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Abstract. Skin conditions represent an enormous health care burden
worldwide, and as datasets of skin images grow, there is continued in-
terest in computerized approaches to analyze skin images. In order to
explore and gain insights into datasets of skin images, we propose a
graph based approach to visualize a progression of similar skin images
between pairs of images. In our graph, a node represents both a clin-
ical and dermoscopic image of the same lesion, and an edge between
nodes captures the visual dissimilarity between lesions, where dissimi-
larity is computed by comparing the image responses of a pretrained
convolutional neural network. We compute the geodesic/shortest path
between nodes to determine a path of progressively visually similar skin
lesions. To quantitatively evaluate the quality of the returned path, we
propose metrics to measure the number of transitions with respect to
the lesion diagnosis, and the progression with respect to the clinical 7-
point checklist. Compared to baseline experiments, our approach shows
improvements to the quality of the returned paths.
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1 Introduction

Globally, skin conditions are the fourth most common cause of healthy years
lost due to disability [6], and represent the most common reason for a patient to
visit their general practitioner in studied populations [16]. Skin conditions such
as malignant melanoma, a common cancer, can be fatal [14]. Many groups rec-
ognize the potential for computerized systems to analyze skin lesions and help
reduce the burden on health care, and much work has gone into developing com-
puterized systems to diagnose skin disorders [13]. Typically, such systems take
as input a skin lesion image, and output either a discrete label or the probability
that this lesion has a particular diagnosis. For example, Estevan et al. [5] used a
human designed taxonomy to partition clinically similar images into classes that
have a similar number of samples. They fine-tuned a Convolutional Neural Net-
work pretrained over ImageNet [15] to classify skin lesions, and achieved results
comparable to human dermatologists. While knowing the probability that the
image contains a particular type of skin lesion is a worthwhile goal, a disadvan-
tage to this approach is that it is a “black box”, where the user gains no insights
into the automated diagnosis or of the underlying dataset of skin images.
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A different approach from classification that offers some insights into the
dataset or diagnosis is to adopt an image retrieval based approach. For example,
Bunte et al. [3] extracted colour features from clinical skin images, learned a
supervised transformation of these features, and retrieved images in a dataset
based on the k nearest neighbours to these features. These returned images can
be displayed to the user, giving insights into the appearance of similarly diseased
images and allow the diagnosis to be inferred. Kawahara et al. [10] displayed a
network graph visualization based on the nearest neighbours to a single query
image, which allow users to efficiently search the space of similar lesion images.

Another approach to visualize general images was proposed by Hegde et
al. [7], where rather than retrieving the k nearest images to a single query im-
age, their approach uses two query images (a source and target) to retrieve a list
of images that progress in visual similarity between the two images. They accom-
plish this by representing images as nodes in a graph, where the edges between
nodes indicate their pair-wise distance, and the geodesic (shortest path) between
source and target nodes represents a visually smooth progression of images. A
similar approach for general images was recently implemented online [12], which
is based on an experimental visualization tool as part of Google Arts and Cul-
ture [11]. In other works, representing images as nodes to find an optimal path
between nodes has been used to guide subject-template brain registration in MR
images [8].

In this work, we apply a similar method to find images of skin lesions that
visually progress between a source and target lesion. This visualization approach
may be useful for clinicians who wish to find reference images of hard to classify,
visually challenging “borderline” cases across types of skin diseases (e.g., note
the visually challenging aspects in distinguishing clark nevus from melanoma in
Fig. 1 bottom row). Another use may be to show or predict the visual progression
over time between a low-risk benign lesion to a malignant lesion (e.g., progression
in Fig. 3 bottom row). This may give insights into the progression of the disease
(e.g., Clark/Dysplastic nevi is potentially a precursor to melanoma and studies
estimate that 20-30% of melanomas come from nevi [4]), or serve as a useful
reference for patients to monitor and compare the progression of their own lesion.
In these potential applications, the target images could be from either a set
of predefined reference images, or the geodesics to each of the nearest unique
diseases could be automatically shown.

To the best of our knowledge, this is the first work that has applied geodesic
paths to visualize skin lesion images. In contrast to previous work [7,8,11,12], we
propose to let each node in our graph represent images from two modalities (a
dermoscopic and a clinical image), where the edge weights are influenced by both
types of images. We apply an exponential function to the pair-wise dissimilarity
measures, and show how this results in longer paths of higher quality without
risking disconnected graphs. Finally, we propose measures to quantitatively eval-
uate the quality of our paths, which is lacking in prior work. These proposed
quality measures are particularly important as without them, we would need to
qualitatively inspect each path.
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2 Methods

A skin lesion can be captured by both a dermatoscope (producing a dermoscopic
image xd), and a photo camera (producing a clinical image xc), where the der-
moscopic images show a more standardized view of the lesion, and the clinical
images are non-standardized and often show additional contextual information
(e.g., the body part the lesion is on) not available in the dermoscopic images.
Given a dataset of skin lesions, the i-th skin lesion is represented by a dermo-
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c ). We create a graph where each pair

of images (x
(i)
d , x

(i)
c ) are represented by a single node v(i), and an edge e(ij) en-
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indicates the position in the returned path), the R-th node is a given target node
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R , and the intermediate nodes (v

(i)
1 , . . . , v

(j)
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progress between the source and target nodes. We find these intermediate nodes
using Dijkstra’s algorithm, which computes the geodesic between the source and
target and returns a path of nodes representing a progression of visually similar
lesions.

The key components that we now examine in detail are how to: extract
image features that capture the salient properties of skin images, compute local
dissimilarity between pairs of skin lesion images, weigh and connect the node
edges using multi-modal images, and quantitatively evaluate the quality of the
returned paths.

Skin Images as Deep Pretrained Neural Nets Responses. The responses
of skin images with deep convolutional neural networks pretrained over Ima-
geNet [15] have shown to be effective feature vectors for skin lesion classifi-
cation despite the differences in appearance between skin lesions and natural
images [9]. We use a similar approach to compute feature vectors as in [9], and
for a particular image, extract the responses from the first fully connected layer
of VGG16 [17], and average the responses over a set of predefined image aug-
mentations,

Φ(x)m =
1

|Π|
∑
π∈Π

φ(π(x− µ))m (1)

where π is a function to augment an image (e.g., left-right flip); Π is the set
of |Π| number of image augmentations; φ(·)m extracts the m-th response of the
first fully connected layer of VGG16; and, µ represent the mean pixel over the
training data from ImageNet, which is subtracted from the skin lesion image x.
The resulting feature vector Φ(x) represents a single lesion image by averaging
the augmented responses over a single image, without increasing the dimensions
of the feature vector.
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Fig. 1: An example random path (top) and geodesic returned from the proposed
method (bottom), where the leftmost and rightmost image represent the source
and target nodes, respectively. The dermoscopic image is shown above the clinical
image in each row. The magenta bar indicates the dissimilarity between adjacent
images, where a higher bar indicates that they are more dissimilar.

Local Image Dissimilarity. Given two feature vectors u,v ∈ RM (which rep-
resent the responses of two skin images), we compute the dissimilarity between
them as the cosine distance raised to the p-th power,

D(u,v) =

1−
∑M
i uivi√∑M

i u2i

√∑M
i v2i

p

(2)

where setting p 6= 1 non-linearly changes the dissimilarity between vectors. By
using a high p (e.g., p = 4), we assign very low values to edges connecting simi-
lar images, thus encouraging geodesics to pass through nearby nodes of similar
images, avoiding very short paths even in the case of complete graphs, i.e., fully
connected graphs (further discussed in the Results section). Other distance mea-
sures are possible (e.g., L1, L2), and we found them to give empirically similar
results. Fig. 1 shows the dissimilarity between pairs of images (dissimilarity is
displayed in magenta using p = 1 for clarity).

Multi-modal Edge Weights. We define the edge weight e(ij) between nodes
i and j as a weighted sum based on both the dermoscopic and clinical images,

e(ij) = αD(Φ(x
(i)
d ), Φ(x

(j)
d )) + (1− α)D(Φ(x(i)c ), Φ(x(j)c )) (3)

where D(·) is a function that computes the dissimilarity (Eq. 2) between the
feature vectors Φ(·) computed in Eq. 1; and α weighs the influence of the der-
moscopic and clinical images (0 ≤ α ≤ 1). Increasing α causes an edge to be
more influenced by the dermoscopic image than the clinical image, which may
be desired as dermoscopic images contain more salient lesion properties.
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Node Connectivity. To form the graph, we must decide on the connectivity of
nodes. This can be done by connecting the k nearest neighbours (where nearest is
defined via Eq. 2) to each node with an edge. However, choosing k is challenging
as a large k (e.g., a complete graph) increases computational complexity and can
lead to very short paths being returned when a direct edge exists between any
pair of source and target nodes. Too small a k can lead to disconnected graphs,
where no path exists between the source and target nodes. In the Results, we
experiment with different values of k and show that by setting a high value of p
in Eq. 3, the returned paths remain longer even in the case of complete graphs.

Surrogate Measures of Path Quality. While we provide qualitative results
through visualizing the returned paths (Fig. 3), we also propose the following
measures to quantitatively evaluate the quality of the returned paths. We define
a quality path as a smooth visual progression of images. However, this definition
is hard to precisely define and directly measure. Thus we propose a surrogate
measure that uses the diagnoses of the lesions, as skin lesion datasets are often
accompanied with a corresponding clinical diagnosis y(i) (e.g., melanoma, nevus),
indicating the disease type of the i-th lesion x(i), where y(i) is an attribute of
node v(i). Our assumption is that lesions with the same diagnosis will likely be
visually similar, and that a high quality path will have a smooth progression
with respect to the lesion diagnosis. In order to give a high cost to paths that
frequently change neighbouring labels, we define the transition cost as,

trans(v
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1 , . . . , v

(j)
R−1, v

(t)
R ) =

1

R− 1

R∑
r=1

(
1− δ(y(a)r − y
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)
(4)

where R is the number of nodes in the returned path; and y
(i)
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skin lesion diagnosis for the r-th returned path node corresponding to node

v
(i)
r (e.g., y

(s)
0 and y

(t)
R correspond to the labels of the source and target nodes

v
(s)
0 , v

(t)
R respectively). The Dirac delta function δ(·) returns 1 if the two labels

have the same class, and 0 otherwise.

Our second surrogate quality measure quantifies the progression of the 7-
point score between the source and target nodes. The 7-point score is a clinical
measure of melanoma based on the visual presence of seven criteria (e.g., ir-
regular streaks) within a lesion. The weighted sum of these seven criteria form
the 7-point score ŷ ∈ Z [1], where ŷ(i) is an attribute of node v(i). We assume
that a quality path will have 7-point scores that smoothly progress from a low
to high score, as higher scores indicate the presence of lesion more indicative of
melanoma (and vice versa). We define the progression cost as,

progress(v
(s)
0 , . . . , v

(t)
R ) =

1

R
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[(
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)
, 0
])

(5)
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where sgn(z) returns the sign of the difference between the source and target
node scores,

sgn(z) =

{
1, if z = 0
z
|z| , otherwise.

(6)

This measure returns a cost of 0 if the 7-point score consistently decreases,
increases, or remains constant along the path between the source and target
nodes, and penalizes by the magnitude of the change otherwise. This approach,
however, will always compute a 0 cost if the path only consists of the source
and target nodes. As this is a degenerate case, we ignore the progression costs
for paths of length two when computing results, and note that this measure is
biased to return lower costs for shorter paths, and is thus most informative when
comparing paths with the same number of nodes.

3 Results

Data. We test our proposed approach and surrogate measures using the Inter-
active Atlas of Dermoscopy [2] skin dataset. This dataset contains 1011 cases
of skin lesions, where all but four cases are captured by both a clinical xc and
dermoscopic xd image (in the four cases missing xc, we set xc = xd). Each
case has a class label y that represents a known lesion diagnosis, and a 7-point
score ŷ. The diagnosis y can take on one of the 15 class labels: basal cell car-
cinoma (BCC), blue nevus (BN), clark nevus (CN), combined nevus (CBN),
congenital nevus (CGN), dermal nevus (DN), dermatofibroma (DF), lentigo
(LT), melanoma (MEL), melanosis (MLS), miscellaneous (MISC), recurrent ne-
vus (RN), reed or spitz nevus (RSN), seborrheic keratosis (SK), and vascular
lesion (VL). The 7-point score ŷ ∈ Z ranges between 0 and 7 (in this dataset),
where a higher score indicates the lesion has visual properties more indicative
of melanoma. The lesion diagnosis and the 7-point score are only used to quan-
tify the quality of the returned paths, and are not used to form the graph. We
randomly select a set of 1000 pairs of source and target nodes which are used
across all experiments.

Recovering Synthetic Paths. We start by testing if our proposed approach
can recover the path of images created by a progressive synthetic transformation.
To do this, we crop the image by removing 15% of the pixels at the borders of the
images, and repeat this five times. This progressively enlarges the lesion over a
series of five images. We added these five synthetic images to our dataset, select
the original image as the source and the final synthetic image as the target (p = 4
and k = 30). We find our approach not only recovers all synthetic images, but
it recovers the correct sequence of synthetic images, i.e. in the order they were
synthesized (Fig. 2), indicating that this approach and the feature vectors are
sensitive to scale despite the CNN being trained on images at multiple scales.
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Fig. 2: Synthetic examples: Here the leftmost images represent the source nodes,
which belong to the original (non-enlarged) dermoscopic images in the dataset.
The rightmost images represent target nodes, which were the last of the progres-
sively enlarged images. The returned geodesic path is represented by the images
in between. Note that the returned geodesic included all five synthetic images,
in proper order of increasing enlargement.

Retrieving Paths from a Complete and Non-Complete Graphs. For our
first experiment, in Table 1 row 1.1 (complete graph with p = 1) we report re-
sults using a complete graph (i.e., k = 1011) using only the dermoscopic images
(i.e., α = 1 in Eq. 1) and setting p = 1 in Eq. 3. We observe that when using a
complete graph, the returned paths often consist of only the source and target
nodes as their shared edge yields the shortest path. This experiment highlights
the need to either prune the edges in the graph or modify the edge weights.
Following the approach of [12], we form a new graph where each node is con-
nected to its k = 30 neighbours. Row 1.2 (non-complete graph with p = 1)
shows that restricting the node connectivity increases the number of nodes in
the returned path and improves the transition cost (note that the progression
cost performs worse as it is biased towards paths with fewer nodes, and is thus
most informative when comparing paths with a similar number of nodes).

Paths with Exponential Edge Weights. While decreasing node connectivity
(i.e., lowering k) results in longer paths, care must be taken when choosing k,
as reducing k increases the risk of forming disconnected graphs where no path
exists between a source and target node. Thus instead of pruning edges, our
next experiment (row 1.3 complete graph with p = 4) shows how applying an
exponential function (i.e., p = 4 in Eq. 3) to the dissimilarity function results
in longer paths of higher quality even in a complete graph. By removing the
need to prune graphs (i.e., choose k), we guarantee a path to exist, while still
preventing short paths. If we are not concerned with disconnected graphs, we
can combine edge pruning using k neighbours with the increased p, to match the
computational efficiency of a pruned graph without penalty to quality (row 1.4
non-complete graph with p = 4). For the remaining experiments, we use p = 4
and non-complete graphs with k = 30, as our graphs remained connected.



8 Graph Geodesics to Find Progressively Similar Skin Lesion Images

Table 1: Quantitative results of the returned paths using the proposed surrogate
quality measures. The Img. column indicates if the input was a dermoscopic
image xd, clinical image xc, or included both. k represents the number of nearest
neighbours used to form edges that connect nodes. Aug. indicates if the image
was augmented or not when forming the image feature vector. Trans., Progress.,
indicates the average and standard deviation transition and progression cost as
defined in the text. Num. Path shows the average and standard deviation number
of nodes in the computed path.

Exp. Img. Aug. p k Ordered Trans. Progress. Num. Path

1.1 xd 7 1 1011 min-path 0.76 ± 0.42 0.10 ± 0.19 2.02 ± 0.13
1.2 [12] xd 7 1 30 min-path 0.64 ± 0.34 0.23 ± 0.26 3.59 ± 0.85

1.3 xd 7 4 1011 min-path 0.56 ± 0.26 0.37 ± 0.20 8.11 ± 2.87
1.4 xd 7 4 30 min-path 0.56 ± 0.26 0.37 ± 0.20 8.12 ± 2.87

1.5 xd 3 4 30 min-path 0.55 ± 0.25 0.35 ± 0.17 9.16 ± 3.62
1.6 - - - - random 0.76 ± 0.19 0.54 ± 0.24 9.16 ± 3.62
1.7 xd 3 - - linear 0.58 ± 0.25 0.44 ± 0.21 9.16 ± 3.62

1.8 xc 7 4 30 min-path 0.65 ± 0.18 0.46 ± 0.20 10.64 ± 5.08

1.9 xd, xc 7 4 30 min-path 0.45 ± 0.24 0.34 ± 0.19 7.90 ± 3.27
1.10 xd, xc 3 4 30 min-path 0.45 ± 0.23 0.34 ± 0.17 8.86 ± 3.73

Comparing Random and Linearly Interpolated Path. In row 1.5 (aug-
mented images) we augment the feature vector with left-right image flips (Eq. 1),
which results in longer geodesics paths and minor improvements to the path
quality. We form a path with an equal number of nodes as those returned in the
geodesic path in the previous experiment (from row 1.5) by randomly sampling
nodes (without replacement). As the labels in our dataset are highly imbalanced,
these random paths give us a baseline quality score (row 1.6 random paths). We
also compare our method by ignoring the graph, and instead using linearly in-
terpolated feature vectors between the source and target feature vectors. These
interpolated feature vectors are uniformly separated to match the number of
returned nodes in row 1.5. The nearest unique neighbour to this interpolated
feature vector is used to form the path. Row 1.7 (linear paths) shows that this
approach yields paths of worse quality when compared to using graph geodesics.
We highlight that the graph geodesic approach has the additional advantage of
automatically determining the number of nodes in the path, whereas the linearly
interpolated approach requires this to be specified (we set it equal to the length
of the geodesic path).

Using Clinical Image Features. In row 1.8 (clinical images) we use only
the clinical image (i.e., α = 0 in Eq. 3) and notice a marked decrease in the
quality of the paths when compared to dermoscopic images. This is expected
since dermoscopic images are more standardized and focused on the lesion, while
clinical images have a non-standard field of view and can capture background
artifacts.
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Fig. 3: Visualizing Paths. The leftmost and rightmost dermoscopic images are the
given source (clark nevus) and target (melanoma) node, where the images in each
row in between them correspond to the computed geodesic/minimal path. Each
row, starting from the top to bottom row, correspond to the following experiments
in Table 1: 1.2 (non-complete graph with p = 1), 1.4 (non-complete graph with
p = 4), 1.5 (augmented images), 1.6 (random paths), 1.7 (linear paths), 1.9
(dermoscopic and clinical images), and 1.10 (full approach). The geodesic of
Experiments 1.9 and 1.10 incorporates clinical images, shown directly below the
dermoscopic images.
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Combining Dermoscopic and Clinical Image Features. In row 1.9 (der-
moscopic and clinical images) we include both the clinical and dermoscopic
images, weighting the dermoscopic images higher (i.e., α = 0.8 in Eq. 3) as
the dermoscopic images better capture the salient lesion features and avoid ir-
relevant background artifacts. The returned paths now respect both imaging
modalities, yielding improvements to the quality of the paths, most noticeable
with transition costs. Finally, in row 1.10 (full approach) we show the full pro-
posed approach, which uses augmented images from both modalities with the
dissimilarity measure raised to the power of p = 4 on a non-complete graph.
While the path quality measures remain similar to the previous experiment, the
total path length increases.

4 Conclusions

We proposed a method to visualize a smooth progression of similar skin lesion
images between two skin lesions. Our graph geodesic based approach applies
an exponential dissimilarity function and considers information from multiple
modalities (clinical and dermoscopic images) to form the graph edges, leading to
longer paths of higher quality. We proposed surrogate measures of path quality
based on the diagnostic labels of the skin lesions to quantitatively assess the
resulting paths. Future work would explore how to improve the feature vectors
that represent the skin images (e.g., fine-tuning the CNN over a skin dataset),
and examine how to make the progression quality measure less sensitive to the
length of the path.
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