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Abstract

Malignant melanoma (MM) is one of the most frequent

types of cancers among the world’s white population. Der-

moscopy is a noninvasive method for early recognition of

MM by which physicians assess the skin lesion according

to the skin subsurface features. The presence or absence of

“streaks” is one of the most important dermoscopic crite-

ria for the diagnosis of MM. We develop a machine-learning

approach for identifying streaks in dermoscopic images us-

ing a novel melanoma feature, which captures the quater-

nion tubularness in the color dermoscopic images, is sen-

sitive to the radial features of streaks, and is localized to

different lesion bands (e.g. the most periphery band where

streaks commonly appear). We validate the classification

accuracy of SVM using our novel features on 99 dermo-

scopic images (including images in the absence, presence

of regular, and presence of irregular streaks). Compared

to state-of-the-art, we obtain improved classification results

by up to 9% in terms of area under ROC curves.

1. Introduction

Malignant melanoma (MM) is one of the most frequent

type of cancers among the world’s white population [1, 2].

Early diagnosis of MM is an important factor for progno-

sis and treatment of melanoma. Dermoscopy (also called

epiluminescence microscopy) is a noninvasive method for

early recognition of MM, allowing a better visualization of

the skin structures. Using the dermoscopic images, physi-

cians assess the skin lesion based on the presence or ab-

sence of the different global (e.g. homogeneous, starburst,

parallel patterns) or local (pigment network, dots, streaks,

blue-whitish veil, regression structures, hypopigmentation,

blotches, vascular structures) dermoscopic features.

Recently, a considerable amount of research has focused

on automating the feature extraction and classification of

dermoscopic images as a key step toward performing ma-

chine learning for computer aided diagnosis. An overview

of the existing feature extraction methods for skin lesion

characterization has been recently reported in [12]. These

techniques investigate global appearance descriptors like

border asymmetry and irregularity [5], color variation [8],

and texture patterns, e.g. using the Fourier power spec-

trum [17], statistics of the wavelet transform coefficients

[16], Gaussian derivative kernels [19], or Laws’s kernels

[3]. The aforementioned methods are developed to learn

features to differentiate melanoma from melanocytic nevi,

or detect the pigment network, homogeneous pattern, glob-

ular pattern, reticular pattern, vascular pattern, and blue-

white veil. Due to the clinical importance of the absence or

presence of the regular or irregular streaks in dermoscopic

images [4], in this study, we focus on extracting features for

a machine learning system for streak detection. To the best

of our knowledge, only a few studies have focused on streak

detection, in which global appearance descriptors, such as

color variation and border irregularities of the lesion, are

extracted [5, 9].

Streaks, also referred to as radial streamings, appear as

linear structures located at the periphery of a lesion and are

classified as either regular or irregular depending on the ap-

pearance of their intensity, texture, and color distribution

[4]. Examples of dermoscopic images in the absence and

presence of the streaks are shown in the first column of Fig-

ure 1.

Since streaks have a ridge like appearance, their analy-

sis stands to benefit from state-of-the-art research in image

analysis of curvilinear structures, most notably the plethora

of works on vasculature (cf. recent survey [11]). But unfor-

tunately, the small body of work on streak detection fades in

comparison. In this work, we utilize, for the first time, Hes-

sian based tubularness filters to enhance streak structures

in dermoscopic images (Section 2.1). We are the first to

make use of orientation information for streak classification
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Figure 1. Examples of dermoscopic images from [4] and the enhanced images using the tubularness filter responses [10]. The results

are shown for dermoscopic images in the absence (first row), presence of regular (second row), and irregular streaks (third row). (a)

Dermoscopic image [4]. (b) The segmented lesion using graph-cuts. (c-d) Streak-enhancement and estimated streak-direction resulting

from applying Frangi et al.’s filter (1). (e) Vector field of the streaks according to (2).

through the use of eigenvalue decomposition of the Hessian

matrix (Section 2.2). Given the estimated tubularness and

direction of the streaks, we define a vector field in order

to quantify radial streaming pattern of the streaks. In par-

ticular, we compute the amount of flux of the field passing

through iso-distance contours of the lesion. We construct

our appearance descriptor based on the mean and variance

of the flux through the different concentric bands of the le-

sion, which in turn allows for more localized features with-

out the prerequisite of explicitly calculating a point-to-point

correspondence between the lesion shapes (Section 2.3).

We validate the classification accuracy of a SVM classifier

based on our extracted features (Section 3). Our reported

results on 99 dermoscopic images show that we obtain im-

proved classification (by up to 9% in term of area under

ROC curves), compared to state-of-the-art (Section 4).

2. Methods

2.1. Tubularness Filter for Streak Enhancement

Frangi et al. [10] proposed to measure the tubularness

ν(x, s) at pixel x = (x, y) for scale s using:

ν(x, s) = e
−R2(x,s)

2β2

(

1− e(−
S2(x,s)

2c2
)

)

, (1)

R (x, s) = λ1(x,s)
λ2(x,s)

, S (x, s) =
√

∑

i≤2

λ2i (x, s)

where λi(x, s), i = 1, 2 (|λ1| 6 |λ2|) are the eigenvalues,

resulting from singular value decomposition (SVD), of the

Hessian matrix of image I computed at scale s. R and S
are measures of blobness and “second order structureness”,

respectively. β and c are parameters that control the sensi-

tivity of the filter to the measures R and S.

Figure 1 shows the computed tubularness based on (1)

for dermoscopic images of the different types: in the ab-

sence, presence of regular, and presence of irregular streaks,

denoted by ABS, REG, and IRG, respectively.

2.2. Flux Analysis of the Streaks’s Principle Curva­
ture Vectors

While computing tubularness of the streaks using (1),

we make an estimation of the streak direction φ(x, s).
It is computed as the angle between the x-axis and the

eigenvector corresponding to λ1(x, s), which points along

the direction of the minimum intensity curvature. Given φ
and ν, we define a “streak vector field” as:

~E = (ν cos(φ), ν sin(φ)) (2)

98



Examples of the computed φ and ~E are shown in the last

two columns of Figure 1. To quantify the radial streaming

pattern of the vector field with respect to a lesion contour

C, we measure the amount of the flow of ~E parallel and

perpendicular to C, denoted by ψ‖ and ψ⊥, respectively,

using:

ψ‖( ~E,C) =

∮

C

‖ ~E × ~n ‖ dc (3)

ψ⊥( ~E,C) =
∮

C

| < ~E.~n > | dc

where ~n is the normal vector to C, × and <.> denote cross

and dot products between the vectors, and ‖ . ‖ and |.| mea-

sure the L2 norm of the vector and the absolute value of

the scalar, respectively. By computing (3), we state our hy-

pothesis as: in the presence of streaks on the contour C,

ψ‖ and ψ⊥ would take low and high values, respectively,

capturing the known radial characteristic of the streaks. In

Section 2.3, we discuss how to utilize the measured flux to

construct a feature vector for streak detection.

Note that in our implementation, we make an initial es-

timation of C by applying a binary graph cut segmentation

[6], where the data term and regularization terms are set

using the distribution of the pixel intensities and the Pott’s

model, respectively [7]. The intensity distributions of the

foreground and background are estimated by clustering, in

color space, the image pixels into two distinct clusters.

2.3. Streak Detection Features

We measure ψ‖ and ψ⊥ according to (3) over iso-

distance contours of the lesion, where each contour is the

loci of the pixels which have equal distance from the outer

lesion contour Co. We calculate the distance transform

(DT) of the lesion mask to extract the iso-distance contours,

denoted by Cd, where d represents the distance between Cd

and Co. Figure 2 shows an example of the computed DT of

a lesion mask and the iso-distance contours Cd. We com-

pute the mean and variance of the flux of the different bands

of the lesion, where the Kth band of thickness ∆, BK,∆, is

defined as the region limited between the contoursCK∆ and

C(K−1)∆ and is given by:

BK,∆(x) = χ(CK∆(x)) ∩ (1− χ(C(K−1)∆(x)) (4)

where χ(C) is the region inside contour C. Therefore, the

mean and variance of the flux over bandBK,∆ are given by:

µK,‖ =

K∆
∑

d=(K−1)∆

ψ‖(Cd)/

∫

x∈Ω

BK,∆(x) dx, (5)

σK,‖ =

√

K∆
∑

d=(K−1)∆

(ψ‖(Cd)− µK,‖)2/
∫

x∈Ω

BK,∆(x) dx,

µK,⊥ =
K∆
∑

d=(K−1)∆

ψ⊥(Cd)/
∫

x∈Ω

BK,∆(x) dx,

σK,⊥ =

√

K∆
∑

d=(K−1)∆

(ψ⊥(Cd)− µK,⊥)2/
∫

x∈Ω

BK,∆(x) dx

where Ω is the image domain. Note that the denominator in

(5) corresponds to the area of the Kth band, which is used to

normalize the extracted features. After computing µ and σ
of the flux of theN different bands (K = {1, 2, ..., N}), our

SVD-flux based feature vector, denoted by SVD-FLX, is

constructed by concatenating the measurements of the dif-

ferent bands and is given by:

SVD-FLX = (6)

{µ1,‖, σ1,‖, µ1,⊥, σ1,⊥, ..., µN,‖, σN,‖, σN,⊥, µN,⊥}.

Note that to make use of color information in the computed

tubularness in (1), the tubularness is measured using the

eigenvalues of the quaternion Hessian matrix of the color

image [14]. We denote the feature vector utilizing quater-

nion Hessian matrix by QSVD-FLX and provide a compar-

ison between the classification accuracies of SVD-FLX and

QSVD-FLX in Section 4.
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Figure 2. The iso-distance contours and subbands of a lesion. (a) Lesion

mask. (b) Distance transform of (a). (c) Iso-distance contours Cd of the

lesion, where d represents the distance between Cd and the lesion border in

(a). (e) Bands of the lesion defined according to (4) between the contours

in (d).

3. Machine Learning for Streak Classification

The final step in our approach is to learn how the ex-

tracted descriptors can best distinguish the three different

classes: the absence (ABS), presence of regular (REG), or

presence of irregular (IRG) streaks in the dermoscopic im-

ages. The 3-class classification task is realized using an ef-

ficient pairwise classification. The pairwise classification

is based on a non-linear SVM, trained and then validated

according to a leave-one-out scheme [13].

The SVM classifier requires the setting of two param-

eters: ξ, which assigns a penalty to errors, and γ, which

defines the width of a radial basis function [18]. We com-

pute the false positive (FP) and true positive (TP) rates of

the classifier for different values of ξ and γ in a logarithmic

grid search (from 2−8 to 28) to create a receiver operating

characteristic (ROC) curve. Therefore, each pair of the pa-

rameters (ξi, γj) would generate a point (FPij , TPij) in

the graph. The ROC curve is constructed by selecting the
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Figure 3. ROC curves of the pairwise classifiers resulting from using the

different descriptors. Areas under the ROC curves are reported in Table 1.

set of optimal operating points. Point (FPij , TPij) is op-

timal if there is no other point (FPmn, TPmn) such that

FPmn ≤ FPij and TPmn ≥ TPij . We use the area un-

der the generated ROC curves obtained from classification

involving different descriptors to compare their discrimina-

tory power.

4. Results

The proposed algorithm has been tested on 99 768×512-

pixel dermoscopic images of Argenziano et al.’s atlas of

dermoscopy [4], including 33 images in which the streaks

are absent (ABS), 33 images in which regular streaks are

present (REG), and 33 images with irregular streaks (IRG).

Note that the whole dataset in [4] consists of 527 images of

different resolutions, ranging from 0.033 to 0.5 mm/pixel.

The 99 out of 527 images are selected such that a complete

lesion occupying more than 10% of the image can be seen,

since only then the lesion texture is reasonably visible and

suitable for analysis.

Figure 3 and Table 1 show the classification accuracies

of the different descriptors in terms of the ROC curves and

the areas under them, where GLOB, WT, SVD-FLX, and

QSVD-FLX denote the global descriptors used in [9]1, WT-

1GLOB is constructed using the mean and variance of pixel intensities

in different color spaces (RGB, HSI, and Luv) and the border irregularities,

where the latter is measured via the change in the lesion contour pixels’

coordinates relative to the lesion’s centroid and the ratio between the lesion
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Figure 4. Classification accuracy of our flux-based descriptor, QSVD-

FLX, vs. different parameters: (a) Accuracies (pixel intensities) vs. dif-

ferent number of bands (Y-axis) and band thicknesses (X-axis). The green

dot indicates the maximum accuracy. Note that the accuracies are reported

in terms of the geometric-mean of the AUCs of the the pairwise classifiers.

(b) Classification accuracy (Y-axis) vs. different smoothness levels of the

lesion border (X-axis).

based descriptors used in [16]2, and our flux-based descrip-

tors using the eigenvalues of the luminance and RGB im-

ages in (1), respectively. Note that we measure the classifi-

cation accuracies of the flux-based descriptors for different

numbers of bands and thicknesses in (5), K ∈ [5, 13] and

∆ ∈ [2, 8] pixels, and report the optimum accuracies (Fig-

ure 4(a)). In the last row of Table 1, we provide multi-class

classification accuracies as the geometric mean of the pair-

wise classifiers, as suggested in [15]. Furthermore, since

it is expected that the classification accuracies of the flux-

based descriptors be sensitive to the lesion borderC, in Fig-

ure 4(b), we report the change in classification accuracies

as C is varied, which in turn is done by applying different

levels of regularization (smoothness) to C. It can be seen

that our proposed descriptors produce higher classification

accuracy for a wide range of smoothness levels.

The results indicate that, averaged over all the groups

(the last row in Table 1), we obtain 91% accuracy; up to

10% increase in terms of area under ROC curves compared

with GLOB and WT. Furthermore, it can be noticed that

QSVD-FLX, which is obtained by considering the color in-

formation, results in an average of 4% improvement in the

classification accuracy compared with SVD-FLX. It should

be mentioned that many of the existing feature extraction

methods for skin lesions have been developed to detect the

presence or absence of streak structures. Therefore, we re-

port the classification accuracies for ABS vs. (REG+IRG)

in the last row of Table 1. The results indicate the superior-

ity of QSVD-FLX compared with SVD-FLX.

contour length and the maximum axis of the contour’s convex hull (details

in [9]).
2The WT-based descriptors are constructed by concatenating the mean

and variance of the WT-coefficients of the different sub-bands of the WT

using Haar wavelets and three decomposition levels (details in [16]).
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Area under the ROC curves

Group1 vs. Group2 GLOB [9] WT [16] SVD-FLX QSVD-FLX Selected Descriptor(s)

ABS vs. REG 0.83 0.83 0.80 0.91 QSVD-FLX

REG vs. IRG 0.78 0.75 0.87 0.89 QSVD-FLX

ABS vs. IRG 0.77 0.87 0.88 0.93 QSVD-FLX

Geometric Mean 0.79 0.81 0.85 0.91 QSVD-FLX

ABS vs. (REG+IRG) 0.78 0.70 0.70 0.80 QSVD-FLX

Table 1. Area under the ROC curves in Figure 3. The last column shows the descriptor(s) that resulted in the highest AUC. Note that we report multi-class

classification accuracies in terms of geometric mean (GM) of the pairwise classifiers (as done in [15]). The last row compares the ability of shape descriptors

to discriminate between the absence and presence of the streaks (ABS vs. (IRG+REG)).

5. Discussion and Conclusion

Automating feature extraction and classification of der-

moscopic images is of utmost importance for early detec-

tion of potential malignant melanoma (MM). Presence or

absence of the characteristic streaks is one of the most im-

portant dermoscopic criteria for MM diagnosis. We pro-

posed a novel appearance descriptor that captures the tubu-

larness in the color dermoscopic images, is sensitive to the

radial features of streaks, and is localized to different le-

sion bands (e.g. the most periphery band where streaks

commonly appear). The experimental results show that

we achieve improved classification results compared to the

state-of-the-art global and wavelet transform based descrip-

tors. We plan to extend our method to detect and classify

the presence of other dermoscopic features (e.g. pigment

network, dots, vascular structures), moving us an important

step forward towards a machine-learning based computer

aided diagnosis system for early detection of MM.
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