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Abstract. Correctly classifying a skin lesion is one of the first steps
towards treatment. We propose a novel convolutional neural network
(CNN) architecture for skin lesion classification designed to learn based
on information from multiple image resolutions while leveraging pre-
trained CNNs. While traditional CNNs are generally trained on a sin-
gle resolution image, our CNN is composed of multiple tracts, where
each tract analyzes the image at a different resolution simultaneously
and learns interactions across multiple image resolutions using the same
field-of-view. We convert a CNN, pretrained on a single resolution, to
work for multi-resolution input. The entire network is fine-tuned in a
fully learned end-to-end optimization with auxiliary loss functions. We
show how our proposed novel multi-tract network yields higher classi-
fication accuracy, outperforming state-of-the-art multi-scale approaches
when compared over a public skin lesion dataset.

1 Introduction

The World Health Organization estimates that globally each year, between
two and three million nonmelanoma skin cancers are diagnosed, and 130,000
melanoma skin cancers occur [16]. Classifying different types of skin lesions is
needed to determine appropriate treatment, and computerized systems that clas-
sify skin lesions from skin images may serve as an important screening or second
opinion tool. While considerable research has focused on computerized diagno-
sis of melanoma skin lesions [9], less work has focused on the more common
nonmelanoma skin cancers and on the general multi-class classification of skin
lesions. In this work, we focus on predicting multiple types of skin lesions that
includes both melanoma and nonmelanoma types of cancers.

To classify skin lesions, Ballerini et al. [1] performed 5-class classification,
and Leo et al. [12] performed 10-class classification over images that included
nonmelanoma and melanoma skin lesions. They segmented lesions, extracted
color and texture based features, and used K-nearest neighbours to classify the
images. To perform 5- and 10-class skin lesion classification of nonmelanoma and
melanoma skin lesions, Kawahara et al. [8] performed a two step process: first,
using a Convolutional Neural Network (CNN) pretrained over ImageNet [13],
they extracted image features at two different image resolutions, and second,
these features were concatenated and used to train a linear classifier.
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CNNs generally learn based on an image of a single fixed resolution (e.g.,
Krizhevsky et al. [10]). However, this single resolution may not be optimal
and depends on the scale of the objects within the image. Information from
multiple image resolutions may be critical in capturing fine details, especially
in the domain of medical images (e.g., to discriminate pathology). As such,
other works have proposed different multi-scale approaches. During testing, Ser-
manet et al. [14] used a fully convolutional neural network to extract predictions
over multiple image resolutions and spatial locations and aggregated the pre-
dictions using a spatial max and averaging of scales. This simple aggregation
approach, however, does not learn interactions across different resolutions (i.e.
multi-resolution only applied during testing, not training). He et al. [5] proposed
a spatial pyramid pooling layer applied after the last convolutional layer to pro-
duce fixed-sized responses regardless of the image size. The CNN is trained on
images of multiple resolutions sequentially, causing the CNN to learn parame-
ters that generalize across image resolutions. However, each prediction is based
only on a single input resolution, and interactions across multiple input image
resolutions are not considered. Bao et al. [2] proposed a multi-scale CNN trained
and tested on image patches of different sizes (i.e. different field-of-view) simul-
taneously for segmentation, but did not explore multi-resolution input (i.e. same
field-of-view at different resolutions) for whole image classification. Kamnitsan
et al. [7] proposed a multi-scale dual-path 3D CNN for brain segmentation that,
like the prior approach, considers different field-of-views. While the previously
mentioned approach by Kawahara et al. [8] does consider multiple image res-
olutions, only a final linear classifier learns interactions across different image
resolutions, and the CNN itself does not learn based on the input images.

In this work, we propose a CNN for skin lesion classification that learns in-
teractions across multiple image resolutions of the same image simultaneously
through multiple network tracts. Unlike prior multi-scale architectures [2,7], our
network keeps the same field-of-view for image classification, uses auxiliary loss
functions, and leverages parameters from existing pretrained CNNs. Leverag-
ing pretrained CNN parameters (i.e. transfer learning) is especially useful with
limited training images, and has resulted in consistent improvements in other
medical image analysis tasks when compared to starting from random initializa-
tion [15]. Thus a key contribution of our work is to extend pretrained CNNs for
multiple image resolutions, optimized end-to-end with a single objective func-
tion. We demonstrate that our proposed multi-tract CNN outperforms compet-
ing approaches over a public skin dataset.

2 Methods

We design a CNN to predict the true lesion class label y, given a skin lesion im-
age x. Our CNN is composed of multiple tracts where each tract considers the
same image at a different resolution using the same field-of-view. An end layer
combines the responses from multiple resolutions into a single layer. We attach a
supervised loss layer (i.e. layer with a loss function that compares predicted with



Multi-resolution-Tract CNN with Hybrid Layers 3

true class labels) to these combined responses, thus making the final prediction
a learned function of multiple resolutions of the same image. This loss is back-
propagated through all tracts causing the entire network to be optimized with
respect to multiple image resolutions. We add auxiliary supervised loss layers
to each tract, motivated by the work of Lee et al. [11], who found that adding
additional “companion”/“auxiliary” supervised layers regularize the responses
learned. In this work, auxiliary losses cause each tract to learn parameters that
classify well at that particular resolution. At test time, we ignore the auxiliary
classifiers and only use the final end classifier.

Converting a pretrained CNN to multi-tract CNN In order to train
large CNNs with a limited skin dataset, we use a hybrid of the pretrained
AlexNet [4,10] architecture and parameters θp, (omitting the 1000-d ImageNet-
specific output layer) for early network layers, and additional untrained layers
for later network layers that learn only from skin images. To pass images of
different resolutions through all the layers pretrained on a single resolution, we
convert (keeping the trained parameters) fully-connected layers to convolutional
layers, as convolutional layers allow for variable sized inputs [14].

For practical considerations (e.g., limited GPU memory), we limit our dis-
cussion and experiments to two tracts, although this approach is applicable to
additional tracts/resolutions. We refer to the two tracts as the upper tract, which
takes in a low-resolution image, and the lower tract, which takes in a high-
resolution image. Our full proposed network is shown in Fig. 1.

We pass an image x(0), of the same image resolution that the pretrained
network (AlexNet) was trained on to the upper tract of our network. This pro-
duces responses of size 1×1×4096. We add an additional convolutional layer with

untrained (i.e. randomly initialized) parameters θ
(0)
t , which produces responses

of lower dimensionality 1×1×256. To the lower tract, we pass an image x(1)

with an image resolution greater than that of x(0). After being convolved with
the pretrained parameters, the lower tract produces responses of m×m× 4096
(Fig. 1 lower green box ). Other works have reduced this m × m dimension-
ality through pooling [5,8,14], but in this work, we add additional untrained

1×1×4096 and m ×m × 64 convolutional filters, θ
(1)
t , that learn to reduce the

dimensionality to 1×1×256. Using these two layers instead of a single fully-
connected layer, we significantly reduce the amount of needed parameters. Aux-

iliary supervised loss layers with untrained parameters, θ
(0)
l , θ

(1)
l , are added to

the upper and lower tract responses.

An untrained convolutional layer takes as input the 256-dimensional re-
sponses from both tracts. We add a supervised loss layer to these combined
responses making the final prediction a function of the image taken at two differ-
ent resolutions. In order to reduce the total number of independent parameters in
our model, we are inspired by the work on Siamese nets [3] to share the AlexNet
weights θp, across the upper and lower tracts. This means that updates to θp
will be based on both image resolutions. Finally, rather than storing separate
image resolutions of the same image, we only store the highest desired resolu-
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Fig. 1: The proposed two-tract fully convolutional multi-resolution neural net-
work. The highest resolution image x(1), is averaged-pooled to create a low-
resolution image x(0), as input to the upper tract. x(1) is fed to the lower tract
to extract responses at a finer scale. As all layers are convolutional layers, a
larger input produces larger responses (green lower box ). After the layers with
pretrained parameters θp, additional layers with unshared trainable parameters
θt, are added. Each tract has a supervised auxiliary loss layer (blue box ). The
responses from both image resolutions are combined and an output layer makes
the final prediction (pink box ). Spatial dimensions (e.g., 8 mean 8× 8) are given
inside each box, and the number of channels are shown alongside each box.

tion. Within the network architecture itself, we average-pool the high-resolution
image to the desired low-resolution scale, allowing for more efficient storage.

Multi-tract loss and optimization Our network has a supervised data loss
that considers the combined high and low resolution images, as well as auxiliary
data losses that each only considers the responses from a single image resolu-
tion. These equally weighted losses are averaged over n mini-batches of training
instances along with a regularization over the parameters,

L(x,y,θ) =
λ

n

n∑
i

`(xi, yi; θp, θt, θc) +

naux∑
j=0

`(x
(j)
i , yi; θp, θ

(j)
t , θ

(j)
l )

 + γ||θ||

(1)
where `(.) is the cross-entropy loss using a softmax activation function; the ith

image is transformed into the jth resolution x
(j)
i ; yi is the ground truth class label

of xi; the parameters θ = {θp, θt, θc, θl} are composed of the shared pretrained

parameters θp, the unshared tract parameters θt = {θ(j)t } where j indicates

the tract, the parameters connecting the j auxiliary loss θl = {θ(j)l }, and the
parameters connecting the tracts together θc; ||θ|| is the L2 regularization over
the parameters; and, λ, γ weight the terms where λ = 1

naux+1 and naux is the
number of auxiliary supervised layers in the network (e.g., 2).

We update our network parameters θ using stochastic gradient descent with
mini-batches. Thus, for the k+1 iteration, we compute θ(k+1), from the previous
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k iteration parameters θ(k) and parameter updates U (k) as,

U (k+1) = µU (k) − α∇L(θ(k)) and θ(k+1) = θ(k) +U (k+1), (2)

using a low learning rate α = 10−4, as much of the CNN is pretrained; ∇L(θ(k))
are the gradients of Eq. 1; and µ is a momentum parameter. We use Caffe [6]
to implement our architecture and optimize Eq. 1 with mini-batches of size
n = 15 (lowers GPU memory to allow for multiple tracts). As common in the
literature [10], we set µ = 0.9 and γ = 0.0005.

3 Results

We used the Dermofit Image Library1 to test our proposed method. This dataset
contains 1300 skin lesion images from 10 classes: Actinic Keratosis (AK), Basal
Cell Carcinoma (BCC), Melanocytic Nevus/Mole (ML), Squamous Cell Car-
cinoma (SCC), Seborrhoeic Keratosis (SK), Intraepithelial Carcinoma (IEC),
Pyogenic Granuloma (PYO), Haemangioma (VSC), Dermatofibroma (DF), and
Malignant Melanoma (MEL). We randomly divided the dataset into three sub-
sets of approximately the same number of images and class distributions. One
subset is used to train (i.e. optimize Eq. 1), validate (e.g., test design decisions),
and test. We resized the x(0) image to 227×227 and x(1) to 454×454. Each image
was normalized by subtracting the per-image-mean intensity as in [8].

For our first experiments (Table 1 rows a-c), we implemented the two-step
approach of Kawahara et al. [8] by extracting responses from the sixth layer
(FC6) of the pretrained AlexNet for images x(0) and x(1), and max-pool the
spatial responses of x(1). As in [8], these extracted responses are used to train a
logistic regression classifier. We report the accuracy for classifying x(0) and x(1)

individually, and on the concatenated responses from the two image resolutions
(note this experimental setup only uses half of the training images that [8] did).

Our next experiments (rows d,e) show that our hybrid use of pretrained and
additional skin-lesion trained layers improved classification accuracy. We split
the two-tract network into upper and lower tracts and train each separately
on a single resolution. For a fair comparison, we doubled the number of nodes
in the layer before the auxiliary loss layer (i.e. Fig. 1 orange layer) to closely
match the number of independent parameters within the two-tract model. The
accuracy of the one-tract single-resolution model (rows d,e) improved over rows
a,b, but is less than our proposed model (row i), indicating that considering
multiple resolutions within our two-tract architecture improves accuracy.

Row f details the results of applying the classification approach of Sermanet
et al. [14] to aggregate the CNN responses from multiple image resolutions.
To implement their classification approach, we pass high-resolution x(1) images
through the one-tract model (row d) trained on low-resolution x(0) images to pro-
duce class responses with spatial dimensions. We take the maximum spatial re-
sponse and average it with the class responses computed from the low-resolution
image to compute a class unnormalized probability vector.

1 https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html

https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html
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Table 1: Experimental results. image res. shows the image resolution in the
train/test phase (e.g., 227/454 means image size 227×227 and 454×454). We
report the averaged classification accuracy for the valid and test datasets. Rows
a-i use multi-resolution versions of an image spanning the same field-of-view.
Rows j,k use augmented image views, where row k combines the multi-resolution
approach with augmented views.

method image res. valid test
(a) FC6+LogReg 227 0.674 0.705



single
view

(b) FC6+LogReg 454 0.649 0.700
(c) Kawahara et al. 2015 [8] 227/454 0.684 0.741
(d) 1-tract (ours) 227 0.733 0.741
(e) 1-tract (ours) 454 0.737 0.759
(f) 1-tract + Sermanet et al. 2014 [14] 227/454(test) 0.719 0.748
(g) He et al. 2014 [5] (SPP) 224/448 0.688 0.711
(h) 2-tract 0-aux-losses (ours) 227/454 0.723 0.755
(i) 2-tract 2-aux-losses (ours) 227/454 0.751 0.773

(j) 1-tract (ours) 454 0.760 0.775
}aug.

view
(k) 2-tract 2-aux-losses (ours) 227/454 0.781 0.795

Row g uses He et al. [5]’s Spatial Pyramid Pooling (SPP) approach, which
learns CNN parameters from multiple image resolutions. To implement, we use
the pretrained Zeiler-Fergus (ZF) SPP network He et al. [5] provided (similar
architecture to AlexNet) and replace their final output layer with our own. We
train over ≈11 epochs before switching between 224×224 and 448×448 image
resolutions, repeating 20 times for 9000 iterations (more iterations did not im-
prove results). Each image resolution is fine-tuned for 1000 iterations. During
testing, we averaged the CNN’s output class responses from both resolutions.

Rows h,i show results using our two-tract multi-resolution architecture. With-
out auxiliary losses (row h), the two-tract model performs worse than the single
tract (row e), highlighting the need to include the auxiliary loss functions (Eq. 1)
to achieve the highest accuracy (row i). Note that we outperform [8], which was
shown to outperform [1,12], and that [1,12] were non-CNN based approaches
specifically designed for this dataset. The confusion matrix over the test data
is shown in Fig. 2 (right). We ran additional experiments to cross-validate over
the two other folds and obtained a statistically significant difference between the
baseline of [8] (using the approach from row c) and our two-tract approach (row
i) with a mid-p McNemar’s test, p=0.0155.

We compare the accuracy of the final output classifier with the accuracy of
the auxiliary classifiers (Fig. 2 (left)). Generally, the final classifier has a higher
accuracy, indicating that this classifier (which considers the same responses as
each auxiliary classifier) has learnt to combine responses from multiple image
resolutions, and that this improves classification accuracy. This plot also high-
lights the advantage of pretrained parameters, as high accuracy occurs within
5000 iterations (1 hour of training), using a low number (430) of training images.
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Fig. 2: (left) A comparison of the classification accuracy of the individual upper
and lower single resolution-tracts with the two-tracts. Integrating multiple image
resolutions yields higher accuracy. By using pretrained parameters, we reach a
high accuracy within a short number of iterations. (right) The confusion ma-
trix over the 10-classes from our test data using our proposed multi-tract CNN
(heatmap indicates class-specific classification accuracy normalized across rows).

In order to focus on the effects of our proposed architecture and multi-
resolution input, the experiments in rows a-i did not use data augmentation.
Our final set of experiments demonstrates that our multi-resolution approach is
complementary to the commonly used approach of training using different image
views. We augment the training images with left-right flips, and rotations. Row
k combines augmented image views with multi-resolution input, resulting in fur-
ther accuracy improvements when compared to using only augmented views (row
j ) and using only multiple resolutions (row i), highlighting that the proposed
multi-resolution input complements existing image augmentation approaches.

We did not compare to [2,7] as their approach was designed for 3D segmen-
tation, and while their approach of taking as input different amount of spatial
context is well motivated for patch-based segmentation of 3D volumes, it is less
applicable to whole image classification. Further contributions we make that dif-
fer with their work include: pretrained CNNs for multiple resolutions, the use of
auxiliary losses, and multi-resolution input.

Finally, we discuss possible reasons why successful approaches used in com-
puter vision datasets (e.g., ImageNet [13] where images are captured at widely
different scales), were found less effective for our skin diagnosis application
(where dermatology images are captured at a similar scale). When the scale
of objects widely differs, the SPP approach [5] to learn parameters that general-
ize over multiple scales, and the approach to aggregate responses over different
scales [14], are desirable. However, in our case, where the objects’ scale are
roughly fixed, the different CNN-tracts learn to respond to characteristics that
are specific to that resolution. This highlights how our proposed architecture is
well designed for skin images captured at relatively fixed scales.
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4 Conclusions

We presented a novel multi-tract CNN that extends pretrained CNNs for multi-
resolution skin lesion classification using a hybrid of pretrained and skin-lesion
trained parameters. Our approach captures interactions across multiple image
resolutions simultaneously in a fully learned end-to-end optimization, and out-
performs related competing approaches over a public skin lesion dataset.

Acknowledgments. Thanks to the Natural Sciences and Engineering Research
Council (NSERC) of Canada for funding and to the NVIDIA Corporation for
the donation of a Titan X GPU used in this research.
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