
of British Columbia Clinical Research Ethics Board. The
newborns enrolled in this cohort were evaluated with MRI
scans in the neonatal period (outlined below) and had neu-
rodevelopmental assessments at 18 months of age (cor-
rected for prematurity) with the Bayley Scales of Infant
and Toddler Development, Third Edition (BSID-III) [6]
and the Peabody Developmental Motor Scales, Second
Edition (PDMS-II) [18]. The 3 composite scores (cogni-
tive, language and motor scores) of the BSID-III have a
mean of 100 and a standard deviation of 15. The PDMS-
II provides a more sensitive assessment of motor function
yielding gross, fine and total motor scores with a mean
of 100 and standard deviation of 15. To ensure a norma-
tive sample of preterm neonates, we included those infants
without acquired brain injury on MRI (no white matter in-
jury, no intraventricular hemorrhage) and with scores on
all six composite measures of neurodevelopment within 1
standard deviation of the normal mean (> 85). After re-
moving subjects with low cognitive test scores, detectable
brain injury and low image quality (described below), the
final number of subjects used in this study was 47 (28
males, 19 females).
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Figure 1: High level schematic representation of connectome pipeline.
Arrows represent a) T2-T1 registration, b) T1-T1 registration, c)
atlas-based segmentation, d) tractography, e) T1-tract alignment, f)
assignment of tracts to region pairs, and e) tract counting or mean
FA calculation

2.2. Magnetic Resonance Imaging

Each of the 47 preterm neonates were scanned within
the first weeks of life once they were clinically stable.
Twenty-three of these 47 infants were scanned again at
term-equivalent age, with 2 to 15 (9.49±3.45) weeks be-
tween scans. The resulting 70 structural and diffusion
MRI scans cover the age range of 27 to 45 (35.8±5.29)
weeks PMA (Table 1).

Our MRI studies were carried out on a Siemens (Berlin,
Germany) 1.5T Avanto using VB 13A software and in-
cluded the following sequences: 3D coronal volumetric T1-
weighted images (repetition time [TR], 36 ms; echo time
[TE], 9.2 ms; field of view [FOV], 200 mm; slice thickness,
1 mm, no gap) and a 3D axial volumetric diffusion ten-
sor image set (TR 4900 ms; TE 104 ms; FOV 160 mm;
slice thickness, 3 mm; no gap) with 3 averages of 12 non-
colinear gradient directions over 2 diffusion weightings of
600 and 700 s/mm2 (b-value), resulting in an in-plane res-
olution of 0.625 mm. Each diffusion weighted image set
was preprocessed using the FSL Diffusion Toolbox (FDT)
pipeline1 and tensors were fit using RESTORE [14].

An experienced neuroradiologist (K.P.) reviewed the re-
sulting MR images for presence of white matter injury
(WMI), intraventricular hemorrhages (IVH), and poor im-
age quality due to subject motion. The presence of WMI
was identified using a system found to be predictive of
adverse neurodevelopmental outcome at 12 to 18 months
of age [34]. We noted IVH using the protocol of Papile et
al. [42]. The 70 scans used in this study were selected so as
to be of sufficient quality and be free of these pathologies.

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT

2.3. Atlas Based Segmentation

We used an atlas-based method to segment each scan.
A brain region atlas of T2 MR images from the IDEA
group at University of North Carolina (UNC) School of
Medicine, Chapel Hill was aligned to each skull-stripped
T1 image in the dataset [46]. The T2 atlas was used due
to the lack of availability of an anatomically labelled T1
brain region atlas of young infants at the time of this study.
The T2 UNC atlas was constructed from 95 subjects, born
between 33 and 42 weeks, with scans taken between 38
and 46 weeks PMA (41.5±1.7 weeks). The atlas contains
90 (45 per hemisphere) anatomically defined cortical and
sub-cortical gray matter regions (Table A1), each with an
average volume of 4.7±3.1 cm3.

We first register the UNC neonatal T2 atlas to a T1 tem-
plate of infant brains, followed by aligning the T1 template
to each subject’s T1 scans. We perform the registration
this way as inter-modality registration generally presents
more challenges than intra-modal registration and has a
higher risk of image registration error. Aligning the T2
atlas to a single T1 template allows the visual examina-
tion of a single result to ensure that the inter-modality
registration was accurate. Furthermore, aligning the T2
atlas directly to each T1 subject would have been very
time consuming due to the extra computation required for
inter-modality registration. We register to a T1 template
that is a 3D time-slice selected from the 4D Imperial Col-
lege London (ICL) infant atlas, an atlas constructed from
204 premature neonates between 28 and 44 weeks [45]. We
registered to the 3D time-slice corresponding to 38 weeks
PMA, the youngest age of the UNC dataset.

Each registration was performed first by an affine trans-
formation using FMRIB’s Linear Image Registration Tool
(FLIRT) [27], then a deformable transformation using the
MATLAB Image Registration Toolbox (MIRT)2. For the
inter-model registration, both registration steps used a
mutual information similarity metric since it is known to
be a good choice for such registration problems [43]. For
the intra-modal registrations, a cross-correlation similarity
metric was sufficient. Anatomical regions in the UNC at-
las were propagated to the 38-week T1 template and then
to each T1 image in the dataset by applying the same
transforms obtained from the registration steps.

Prior to registration, each infant’s T1 image was neck-
stripped using a manually selected slice-plane, then skull
stripped first using BET [48] and then using an age-
matched, rigidly aligned brain mask from the ICL 4D T1
atlas. The combination of this skull stripping and regis-
tration gives us an anatomical segmentation of each T1
image in it’s native frame of reference which, upon careful
visual inspection, was found to be highly accurate.

2.4. Connectome Mapping

We perform whole-brain tractography on each infant’s
DTI using TrackVis [55]. We seed streamlines at all voxels

2https://sites.google.com/site/myronenko/research/mirt
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Table 2: Network measures used in this study.

Category Network Measure Name Acronym

Connectivity Mean Weighted Nodal Degree MWD

Integration Characteristic Path Length CPL
Global Efficiency GE
Local Efficiency LE

Segregation Clustering Coefficient CC
Modularity ML

Small-World Small-Worldness SW

with FA greater than 0.1 since this is the value of the
noise floor [29]. By choosing this FA threshold, we obtain
all possible tracts that can be extracted from the DTI.
However, this strategy leads to a developmental bias as the
number of streamline seeds depend on the brain volume
and overall FA levels in the DTI. We will address this bias
later in section 2.6. We spline filter all tracts and then
align them to the infant’s T1 image space.

The number of streamlines with end-points in each pair
of anatomical brain regions were counted to create an n
by n connectivity matrix, Ck, (n = 90) for each scan, k,
where ckij is the number of tracts in scan k between regions
i and j. Note that each streamline is counted only once as
we count a streamline based its end points and not whether
a streamline goes through a region. Also, streamlines con-
necting a region to itself are ignored, causing the diagonal
entries of the matrix to be 0. While the streamlines pro-
vided by TrackVis are presented with an implied direction,
the direction of diffusion measured by the underlying DTI
is ambiguous. Thus, we discard the directional informa-
tion in each network by summing each connectivity matrix
with it’s transpose, imposing symmetry.

Using this symmetric connectivity matrix, we define our
structural connectome as a network Gk = (V k, Ek) (for
each scan k = 1 . . . 70). In this network, the brain re-
gions are represented as a set of nodes V k = {vk1 , . . . , vkn}.
The connections between brain regions are represented by
edges Ek = V k × V k = {(vk1 , vk2 ), . . .} where ekij = (vki , v

k
j )

represents the connection between regions i and j. The
connectome network is then weighted by assigning a weight
w(ekij) to each edge ekij corresponding to the amount of
structural connectivity between the two regions. This con-
nectome weighting usually takes one of two forms: we can
assign an edge weight based on the raw number of stream-
lines between regions (i.e., w(ekij) = ckij), or we can exam-
ine tract “integrity” by using the mean FA computed over
the ckij streamlines as an edge weight [3]. We will exam-
ine both weighting schemes and refer to their networks as
tract-count and mean-FA connectomes respectively.

Figure 1 summarizes, at a high level, the pipeline used
to generate each brain network.

2.5. Network Analysis

The structural connectomes defined in the previous sec-
tion are networks and it has become popular to exam-
ine these networks using various network measures [2, 32,

40, 44, 47, 58]. The collection of network measures used
here are given in Table 2. At a high level, these measures
capture four intrinsic properties of networks: connectiv-
ity, segregation, integration, and small-worldness. Below,
we describe the relationship between these measures and
the network properties they capture. For a more extensive
discussion of network measures, we refer the reader to [44].

To begin, the network property of connectivity refers
to the number of connections between nodes. A highly-
connected network has more edges, or more highly-
weighted edges, than a marginally-connected network. In
the context of our connectomes, connectivity directly re-
lates to the number of streamlines between brain regions,
or the average FA value of tracts between two regions.
We can capture this network connectivity using the mean
weighted nodal degree (MWD) measure, which reports the
average number of connections for a network node. Com-
puting MWD involves computing each node’s degree: the
sum of edge weights for edges connected to a node. The
MWD is then average of these node degree values across
the network.

Complementing network connectivity is the property
of network integration. While connectivity refers to the
amount of connectivity in a network, integration refers to
how densely connected all nodes are to one another. For
example, a fully connected network has high network inte-
gration as each node is connected to every other node. On
the other hand, a network with fully disconnected parts
has low network integration. In the context of our connec-
tomes, network integration relates to how interconnected
all brain regions are to one another. The most common
network integration measures are characteristic path length
(CPL), global efficiency (GE), and local efficiency (LE). A
network’s CPL relates to the length of the shortest paths
through the network, where path length is the inverse sum
of the edge weights for edges along a path. The CPL mea-
sure is computed as the average of these shortest path
lengths between all pairs of nodes in the network [57].
Similarly, GE measures network integration using short-
est paths and, in fact, is simply the average inverse of the
shortest path lengths [44]. Both of these measures exam-
ine shortest paths through the entire network. However,
we can also look at shortest paths locally by measuring
the length of the shortest path between the neighbours
of a given node. These local shortest path lengths are
used to compute LE. Like GE, LE is the average inverse of
the shortest path lengths, but LE uses these local shortest
paths instead of the overall shortest paths [31].

Conversely to network integration, network segregation
refers to how much a network is organized into a collection
of sub-networks. For example, a fully connected network,
where each node is equally connected to all other nodes,
has low network segregation; whereas a network with fully
disconnected parts has high network segregation. In the
context of our connectomes, network segregation relates to
what degree a brain’s anatomical regions are arranged into
small, distinct clusters. There are two popular measures
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that capture network segregation: modularity (ML), and
clustering coefficient (CC). The ML measure captures net-
work segregation by measuring the number of connections
(i.e. the sum of the edge weights) within a sub-network
and comparing that to the number of connections exiting
the same sub-network. ML is then taken as the maximum
of these ratios across all possible sub-networks [36]. As it
is infeasible to create all possible sub-networks, ML is typ-
ically approximated using an algorithm like that proposed
by Newman [37]. Similarly, the CC of a network captures
its segregation, but unlike ML, CC can be computed ex-
actly. A network’s CC captures the fraction of a node’s
neighbours that are also connected to each other. These
fractions at each node are then averaged over the network
to give the overall network CC. Each node’s CC can also
be weighted by the product of the relevant edge weights
to obtain a weighted version of this measure [57, 39]. This
weighted CC is what is calculated in our study.

Finally, the small world property of a network builds off
of these simpler network properties to capture something
more complex. A small work network is one that has evi-
dence of both segregation and integration, where nodes are
grouped into sub-networks but those sub-networks are also
connected in an organized way [4]. A small-world network
is known for its efficiency; it keeps high connectivity be-
tween nodes with a minimal number of connections. This
small world property can be captured using the small-
worldness (SW) measure, which is simply a normalized
ratio between CC and CPL (where the normalization is
discussed in Section 2.6). Many complex networks, includ-
ing functional and structural brain networks of animals,
have been shown to have this small-world property. It has
also been shown that SW is reduced in brain networks of
patients with neurodegenerative diseases, suggesting that
SW might be an integral property of a well functioning
brain [4]. It is not yet known when SW emerges in human
brain networks and, given the early ages of the subjects
in this study, we have the opportunity here to study how
SW develops.

2.6. Normalization

By seeding tractography at every voxel with FA> 0.1,
the number of tracts generated differs between scans. In
particular, brain volume and white matter maturation
may affect the number of tractography seeds and thus the
edge weights in our connectomes. Since the focus of this
work is more on the structural topology of white matter
than on its volume or degree of maturation, we normal-
ize each connectome in a way that minimizes the effect of
these variables. Two different normalization strategies are
adopted here and used where most appropriate.

When analyzing changes in individual connections (sec-
tion 3.2) with respect to age, we normalize each connec-
tome by dividing by the total number of tracts. Edge
weights in each normalized connectome then represent rel-
ative connectivity and are independent of seeds used when
performing tractography.

We use a different strategy when analyzing results from
network measures (sections 3.3, 3.4). While normaliz-
ing the edge weights in the connectome removes the tract
count bias, an additional bias factor exists due to the fact
that a random, ’null-hypothesis’ network may have a non-
zero value for a given network measure. We address this
additional bias in the network measures by comparing each
measure’s value to one computed from a similar network
where edges have been placed randomly. These randomly-
built networks are generated with the same number of
nodes as our connectome and the same distribution of
node degrees, thereby removing any bias due to connec-
tome magnitude as well as the fraction of a measure’s value
that arises by chance [44]. In this work, we compute ten
random networks for each connectome and the network
measures of these random networks are averaged. The
normalized network measures are then obtained by divid-
ing the original, unnormalized, measures by the average
obtained from the randomly-built networks.

Note that we do not normalize the mean-FA connec-
tomes because the FA values for a region-pair connection
are averaged across all its ckij streamlines, making it invari-
ant to the number of tractography seeds used. Also, we do
not wish to normalize for increasing FA since examining
change in FA and comparing it to change in tract count is
the exact reason these connectomes were computed.

3. Results

With a brain network computed for each subject scan,
we performed four experiments designed to expose impor-
tant aspects of early connectome development in preterm
infants. We first investigate group-wise properties of the
preterm connectomes using high-level network measures
and compare the results to network measure values from a
group of infants born at term (section 3.1). We then exam-
ine longitudinal trends in for each region-pair connection
using a linear mixed-effects model (section 3.2). Finally,
we look at network measures in the preterm infant brain
networks across time, first as trends within the entire set
of scans (section 3.3), and then as changes between scans
in each subject (section 3.4).

3.1. Groupwise Connectome Analysis

Our first goal is to show that our results are reasonably
consistent with results from a similar study. In particular,
we repeat an experiment by Yap et al. originally done on a
group of young infants born at term [58]. By doing so, we
are able to both validate our connectome pipeline against
another from a different group and compare preterm in-
fants to those born normally at term with similar scan
ages. Such a validation is important as it has been sug-
gested that comparing different connectome studies is dif-
ficult due to the large number of methodological choices
and parameters [5].
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Figure 2: Backbone network cost v.s. local efficiency, global efficiency and modularity. Network cost is varied by applying different thresholds
to the group connectivity SNR matrix (see text). Network measures are plotted for three groups of infant scans. Results from Yap et al.
of a group scanned 2 weeks after normal term birth (red) are plotted next to group of preterm infants scanned around term-equivalent age
(magenta). A third group of preterms scanned before 39 weeks PMA (blue) is also shown. Bootstrap-estimated confidence intervals for our
preterm groups appear in light magenta and light blue. Note that the preterm and term groups show a similar trend in connectome structure
with some slight differences in global efficiency and modularity. We elaborate on these differences in section 4.

In attempt to make the comparison fair, a subset of
scans from our dataset is selected to match the distribu-
tion of ages from the term group in [58] as closely as pos-
sible. By selecting scans acquired after 39 weeks PMA,
we obtain a group of scans with mean age 41.7±1.9 weeks;
very close to the mean age of the term group at 41.6±1.7
weeks. We also compare these groups to a third group,
comprised of all remaining preterm scans, taken before 39
weeks (32.6±3.1 weeks).

The connectome results from Yap et al. rely on the con-
cept of a backbone network computed from a group of
subjects [23, 58]. This backbone network captures con-
nections that are consistent across the group through the
use of a signal-to-noise (SNR) connection matrix. For each
group, G, an element in the SNR matrix is defined as,

SNRGij(c
k
ij) =

MEANk∈G(ckij)

SDk∈G(ckij)
. (1)

where SD is the standard deviation across subjects. Note
that to stay consistent with Yap et al., we only use
the tract-count connectomes when computing this matrix.
The backbone network is then built from the SNR con-
nection matrix by thresholding over a range of values to
produce binary matrices of varying network costs (i.e., the
fraction of possible edges present after thresholding). Each
binary matrix can be interpreted as a network in the fash-
ion described earlier and we can compute the GE, LE
and ML for each of them. These three measures of the
thresholded backbone network are plotted versus network
cost in Figure 2. Also plotted are the GE, LE, and ML
for the special cases of random networks (where edges are
distributed randomly) and lattices (where nodes are con-
nected to form a network with a grid-like structure). We
also extended the analysis of Yap et al. by using statisti-
cal bootstrapping to estimate confidence intervals for all
three network measures (using 50 bootstrap iterations of

39 samples with replacement). These confidence intervals
give us further insight into the stability of the backbone
network structure.

As we would expect, both LE and GE rise with greater
network costs (i.e. more edges) in all groups. Also ex-
pected is that the three measures for our connectomes fall
in the range between the extreme cases of random networks
and lattices. These outcomes are consistent with those re-
ported by Yap et al. for infants born at term and unsur-
prising since we expect the brain to have a strong local
structure combined with cross-network connections. How-
ever, we do see notable differences between our preterm
connectomes and those term infant connectomes analyzed
by Yap et al.. First, the GE of our two preterm groups
is higher for most network costs than seen in the group
born at term. Second, the ML of our preterm infants is
significantly higher than those reported for term infants.
Possible interpretations of these differences are discussed
later in section 4.

3.2. Per-Connection Analysis

In order to understand inter-region white matter devel-
opment over the range of scan ages in our group, we exam-
ined each connection in our tract-count and mean-FA con-
nectomes across time. Since certain subjects were scanned
twice, we required a statistical model that assumes possi-
ble intra-subject biases. Here we employed a linear mixed-
effects model, a generalization of a linear regression model
that assumes possible correlation between scans from the
same subject [38]. A model of this kind is fit to the tract
counts and mean FA values of each region-pair connection
across PMA.

Our particular interest is to discover which region-pairs
connections are consistently exhibiting longitudinal trends
across the cohort. To test for this, we compute a confi-
dence interval (CI) for our linear model’s slope and check
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Figure 3: Edge weight slopes for linear mixed-effects models fit longitudinally to tract-count, normalized tract-count, and mean-FA connec-
tomes. Connections are mapped spatially onto UNC atlas. Connections are only displayed if the 99% CI of their longitudinal slope did not
include zero (after correction for multiple comparisons). Edge colour maps to the linear model’s slope value and thicker lines map to greater
slope magnitudes.

to see if that CI contains 0. If the CI falls strictly above
zero (or strictly below zero) then we can say it is signifi-
cantly likely that the values are increasing (or decreasing)
across time. To correct for multiple statistical computa-
tions across the 4050 = 90 × 90/2 region-pairs, we adopt
the approach of Benjamini et al. to select significant CIs
using a False-Discovery-Rate-based criterion [8].

After correction for multiple hypothesis testing, 664 (of

a possible 4050) region pairs had tract counts with slopes
significantly likely (p<0.01, FDR corrected [8]) of being
non-zero. The locations of these region pairs and the mag-
nitudes of their slopes are displayed spatially in Figure 3.
571 of these slopes were positive implying that a majority
of these connections are gaining tracts over time.

After normalization of total number of tracts in each
connectome, the same analysis was run. As the edge
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Figure 4: Predicted normalized tract-count connectomes exposing relative changes in network topology from 27 to 45 weeks PMA. Edge
weights are predicted at four ages using linear mixed-effects models fit to each connection across scans. Connections with at least 0.1% of the
brain’s fiber tracts are rendered spatially over UNC atlas from sagittal, coronal and axial views (top to bottom). Each connection’s thickness
and colour represents the predicted fraction of tracts in the brain that connect each region pair.

weights in these normalized connectomes convey the rela-
tive strength of connections between regions, we expect a
greater balance between those increasing in strength over
time and those decreasing in strength. Of region-pairs with
slopes found to be significantly likely of being non-zero,
only 211 were positive where as 250 were negative. As ex-
pected, many of the region-pair connections with steeply
increasing tract-counts also have steep positive slopes in
the normalized tract count connectome (Figure 3). Also
expected is that connections with negative slopes in the
normalized connectomes are frequently between regions
where there was no significant positive trend in the un-
normalized connectomes.

Of the 211 connections with positive slopes in the nor-
malized connectomes, 40% are within the left hemisphere,
38% are within the right hemisphere and 22% are inter-
hemispheric. Connections with negative slopes are dis-
tributed between hemispheres in a similar fashion. We also

find that 34 region pairs in the frontal lobe (atlas regions 1
through 30, Table A1), had normalized tract counts signif-
icantly increasing with age. Meanwhile, the occipital lobe
(atlas regions 37 through 66), there are 28 such connec-
tions. The development of connections in these lobes was
noticeably higher than the 23.0±5.73 developing connec-
tions obtained for a random selection of 30 regions (over
1000 random samplings with replacement).

We also examined the split between developing cortico-
cortical connections and those connections with deep gray
matter regions. In the normalized connectomes, ∼ 59% of
edges with significantly increasing tract counts were be-
tween cortical regions versus only ∼ 5% of edges between
deep gray matter regions (with the remainder of edges be-
tween the cortex and the deep gray matter). This com-
parison may be unfair, since 76 of 90 atlas regions are
within the cerebral cortex. However, even when weighted
by the model slopes, (i.e., the relative tract-count increases
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at each edge,) these cortico-cortical connections represent
∼ 72% of the total rate of tract count increases in the
infant brains.

The differences in brain volumes between different sub-
jects in each scan makes it difficult to compare tract
lengths between scans in a meaningful way. However, us-
ing the centroids of the UNC atlas regions we can deter-
mine the relative distances between region pairs in a com-
mon space. The UNC atlas is 115 mm long along the coro-
nal axis with centroids an average of 48.6±16.2 mm apart.
The two most distant regions are 98 mm apart. Using
these Euclidean distances as an indicator of relative tract
lengths between regions we can explore the development
of spatially local versus spatially distant connections. Of
edges with significantly increasing weights in the normal-
ized tract-count connectomes, ∼ 50% were between region
pairs less than 30 mm apart. However, some long-range
connections were also found to be developing, with 12 sig-
nificantly increasing region-pairs greater than 60 mm apart
and 2 greater than 70 mm apart.

Finally, the same statistical analysis was carried out on
the mean-FA connectomes. For these connectomes, 840
region-pairs showed significantly increasing FA whereas
169 showed significantly decreasing FA. While there are
more region-pair connections with significantly increasing
FA than those with increasing tract count, 75% of region-
pairs with significantly increasing tract count also show
significantly increasing FA. Furthermore, 82% of region-
pair connections with relatively increasing tract counts
(observed in the normalized connectomes) also show sig-
nificantly increasing FA. (At random, we only expect only
21±1.6% and 21±2.8% of connections to overlap in these
two cases, respectively.) Despite appearing to have very
different configurations in Figure 3, the longitudinal trends
in the tract count and FA connectomes are certainly re-
lated. We discuss possible reasons for discrepancies in sec-
tion 4.

To visualize the changes in brain network topology
across time, we used our linear mixed-effect models for
each connection to estimate tract counts at four ages span-
ning our cohort’s age range. The resulting predicted brain
networks are shown in Figure 4. These four evaluated
brain networks show connections gaining and losing rela-
tive connection strength over time. Certain connections
in particular show high rates of development, particularly
around the lingual, fusiform, and parahippocampal gyri
(see Figure A.1 for locations of these regions). Others,
like the connection between the medial parts of the left and
right superior frontal gyri show a rapid decrease in rela-
tive strength, implying that the number of tracts between
these regions are not increasing as quickly as between a
typical region-pair.

3.3. Network Measures Versus Age

In order to summarize how the organization of the struc-
tural connectome develops over time, we plot measures of

structural connectivity, segregation, integration and small-
worldness versus age in Figure 5. We used the Brain Con-
nectivity Toolbox to compute all reported network mea-
sures [44].

For the unnormalized network measures, MWD was
found to have a significant positive correlation with age,
while CC and CPL are significantly correlated with age,
positively and negatively, respectively. These results con-
firm the hypothesis that most region-pair connections are
gaining tracts over time, likely due to brain volume in-
creases and white matter maturation.

In the case of the normalized network measures, we
found that normalized CPL showed no significant corre-
lation with age and stays roughly constant. This implies
that as the brain develops, the topological distance be-
tween any two regions is remaining constant on average.
However, normalized CC is significantly positively corre-
lated with age, implying that regions are becoming seg-
regated into distinct clusters. The combination of these
results suggest that over this age range, the preterm in-
fant brain is organizing itself into clustered sub-networks
while maintaining its larger scale, cross-network connec-
tions. The SW measure, having been computed by divid-
ing normalized CC by normalized CPL, (which, we note,
also makes it a normalized measure,) shows a similar signif-
icant positive correlation. This implies that the structure
of the infant connectome is becoming more small-world,
independent of total number of tracts.

We summarize SW slope CIs across tract count, nor-
malized tract count and mean-FA connectomes in Table 3.
Note that SW slope CIs for normalized and unnormalized
tract count connectomes are very similar. This validates
our assumption that the SW measure is already indepen-
dent of overall edge-weight magnitude. Also note that the
mean-FA connectomes lack a clear trend of increasing SW
with age. We discuss potential reasons for the appearance
of this result in Section 4.

3.4. Intra-Subject Network Changes

With 23 subjects scanned twice, we can examine intra-
subject longitudinal trends of these structural connec-
tomes. In Figure 6, we show the differences in the network
measure values versus the time between scans.

For the unnormalized measures, all subjects displayed
increasing MWD and CC while CPL decreased between
scans. This result is what we would expect based on the
inter-subject trends in the previous experiment. Further,
changes in MWD and CC are significantly (p<0.01) posi-
tively correlated with age, while changes in CPL are sig-
nificantly negatively correlated with age. Thus, longer du-
rations of time linearly relate to larger changes in the mea-
sures.

For the normalized measures, CPL values are scattered
above and below zero. This result suggests that, com-
pared to random networks, about as many subjects be-
came relatively less efficient as those that became rela-
tively more efficient. By applying a t-test, we found that
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Figure 5: Mean degree and other network measures plotted against age at time of scan. Linear mixed-effects model fit to each measure
(black) and are displayed with the 95% confidence interval for the parameters of each linear model (gray). Note the significant increases in
normalized clustering coefficient and small-worldness across this age range.

Figure 6: Change in network measures between an infant’s first and second scan versus number of weeks between scans. Pearson’s correlation
reported for changes in unnormalized measures (top row). For each normalized measure (bottom row), a t-test is run to find if the mean
connectome change between scans is significantly different from zero. p-values are reported for each measure. Note that normalized clustering
coefficient and small-worldness show a significant increase between scans.
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Table 3: Summary of small-worldness (SW) trends in tract count,
normalized tract-count and mean-FA connectomes. The middle three
columns report slope estimates and 95% CI bounds for linear mixed-
effects model fit across scans. The right-most column reports t-test
p values for the hypothesis that SW does not change over time for
scans from the same subjects. Note that SW increases significantly
for the tract-count connectomes but not the mean-FA connectome.

Mixed Model Slope CI Subject ∆

Connectome Lower Est. Upper t-test p val.

Tract-Count 0.0081 0.0140 0.0199 0.0017
Norm. Count 0.0070 0.0133 0.0196 0.0032

Mean-FA -0.0044 -0.0007 0.0030 0.6498

the mean normalized CPL value was not significantly dif-
ferent from zero (p = 0.1333). Normalized CC, however,
increased between scans in most subjects which, in turn,
caused SW to increase. Using t-tests, the mean values
of both measures were found to be significantly greater
than zero (p = 0.0056 and p = 0.0017 respectively). Both
this experiment and the previous one strongly suggest that
SW increases with PMA in the tract-count connectomes
of preterm infants (Table 3).

4. Discussion

In this work, we found that our dataset of preterm
infants, represented as two SNR group-connectomes of
younger and older scans, showed similar responses to
thresholding as a group of similarly aged infants born at
term and studied by Yap et al. [58] (section 3.1). The
comparisons between the infant groups and random and
lattice networks resulted in the predicted outcomes and all
three groups of infant connectomes exhibited a balance of
network integration and segregation. Despite these simi-
larities, Yap et al. reported, at certain network costs, lower
ML and GE in the term group than we find in the preterm
group. These results seem to disagree with our later anal-
ysis on how network integration and segregation develop
over time. However, it is likely the case that differences be-
tween connectome pipelines can explain this discrepancy.

One important difference between the two connectome
pipelines is the way in which tract-count connectomes are
constructed. In Yap et al.’s work, the weight of each tract-
count connectome edge represented the number of tracts
passing through a pair of atlas regions. In contrast, we
only count a tract based on what regions its end-points
are in. So, for the same scan, Yap et al.’s method will
report strictly larger edge weights, especially for regions
that are intermediaries on long-range fiber tracts. This
bias towards intermediate regions means that small sec-
tions of these long-range connections will dominate the
topology of the backbone network more so than their full,
long-range connection.

This counting bias explains why, at low network costs,
GE was higher in the age-matched preterm group com-
pared to the group born at term. In the connectomes
computed by Yap et al. , long-range connections, which

increase GE, will be counted less than their corresponding
sub-connections and thus will be less likely to be included
in the backbone network. Further, we see that for higher
network costs, these long-range connections are preserved
in the backbone network and the difference in GE vanishes.

We also found that at most network costs, the ML com-
puted by Yap et al. was lower than what we computed
in the age-matched preterm group. We expect this is also
due to the counting bias mentioned above. The edges that
receive larger weights by Yap et al.’s method are likely to
have low weights in our connectomes, since these inter-
mediate connections are unlikely to have a large number
of similar tracts that terminate in the two corresponding
regions. These intermediate connections are also likely to
connect regions along long-range fiber bundles, thereby re-
ducing network segregation and ML.

Given that differences in connectome construction can
account for discrepancies in network measures between
group backbone networks in the two studies, the degree
of network segregation and integration in infants born
preterm versus those born at term may, in fact, be simi-
lar. It has been well-established that preterm birth is as-
sociated with reduced FA and increased mean diffusivity,
suggesting reduced structural connectivity [1, 3, 24]. Our
results may complement those findings by further showing
that this reduced connectivity does not affect the overall
organization of the connectome, or that the differences in
organization are subtle enough that they cannot be dis-
cerned from measures of the backbone network. The sec-
ond of these two explanations seems more likely as we did
not see a difference in ML between our younger and older
preterm groups despite seeing a trend of increasing segre-
gation with time in section 3.3.

An examination of individual region-pair connections
(section 3.2) revealed a number of connections exhibiting
relatively larger increases in tract count with age. If we
assumed the rate of tract development was balanced, we
would expect to see a 50-50 balance between the number
of tracts gaining and losing importance in the normalized
connectomes. Instead, we observed that ∼ 46% of the
non-zero tract changes were positive. This suggests that,
over our observed time range, more than half of brain re-
gion connections are developing relatively slowly and that
a smaller subset of region-pairs are developing connections
at a greater rate.

Further, we saw higher than average numbers for de-
veloping connections in the occipital and frontal lobes.
Early development of neurons and connecting axonal fibers
in the occipital lobe, prior to those in the frontal lobe,
has been reported in the micro-scale brain anatomy liter-
ature [26, 51]. At the same time, Pandit et al. observed
more connections developing with age between frontal lobe
structures within 47 to 134 weeks post-conception [41].
It is possible that within the age range of this study, we
are seeing both effects: the greater development in the
occipital lobe could be occurring earlier in our cohort’s
age range, with greater development in the frontal lobe
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occurring later on. This hypothesis would confirm re-
sults reported by Takahashi et al., who found in post-
mortem infants, between 17 and 40 weeks post-conception,
that emergence of connectivity moved generally from pos-
terodorsal to anteroventral [50]. Unfortunately, the linear
modeling we performed did not allow us to see these dis-
tinct periods of development separately. Our future work
will look at exploring this hypothesis even further, either
by fitting a higher order model or by examining smaller
age ranges individually.

It is likely that the relative increases in tract count seen
between certain region-pairs is primarily due oligodendro-
cyte maturation [16]. Myelin sheath maturation begins
as early as 30 weeks but does not occur simultaneously
throughout the brain, instead propagating up the corti-
cospinal tracts and outwards, affecting major fiber bundles
first [33]. We therefore expect then, in our cohort, that the
majority of increased connectivity is due to oligodendro-
cyte maturation and not myelination.

We examined both tract-count connectomes and mean-
FA connectomes and found that there was significant over-
lap between developing edges between the two (section
3.2). This results is expected since higher FA suggests the
presence of more cell structure connecting two regions [7].
However, high mean FA does not always imply higher
oligodendrocyte maturation or that more neuronal fibers
are connecting two regions. Regions of crossing fibers may
have high fiber density but will present a low FA value in
a standard DTI. That said, we expect that the effects of
crossing fibers are less likely to present in this study given
the early ages of the infants.

A notable difference between tract-count and mean-FA
connectomes is that the mean-FA edge weights are not
sensitive to relative bundle thickness. While certain fiber
tracts may be thicker than others, they don’t have to ex-
hibit higher mean FA. For this reason, and those men-
tioned above, we conclude that there is value in examin-
ing both types of connectomes, especially when examining
early infant development when a variety of complex pro-
cesses may be influencing FA values.

The rapid development of cortico-cortical tracts found
in our analysis of the normalized tract-count connectomes
matches what is known in the literature. Long-range fibers
between cortical regions develop across the corpus callo-
sum between 33-35 weeks PCA and short-range cortico-
cortical fibers begin developing after that [30]. Again, due
to our linear model, here we only observe the combined
effect of these two stages of development.

Examining the distance between regions of developing
connections, we found that the majority of region-pairs ex-
hibiting significantly increasing tract-counts were between
spatially local regions (<30 mm). However, we did find
some long-range connections between regions greater than
70 mm apart. This finding of a small number of long-range
connections developing in the preterm infant brain is sup-
ported by the results of Takahashi et al., who also found
such long range connections developing between 17 and 40

weeks gestation [50].
In section 3.3, it was shown that for tract-count con-

nectomes, SW consistently increases with age across our
age range. This result is consistent with results from Ty-
mofiyeva et al. who found higher small-worldness in infants
scanned shortly after normal term birth than in a group
of preterm infants scanned at an average of ∼ 35 weeks
after conception [52]. In their work, as here, rise in small-
worldness was due to increased normalized CC values and
stable normalized CPL. van den Heuvel et al. also exam-
ined small-worldness in structural connectomes of preterm
infants, scanned at 30 and 40 weeks PMA. Despite evi-
dence of WMI and other pathologies in their cohort, our
small-worldness results strongly agree with their findings
of mean SW values of ∼ 1.3 at 30 weeks and ∼ 1.5 at 40
weeks [54]. While other studies have shown evidence of
small-world brain networks at different ages, the fine tem-
poral sampling of the dataset in our study exposed the
clear trend of increasing SW and allowed detection of a
significant positive correlation of SW with age [4]. This
result suggests that the human connectome is less small-
world at an early stage in development, and perhaps at a
very young age, not small-world at all.

In contrast, it was found that for mean-FA connectomes,
SW was greater than 1 but did not increase with PMA.
While many of the region-pair connections which exhib-
ited a consistent increase in tract count also exhibited an
increase in mean FA, there were a number of connections
which exhibited an increase in FA but not in tract count
(section 3.2). Thus, the mean-FA connectomes seemed to
have extra connections, not present in the tract-count con-
nectomes, that gained edge weights over time. It is likely
that these extra connections with increasing edge weights
are responsible for preventing increasing SW by inhibiting
network segregation since the two connectome types seem
to otherwise change similarly with age.

We also saw that not every subject’s tract-count connec-
tome increased in SW across age (section 3.4). This implies
that either there is some error in our pipeline introducing
a certain inaccuracy in connection weights, or that indi-
vidual subjects develop somewhat distinctly and that the
trend in increased small-worldness with age is not true for
every person across every time-increment of early develop-
ment. There is increased potential for this second option,
given that the subjects studied here are all born preterm
and, while were screened to be healthy, are likely affected
in some way by the early age of birth. Nevertheless, it
is impossible not to introduce some error in the registra-
tion, segmentation and tractography processes and thus it
is probably the case that both explanations of decreased
SW are, in part, responsible. Moving forward, there are
certainly aspects of the connectome pipeline which can
and should be improved, particularly through the use of
more advanced tractography [12, 13] and registration tech-
niques [11].

One subject in particular exhibited greatly decreased
CC (<-0.5) and was an outlier in this respect. This sub-
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ject also exhibited a relatively large increase in total tract
count given the time between scans (i.e., it is well above
the linear regression on the delta MWD plot in Figure 6).
This large increase in number of tracts enables a large
change in network topology between scans. However, the
reason why, in this subject in particular, these new tracts
are distributed across the network in a way that is causing
reduced clustering is not clear since no other aspects of
this subject, for which we have data, are notable.

One area not explored in this work is the effect of the
birth age on the brain network properties examined here.
While the cohort in this study was screened thoroughly
to be normative, we still expect known effects of preterm
birth, like reduced overall FA and increased MD, to have
some effect on brain network connectivity [1, 3, 24]. A
future direction is to examine the relationships between
birth age, age at time of scan and connectome topology.

Also, it has been noted in the literature that when per-
forming inference on multiple edges in a graph, like we
did in Section 3.2, the topology of the graph can be used
to more appropriately control the family-wise error rate
(FWER) [59]. Network based statistics (NBS) by Zalesky
et al. is a standard approach for leveraging network struc-
ture when controlling FWER but assumes a generalized
linear model at each edge. Unfortunately, linear mixed-
effects models are not within the class of generalized lin-
ear models. Future work may include extending NBS to
linear mixed-effects models in order to extract more accu-
rate inferences from datasets where each subject is scanned
multiple times.

5. Conclusions

In this work, we analyzed the topology and longitudinal
change in the structural connectomes of a cohort of young
normative preterm neonates. To do this we constructed a
pipeline to count the number of white matter tracts, and
compute the mean FA, between pairs of anatomically de-
fined regions in each scan. Individual connections and the
high-level topology of the resulting brain networks were
analyzed as a group and individually across age. Cer-
tain region-pair connections showed a particularly high
rate of tract growth compared to others, particularly in
the frontal and occipital lobes. However, discrepancies be-
tween tract-count and mean-FA connectome longitudinal
trends exposed the importance of examining both mea-
sures of structural brain connectivity. Finally, we found
that the preterm group in this study consistently exhibited
high network integration and segregation and, most in-
terestingly, significantly increasing small-worldness across
age.
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[25] Petra S Hüppi, Stephan E Maier, Sharon Peled, Gary P Zien-
tara, Patrick D Barnes, Ferenc A Jolesz, and Joseph J Volpe.
Microstructural development of human newborn cerebral white
matter assessed in vivo by diffusion tensor magnetic resonance
imaging. Pediatric Research, 44:584–590, 1998.

[26] Peter R Huttenlocher and Arun S Dabholkar. Regional differ-
ences in synaptogenesis in human cerebral cortex. Journal of
comparative Neurology, 387(2):167–178, 1997.

[27] Mark Jenkinson, Peter Bannister, Michael Brady, and Stephen
Smith. Improved optimization for the robust and accurate linear
registration and motion correction of brain images. Neuroimage,
17(2):825–841, 2002.

[28] Shuzhou Jiang, Hui Xue, Serena J Counsell, Mustafa An-
jari, Joanna Allsop, Mary A Rutherford, Daniel Rueckert, and
Joseph V Hajnal. In-utero three dimension high resolution fetal
brain diffusion tensor imaging. In Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2007, pages 18–
26. Springer, 2007.

[29] Derek K. Jones and Peter J. Basser. ”squashing peanuts and
smashing pumpkins”: How noise distorts diffusion-weighted MR
data. Magnetic Resonance in Medicine, 52:979–993, 2004.
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Appendix A. Segmented regions and labels

Table A1 lists the region names and abbreviations for
the segmented regions from the UNC atlas, used in our
connectome analysis. In Figure A.1, slices of the atlas with
labeled regions are displayed visually for spatial context.
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Figure A.1: Axial slices of the UNC atlas, numbered from inferior to superior. Each atlas region is coloured uniquely and labelled using a
label from Table A1.
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Table A1: List of anatomical region names and abbreviations in UNC brain region atlas.

Index Region Abrv. Index Region Abrv.

1 Precentral gyrus left PreCG-L 46 Cuneus right CUN-R
2 Precentral gyrus right PreCG-R 47 Lingual gyrus left LING-L
3 Superior frontal gyrus (dorsal) left SFGdor-L 48 Lingual gyrus right LING-R
4 Superior frontal gyrus (dorsal) right SFGdor-R 49 Superior occipital gyrus left SOG-L
5 Orbitofrontal cortex (superior) left ORBsup-L 50 Superior occipital gyrus right SOG-R
6 Orbitofrontal cortex (superior) right ORBsup-R 51 Middle occipital gyrus left MOG-L
7 Middle frontal gyrus left MFG-L 52 Middle occipital gyrus right MOG-R
8 Middle frontal gyrus right MFG-R 53 Inferior occipital gyrus left IOG-L
9 Orbitofrontal cortex (middle) left ORBmid-L 54 Inferior occipital gyrus right IOG-R
10 Orbitofrontal cortex (middle) right ORBmid-R 55 Fusiform gyrus left FFG-L
11 Inferior frontal gyrus (opercular) left IFGoperc-L 56 Fusiform gyrus right FFG-R
12 Inferior frontal gyrus (opercular) right IFGoperc-R 57 Postcentral gyrus left PoCG-L
13 Inferior frontal gyrus (triangular) left IFGtriang-L 58 Postcentral gyrus right PoCG-R
14 Inferior frontal gyrus (triangular) right IFGtriang-R 59 Superior parietal gyrus left SPG-L
15 Orbitofrontal cortex (inferior) left ORBinf-L 60 Superior parietal gyrus right SPG-R
16 Orbitofrontal cortex (inferior) right ORBinf-L 61 Inferior parietal lobule left IPL-L
17 Rolandic operculum left ROL-L 62 Inferior parietal lobule right IPL-R
18 Rolandic operculum right ROL-R 63 Supramarginal gyrus left SMG-L
19 Supplementary motor area left SMA-L 64 Supramarginal gyrus right SMG-R
20 Supplementary motor area right SMA-R 65 Angular gyrus left ANG-L
21 Olfactory left OLF-L 66 Angular gyrus right ANG-R
22 Olfactory right OLF-R 67 Precuneus left PCUN-L
23 Superior frontal gyrus (medial) left SFGmed-L 68 Precunesu right PCUN-R
24 Superior frontal gyrus (medial) right SFGmed-R 69 Precentral lobule left PCL-L
25 Orbitofrontal cortex (medial) left ORBmed-L 70 Precentral lobule right PCL-R
26 Orbitofrontal cortex (medial) right ORBmed-R 71 Caudate left CAU-L
27 Rectus gyrus left REC-L 72 Caudate right CAU-R
28 Recuts gyrus right REC-R 73 Putamen left PUT-L
29 Insula left INS-L 74 Putamen right PUT-R
30 Insula right INS-R 75 Pallidum left PAL-L
31 Anterior cingulate gyrus left ACG-L 76 Pallidum right PAL-R
32 Anterior cingulate gyrus right ACG-R 77 Thalamus left THA-L
33 Middle cingulate gyrus left MCG-L 78 Thalamus right THA-R
34 Middle cingulate gyrus right MCG-R 79 Heschl gyrus left HES-L
35 Posterior cingulate gyrus left PCG-L 80 Heschl gyrus right HES-R
36 Posterior cingulate gyrus right PCG-R 81 Superior temporal gyrus left STG-L
37 Hippocampus left HIP-L 82 Superior temporal gyrus right STG-R
38 Hippocampus right HIP-R 83 Temporal pole (superior) left TPOsup-L
39 ParaHippocampal gyrus left PHG-L 84 Temporal pole (superior) right TPOsup-R
40 ParaHippocampal gyrus right PHG-R 85 Middle temporal gyrus left MTG-L
41 Amygdala left AMYG-L 86 Middle temporal gyrus right MTG-R
42 Amygdala right AMYG-R 87 Temporal pole (middle) left TPOmid-L
43 Calcarine cortex left CAL-L 88 Temporal pole (middle) right TPOmid-R
44 Calcarine cortex right CAL-R 89 Inferior temporal gyrus left ITG-L
45 Cuneus left CUN-L 90 Inferior temporal gyrus right ITG-R
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