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Abstract. Calculation of blood vessel or airway direction is important
for the task of tree tracking in 3D medical images. However, most ex-
isting works treat branch direction estimation as only a by-product of
vesselness or tubularness computation. In this work, we propose a deep
learning framework for predicting tracking directions of anatomical tree
structures. We modify the deep V-Net architecture with extra layers and
leverage a novel multi-loss function that encodes direction as well as cross
sectional plane information. We evaluate our method on both 3D syn-
thetic and 3D clinical pulmonary CT datasets. On the synthetic dataset,
we outperform state of the art methods by at least 10% in direction
estimation accuracy. For the clinical dataset, we outperform competing
methods by 1 − 4% in mean direction accuracy and 4 − 10% in corre-
sponding standard deviation.

1 Introduction

Tree extraction is a crucial task in 3D medical image analysis, and accurately
extracted circulatory and respiratory trees can be further utilized in surgery
planning, registration and tree space analysis [1,2,3]. However, the automation
and accuracy of tree extraction still remains an open problem due to the natural
complexity and variability of the topologies of anatomical tree structures [4],
the various imaging reconstruction artifacts [5], varying image intensities along
branches, the similarity between tubular structure lumen and background tissue
lumen, and the changing geometry due to different pathologies [6,7,8].

One major category of tree extraction algorithms is based on iterative track-
ing, which usually starts from a given seed point near the root of the tree, predicts
the direction of the branch to track along it, detects bifurcations to spawn chil-
dren trackers, and progresses down the tree hierarchy to smaller branches until
some stopping criteria are met [9]. Although there have been several works that
tackle the important bifurcation detection step of the tracker [10,11], very few
are specifically designed to determine the direction of the branch at a given point.
Most works simply treat the problem of direction estimation as a by-product of
vesselness or tubularness calculation [12,13,14].

Most existing methods on vesselness (with explicit/implicit direction predic-
tion) rely on certain assumptions made on the geometry of tubular structures.
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Most Hessian based vessel enhancement filters, e.g., Frangi et al. [15] and Jerman
et al. [13,14], assumed the vessels were elongated structures. Cetin et al. [10] mea-
sured intensity distribution within an oriented cylinder-sphere combined model
and constructed a corresponding tensor representation to optimize for vessel di-
rections, however, their success relied on a good match between the cylinder and
the actual vessel shape. Law et al. [12] used a gradient based tensor to model
oriented flux flow and the vessel direction was also approximated by the eigen-
vector – intrinsically their assumption of vessel shapes were still straight tubes.
However, in clinical datasets, especially those exhibiting various pathologies or
abnormalities such as narrowing (e.g., in COPD [6]), aneurysms [7], and high tor-
tuosity (which might indicate diseases like arterial hypertension and strokes [8]),
the aforementioned shape assumptions might no longer hold true, which results
in incorrect direction estimates.

In contrast to the above deterministic methods, stochastic and learning based
tracking methods provide more flexibility by adjusting the prediction retrospec-
tively during the tracking process, or by using prior information learnt from the
training data [16]. Lee et al. [17] proposed to use particle filtering to track vessel
contours slice by slice, with the per-slice contour obtained by the Chan-Vese
model. Lesage et al. [18] also proposed to use particle filtering method, but in
contrast, utilized geometric flow, image features, as well as radius and direction
prior distributions to perform Bayesian inference. In these tracking processes,
vessel directions were found implicitly by subtracting neighboring points along
the detected centerlines. On the other hand, a significant number of machine
learning based methods ignore directional information completely by focusing
on pixel-wise classification [19,9,20].

The fast development of deep learning methods provides vast opportunities
in exploring the structures in 3D images from coarse to fine scales [21], however,
limited work has been done on analyzing 3D vasculature images, and none of
them estimated tree branch directions. Mirikharaji et al. [22] proposed to use an
artificial neural network trained on 2D patches to learn the probability map of
airway bifurcation locations; instead of tracking new branches, they connected
the bifurcations by minimal paths to form the whole tree. Fu et al. [23] proposed
to combine a convolutional neural network architecture with a conditional ran-
dom field model to achieve a smooth binary segmentation for retinal vessels, but
their method was only performed on 2D retinal images and no vessel direction
was estimated. Chen et al. [24] proposed to use a convolutional autoencoder for
voxel-wise cerebral arteries segmentation while completely ignoring directional
information.

We claim the following contributions are made in this paper: i) The proposed
method, which extends V-Net [21], is the first tree branch direction prediction
deep learning method; ii) The proposed multi-loss function is novel and specially
designed for tracking 3D tubular structures; iii) The proposed model is trained
and tested in a branch-specific way, which takes advantage of the “anatomical
tree statistics” [25,16] and fully utilizes statistical and geometrical information.
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2 Methodology

Architecture: Our proposed deep learning architecture is an improvement of
V-Net [21]. The choice of V-Net is two-fold: i) its encoding-decoding process
propagates contextual information into higher resolution layers – in our case, the
context information is the tubularity of the neighboring points; and, ii) our multi-
loss function (introduced below) relies on cross sectional plane information, so
the prediction process implicitly involves plane segmentation and reconstruction.
We rescale all input volumes to 64 ∗ 64 ∗ 64 voxels with histogram equalization.
We use batch normalization and add three extra fully connected layers (FCs,
with output channels 1024, 64 and 4) at the end of the V-Net and output a
4-element vector < v, R > where v predicts the direction of the vessel in the
center of the input cube, and a radius R that serves as intermediate input in
training the loss layer. The overall methodology is illustrated in Fig. 1a.
At testing time: a region of interest (ROI, or 3D patch, which we use in the
context interchangeably) is generated and input into the network (as shown
in red dotted box in Fig. 1a), and the output is the predicted vector of the
corresponding branch (shown as −→vgt in Fig. 1b).

(a) (b)

Fig. 1: (a): The proposed architecture and tracking process. (b): Illustration of
Bgt,

−→v gt and Igt in Equation 1.

Loss Function: We define the following multi-loss function:

L(vi
dt, R

i
dt) = ω1Ldir + ω2Lmask + ω3Limage + ω4Lradius (1)
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where i is the training index, gt refers to ground truth value, dt refers to model
prediction. Iigt and Iidt are corresponding gt and predicted cross sectional planes

(going through the center voxel). Bi
gt and Bi

dt are the ground truth and predicted

(using radius Ri
dt and circular expression) branch masks on the cross sectional
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planes, Ri
gt and Ri

dt are the ground truth and predicted radii, as illustrated
in Fig. 1b. The four terms Ldir, Limage, Lmask, Lradius capture the errors in,
respectively, direction estimation, cross sectional image plane reconstruction,
branch internal area estimation and radius estimation. We normalize Limage and
Lmask by the patch cube size and set the weights empirically to ω1 = ω2 = ω3 =
ω4 = 1. The total loss is optimized over vidt and Ri

dt. Since accurate direction
prediction leads to accurate cross section plane prediction, using multiple loss
terms should theoretically increase the direction prediction accuracy.
Tree Tracking: We follow the tracking procedure in [9], which starts from a
given seed point in a branch and tracks along vessel/airway detected by the
proposed architecture. Additional tracking details are given in Section 3.

3 Evaluation

Synthetic Dataset: We use three different types of synthetic dataset to mimic
pathologies such as narrowing and aneurysms, and high tortuosity [6,7,8]: i)
Occlusion, ii) Torus and iii) Leakage. Examples are shown in Fig. 2. We augment
the data by rotating the volumes along each axis randomly between [0, 60◦], using
two radius values, translating along each dimension separately by three values ([-
1, 0, 1], so 9 cases in total) and adding Gaussian noise with standard deviation
from 0.005 to 0.1 (20 cases). This brings the total number of image volumes
per each category to 360. We then run a 3-fold cross validation ensuring that
augmentations of any volume are not split across the train and test sets.

Fig. 2: Synthetic examples (noise free).

Clinical Dataset: The clinical dataset is from the Extraction of Airways from
CT (EXACT) 2009 challenge1. Sixteen training volumes with binary segmenta-
tions were provided by the organizers. We extracted two categories of data: 1)
ROIs, each is a cuboid containing one of the following 7 anatomical structures:
trachea, right main bronchi (RMB), left main bronchi (LMB), right superior
lobar bronchus (RSLB), right intermediate bronchus (RIB), left superior lobar
bronchus (LSLB) and left inferior lobar bronchus (LILB); 2) patches, each is a
cube randomly sampled from the branch centerlines, with radii twice the mean
radii of the branch, intensities normalized to [0, 1], and augmented by adding
Gaussian noise with standard deviation [0.01, 0.04] with step size= 0.01. red We
perform a 4-fold cross validation on the patients for training and testing.

1 http://image.diku.dk/exact/index.php

http://image.diku.dk/exact/index.php
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Competing Methods: We compare with 4 state-of-the-art algorithms: i) OOF [12];
ii) Tensor [10]; iii) Jerman [13,14]; 4) Particle filtering [17]. Since particle filtering
doesn’t directly predict the vessel direction, we use a primitive tracking method
to first trace the branch centerline, then estimate the directions. For multiscale
methods, the scale ranges are set according to mean branch scales learnt from the
dataset, and all other parameters are set according to the original paper (for air-
ways, i.e., dark-on-bright, some parameters are inverted accordingly). Note that
although i) and ii) are not direction prediction methods per se, they leverage
direction estimates to filter branches, which makes the comparison fair.
Tracking Details: Both the proposed method and the competing ones use the
same initial seeds, which are selected from the ground truth branch centerlines.
By calculating the mean radii R̄ of the corresponding branch, the ROI radii are
set automatically as 2R̄.
Evaluation Metrics: Two metrics are used to evaluate the results. For the
tracking method, we use the asymmetric distance function proposed in [9] to
compare the ground truth centerline to the extracted centerline:

D(C1, C2) = { min
s2∈C2

dist(s1, s2)|∀s1 ∈ C1} (2)

where dist(s1, s2) is 3D Euclidean distance between voxels s1 and s2, C1 the
ground truth centerline and C2 the detected centerline (by either the proposed
method or particle filtering). D(C1, C2) returns a set of distance values for all the
points on C1, so a smaller mean value and standard deviation would indicate
a better result. For other competing methods, since they return a per-voxel
direction estimate, we use the following symmetric accuracy metric:

accu(v1,v2) = v1 · v2 (3)

where v1 and v2 are the branch direction vectors to be compared.
Experiments: The evaluation result on the synthetic dataset is shown in Table
1. We can see a marked improvement in the proposed method over the competing
ones by at least 10% in mean direction accuracy. For the Occlusion category, all
competing methods performed poorly, since all these methods assume that the
foreground is always luminous. For the Torus category, we can see the Tensor
method [10] performing the worst, as it modeled the blood vessel as cylindrical
tubes, which were very different from the torus shapes in the given images. On
the contrary, the Tensor method performed much better than other competing
methods on the Leakage category, as a long cylinder might overcome the small
leakage (but not good enough to overcome the occlusion) and found the correct
direction. It is worth noting that, although the Jerman filter could achieve good
enhancement results at tortuous and bulging branches [13,14], the filter was not
designed to deal with the direction estimation task.

We observe that by removing only one of the loss terms (other than Ldir)
actually performs worse than using only Ldir. This is not surprising when we
remember that the cross sectional plane and the direction together serve as the
Frenet frame, so removing one term would invalidate the frame representation.
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Since Limage contains the most information on the cross sectional plane, remov-
ing it leads to the worst performance. The improvement in prediction accuracy
of the multi-loss function supports our hypothesis that all four terms contribute
to the result, given their complementary nature.

Fig. 3a shows an example where an airway centerline tree is extracted us-
ing our proposed method (red curves) and compared to the ground truth tree
centerlines (yellow curves). Fig. 3b shows a qualitative comparison between the
tracking result, along branch LIB, between the particle filtering and the proposed
method. The mean and standard deviation of distance errors of each branch are
shown in Fig. 4. The proposed method achieves a lower error mean and standard
deviation on every anatomical branch.

The results in Table 2 are consistent with the synthetic data results. The
proposed method outperforms all the competing methods on all branches.

We run our experiments on a Nvidia GTX GeForce 12 GB TITAN GPU, and
the processing time per patch at testing stage is 0.04 second.

Year Occlusion Torus Leakage

OOF [12] 2008 0.11(0.07) 0.69(0.28) 0.21(0.12)

Tensor [10] 2015 0.47(0.1) 0.48(0.037) 0.89(0.03)

Jerman [13,14] 2016 0.44(0.46) 0.62(0.48) 0.45(0.07)

Proposed with Ldir only 0.95(0.06) 0.96(0.09) 0.97(0.04)

Proposed w/o Limage 0.90(0.07) 0.95(0.12) 0.94(0.04)

Proposed w/o Lmask 0.93(0.07) 0.93(0.13) 0.97(0.04)

Proposed w/o Lradius 0.94(0.07) 0.93(0.10) 0.97(0.05)

Proposed 0.97(0.02)0.97(0.02)0.97(0.02) 0.97(0.06)0.97(0.06)0.97(0.06) 0.99(0.04)0.99(0.04)0.99(0.04)

Table 1: Three fold cross validation result on synthetic dataset.

(a) (b)

Fig. 3: (a): Whole tree extracted. (b): Centerlines tracked by proposed algorithm
and competing particle filtering algorithm on LIB.

4 Conclusion and future work

We proposed the first deep learning architecture for estimating anatomical
tree branch directions, which is a critical step for the common tracking-based
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Fig. 4: Distance error bar between GT centerlines and detected centerlines.

Level 1 Level 2 Level 3

Trachea LMB RMB LILB LSLB RSLB RIB

OOF [12] 0.19(0.18) 0.24(0.24) 0.29(0.26) 0.30(0.24) 0.42(0.31) 0.40(0.31) 0.43(0.28)

Tensor [10] 0.86(0.15) 0.60(0.20) 0.78(0.15) 0.68(0.22) 0.34(0.29) 0.33(0.26) 0.82(0.13)

Jerman [13,14] 0.91(0.17) 0.93(0.16) 0.90(0.18) 0.87(0.22) 0.87(0.17) 0.86(0.21) 0.88(0.18)

Proposed 0.92(0.11)0.92(0.11)0.92(0.11) 0.95(0.07)0.95(0.07)0.95(0.07) 0.93(0.08)0.93(0.08)0.93(0.08) 0.89(0.15)0.89(0.15)0.89(0.15) 0.91(0.08)0.91(0.08)0.91(0.08) 0.90(0.11)0.90(0.11)0.90(0.11) 0.90(0.10)0.90(0.10)0.90(0.10)

Table 2: Direction accuracy (mean and standard deviation) on airway branches
of different levels.

tree extraction methods. Our proposed loss function is unique in that it follows
the geometry of the target structure (i.e. the curvilinear tree branches) by using
branch direction agreement and cross sectional image information, based on a
Frenet frame of reference. In future work, we intend to apply our model on other
anatomical trees, such as cerebral vasculature and coronary vessels.
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7. Baráth et al.: Anatomically shaped internal carotid artery aneurysm in vitro model
for flow analysis to evaluate stent effect. American Journal of Neuroradiology
25(10) (2004) 1750–1759 1, 2, 4

8. Han, H.C.: Twisted blood vessels: symptoms, etiology and biomechanical mecha-
nisms. Journal of Vascular Research 49(3) (2012) 185–197 1, 2, 4

9. Zhao, M., Hamarneh, G.: Bifurcation detection in 3D vascular images using novel
features and random forest. In: ISBI. (2014) 421–424 1, 2, 4, 5

10. Cetin, S., Unal, G.: A higher-order tensor vessel tractography for segmentation of
vascular structures. TMI 34(10) (2015) 2172–2185 1, 2, 5, 6, 7

11. McIntosh, C., Hamarneh, G.: Vessel crawlers: 3D physically-based deformable
organisms for vasculature segmentation and analysis. In: CVPR. Volume 1. (2006)
1084–1091 1

12. Law, M., Chung, A.: Three dimensional curvilinear structure detection using opti-
mally oriented flux. In: European Conference on Computer Vision. (2008) 368–382
1, 2, 5, 6, 7

13. Jerman et al.: Enhancement of vascular structures in 3D and 2D angiographic
images. TMI 35(9) (2016) 2107–2118 1, 2, 5, 6, 7

14. Jerman et al.: Blob enhancement and visualization for improved intracranial
aneurysm detection. IEEE Trans on Visualization and Computer Graphics 22(6)
(2016) 1705–1717 1, 2, 5, 6, 7

15. Frangi et al.: Multiscale vessel enhancement filtering. In: MICCAI. (1998) 130–137
2

16. Zhao et al.: Leveraging tree statistics for extracting anatomical trees from 3D
medical images. In: CRV. (2017) 131–138 2

17. Lee et al.: Enhanced particle-filtering framework for vessel segmentation and track-
ing. Computer Methods and Programs in Biomedicine 148 (2017) 99–112 2, 5

18. Lesage et al.: Medial-based Bayesian tracking for vascular segmentation: Applica-
tion to coronary arteries in 3D CT angiography. In: ISBI. (2008) 268–271 2

19. Khorshed, R., Celso, C.: Machine learning classification of complex vasculature
structures from in-vivo bone marrow 3D data. In: ISBI. (2016) 1217–1220 2

20. Zhou et al.: Vascular structure segmentation and bifurcation detection. In: ISBI.
(2007) 872–875 2

21. Field et al.: V-Net: A framework for a versatile network architecture to sup-
port real-time communication performance guarantees. In: Fourteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Volume 3.
(1995) 1188–1196 2, 3

22. BenTaieb, A., Hamarneh, G.: Uncertainty driven multi-loss fully convolutional
networks for histopathology. In: Intravascular Imaging and Computer Assisted
Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Syn-
thesis. Springer (2017) 155–163 2

23. Fu et al.: DeepVessel: Retinal vessel segmentation via deep learning and conditional
random field. In: MICCAI. (2016) 132–139 2

24. Chen et al.: 3D intracranial artery segmentation using a convolutional autoencoder.
In: IEEE International Conference on Bioinformatics and Biomedicine. (2017) 2

25. Mirikharaji et al.: Globally-optimal anatomical tree extraction from 3D medical
images using pictorial structures and minimal paths. In: MICCAI. (2017) 242–250
2


