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Abstract
Tractography allows us to explore white matter connectivity in diffusion MR im-

ages of the brain. However, noise, artifacts and limited resolution introduce uncer-
tainty into the results. We propose a statistical model that allows us to quantify and
visualize the uncertainty of a neuronal pathway between any two fixed anatomical
regions. Given a sample set of tract curves obtained via tractography, we use our sta-
tistical model to define a confidence region that exposes the location and magnitude
of tract uncertainty. The approach is validated on both synthetic and real diffusion
MR data and is shown to highlight uncertain regions that occur due to noise, fiber
crossings, or pathology.

1 Introduction

Brain tractography is the process of discovering neuronal pathways in diffusion MR
(dMR) images of the brain. A variety of methods exist to discover tracts, but with
what certainty these tracts correspond to underlying anatomical fibers is often diffi-
cult to determine. Diffusion MR images are often of low resolution, noisy, and may
contain artifacts caused by patient movement or the scanning process itself [14].
These problems can cause tractography algorithms to output false positives or tracts
which stray from anatomical fibers. Kissing and crossing fibers can add further un-
certainty to the estimated trajectory of neuronal fiber tracts. Thus, there is consid-
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erable motivation to determine the confidence in the trajectory of a tractography
result [5, 8]. In other words, given two brain regions of interest, A and B in the
image space Ω , assumed to be connected, there is a need for a method to deter-
mine the confidence in the trajectory of the connecting pathway before proceeding
to subsequent quantification or visualization tasks for any clinical application (e.g.
image-guided neurosurgery [6, 18]).

Previous works have attempted to address the problem of uncertainty in trac-
tography in a variety of ways. One approach is to calculate the probability that two
regions are connected. Given a fiber orientation distribution function (fODF) at each
voxel, it is possible to define the marginal probability of a tract connecting A and
B [1]. However, given the large domain of paths that connect A and B, computing
that marginal probability is often infeasible. Instead, one can sample tracts from A
using probabilistic tractography, and examine the frequency with which they pass
through B [1, 11]. While this method exposes the certainty of connectivity between
two points, it does not directly provide insight into the range of possible path tra-
jectories in uncertain regions. Alternatively, one can calculate the probability of a
connection by taking the product of the individual conditional probabilities along
a tract from A to B [11]. While this path probability may be a useful measure to
compute, it is sensitive to noise and gives no clues about possible spatial variability
in path trajectory. In particular, using this measure alone provides no way of dis-
cerning if other, similarly likely, paths exist. More recently, Brown et al. presented
the k-confidence measure that relates tract confidence to the variability in the path
trajectories of the k most likely paths between A and B [3]. While this approach di-
rectly measures path variability, it only reports a single number and does not convey
the location or nature of discovered uncertainty.

There have also been studies to investigate the accuracy and reliability of tractog-
raphy algorithms by comparing results to tracts delineated by tracers administered to
subjects in vitro [10, 4]. Unfortunately, these kinds of studies can only be performed
post-mortem. The recently presented Tractometer test suite is also an attempt to
reduce the difficulty in evaluating tractography methods [8]. While important, Trac-
tometer only gives general reliability scores and not specific information about the
uncertainty of tract trajectories in a novel image.

We propose a method for computing and visualizing a statistical confidence re-
gion for the distribution of likely tract curves between two regions in the brain.
Given any tractography algorithm capable of discovering multiple candidate tracts
between two regions [1, 3, 11, 13], we compute a sample set of tract curves. We
use this sample set to estimate a distribution over the locations of the tracts, and
we assume the mean of this distribution is the most likely location of the underly-
ing anatomical tracts. We then compute a volumetric region that, for a given confi-
dence level, will contain the mean (or “true”) tract. This confidence region is wide
along dimensions with high uncertainty and is compact or narrow along dimensions
where the estimate of the true mean is more certain. If there is truly a single (non-
bifurcated), clear connection between brain regions, we expect its tract distribu-
tion to be strongly peaked around one path, resulting in a narrow confidence region
around the mean. If, instead, the regions are not connected or the image quality is



Tract Confidence Regions 3

too poor, then no single path should be highly favourable and the tract distribution
would lead to a wide confidence region. This reasoning motivates our contribution:
a method to compute tract confidence and visualize it in a way that reveals regions
of uncertainty in discovered pathways.

2 Method

The proposed method proceeds in two steps. First, a sample set of tract curves,
obtained via tractography [1, 3, 11, 13], is used to compute a statistical confidence
region within which we can say, with a certain confidence, the mean tract lies. Once
we have this high-dimensional confidence region, we proceed to map said region
into the image space to enable inference about the connectivity and trajectory of
neuronal fibers between the two regions.

2.1 Path Confidence Regions

Given a source and target region, A and B, we first generate sample tract curves
connecting A and B. Formally, we represent each sample curve as a sequence of
3D points. When sampled, a tract curve may consist of a varying number of points
depending on its total Euclidean length and the method of delineation. We therefore
resample each curve to have exactly n equally spaced points and represent it as
a single 3n-dimensional observation (where the first three elements correspond to
the three coordinates of the first point and so on). Each tract, xi, in a sample of K
tracts, i = 1 · · ·K, is denoted xi = (xi
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The tract curve distribution to sample from is unknown but, for simplicity, we
assume it to be a multivariate normal distribution. Given a sample set of tracts, one
can calculate the mean tract and tract covariance matrix as
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This statistical model, similar to that presented in [7], assumes our sample set
is generated using unbiased sampling techniques. This assumption holds for proba-
bilistic tractography algorithms [1, 11] and bootstrap tractography techniques [13],
but not for k optimal path tractography [3]. In the k optimal path tractography al-
gorithm, each of the K most optimal paths between A and B are discovered exactly
once. Nevertheless, each path is associated with a path probability, p(xi), that we
use as an estimate of sampling frequency. Accordingly, the mean and co-variance
of the path distribution are instead estimated by the weighted mean and weighted
co-variance of the k optimal paths, computed as



4 Colin J. Brown, Brian G. Booth, and Ghassan Hamarneh
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Given the above statistical models, the confidence region for the mean tract, with
confidence level 100(1−α)%, is defined [9] by the inequality,

K(K−3n)
(K−1)3n

(µ− x)T
Σ
−1(µ− x)≤ F3n,K−3n(1−α) (5)

where F is the F-distribution and µ ∈ R3n. The confidence region of µ therefore
defines a volume in R3n.

2.2 Confidence Region Visualization

In order to visualize the confidence region in 3D, we need to find which voxels in
the image space Ω are traversed by tract curves, µ , that satisfy (5). Clearly, testing
every possible path between A and B for membership in the confidence region is
infeasible. Instead, for each voxel v ∈Ω , we check whether it is feasible for a tract
to pass through v and satisfy (5). This leads to the following feasibility problem

min
µ,ρ

0 (6)

subject to
K(K−3n)
(K−1)3n

(µ− x)T
Σ
−1(µ− x)≤ F3n,K−3n(1−α)

and µ(ρ) = v,

in which we search for tracts, µ , that satisfy (5) and pass through v at some index ρ

(recall that µ(ρ) denotes any indexed 3D point in tract µ). Note that the minimiza-
tion of a constant (min0) is standard notation in feasibility problems since we only
need to ensure that the constraints are met [2, p. 258]. We use Lagrangian relaxation
to convert this feasibility problem into a minimization problem [17, p. 27], for each
v,

min
µ,ρ

λ

[
K(K−3n)
(K−1)3n

(µ− x)T
Σ
−1(µ− x)−F3n,K−3n(1−α)

]
(7)

subject to µ(ρ) = v.

The Lagrange multiplier λ and F-value F3n,K−3n(1−α) are constant with respect
to µ and ρ and can be removed from the minimization without affecting the optimal
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solution. While the objective function in (7) is convex, the restriction, µ(p) = v, is
not. In order to achieve convexity, the minimization over ρ is decoupled. We solve
(7) by first fixing a value of ρ . This leads to the problem of choosing which 3D point
in tract µ to anchor at voxel v. Intuitively, we select the index of the nearest point to
v on the sample mean tract, x(ρ∗), where nearest is defined using the Mahalanobis
distance [15]. Formally, this leads to the optimization problem,

ρ
∗ = argmin

ρ

√
(v− x(ρ))T Σ

−1
α(ρ),α(ρ)

(v− x(ρ)), (8)

where 3ρ ≤ α(ρ)≤ 3ρ +2 defines the sub-matrix Σ
−1
α(ρ),α(ρ)

of the inverse sample

covariance matrix, Σ−1. This minimization is performed via brute force as our tract
length, n, is sufficiently small. (n was set to 150 in all of our experiments). Thus,
given v, ρ∗ is uniquely selected and the minimization problem in (7) becomes,

z(v) = min
µ

[
K(K−3n)
(K−1)3n

(µ− x)T
Σ
−1(µ− x)

]
(9)

subject to µ(ρ∗) = v.

This convex optimization can be interpreted as finding the minimum F-statistic at
each voxel and the minimum is computed using interior point optimization [12].
If there exists a feasible solution, µ , such that z(v) ≤ F3n,K−3n(1−α), then (5) is
satisfied and v is inside the confidence region. Otherwise, v must be outside the con-
fidence region. Minimizing (9) over every v ∈I generates a volumetric confidence
region,

C (α) = {v;∀v ∈I s.t. z(v)≤ F3n,K−3n(1−α)}. (10)

3 Results

In this section we demonstrate both the correctness of tract confidence regions and
their applicability to clinical data. We begin by examining tract confidence regions
for two sets of diffusion MR phantoms, one with an isolated section containing in-
creasing levels of noise and the other with a section of simulated crossing fibers at
varying angles. Next, an experiment on brain diffusion MR images of healthy sub-
jects is presented that tests the inter-subject consistency of our method and demon-
strates the correlation between tract crossing regions and confidence region thick-
ness. Finally, we examine whether tract confidence regions can highlight abnormali-
ties in dMR images of human brains with Multiple Sclerosis (MS) and brain tumors.

Since the F distribution depends on the number of tract curves, K, and the num-
ber of points per curve, n, the confidence region size is affected by these parameters.
As expected, the confidence region grows with smaller K and larger n. For all subse-
quent tests, we fix K = 500, n= 150 and α = 0.01 so that confidence region sizes are
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Fig. 1 Four dMR phantom images of a single tract with a narrow band of increasing levels of
noise. Tract curves are sampled between end points and tract confidence regions are plotted above
a representative fractional anisotropy (FA) slice of each phantom. Color denotes the distance from
the weighted sample mean tract (black) at each point on the surface (i.e. bulges become redder).
Note the increasing bulge size with reduced SNR.

Fig. 2 Thicknesses of confidence regions, inside and outside of the noisy region, for each noise
level in Fig. 1. Plot summarizes four realizations of noise at each level. Thickness is calculated
as the average distance from the mean tract. Note that as noise increases, we obtain a thicker
confidence region, implying higher tract uncertainty.

comparable across tests. Note that while the absolute thickness of a confidence re-
gion changes with K and n, the relative bulges around regions of uncertainty should
be consistent and relatively independent of specific parameter settings.

In the first experiment (Fig. 1), we generate a simple linear fiber bundle phan-
tom with uniform diffusion tensors pointing along the bundle. Increasing levels of
noise are added to a narrow (10-voxel wide) band, reducing the signal to noise ratio
(SNR). We hypothesize that more noise will lead to wider confidence regions. We
compute and visualize our confidence regions for K sampled tracts (using k-optimal
path tractography) between points on either end of the phantom. As expected, the
noise causes uncertainty in the trajectory of the connection as evidenced by the
bulging in the resulting confidence regions (Fig. 2).

The second phantom experiment is set up similarly but instead of noise, the nar-
row band contains a region of simulated crossing fibers. A tensor is added to each
voxel of this band which deviates from the original primary tensor direction at in-
creasing angles (Fig. 3). At larger angles, the primary tensor directions are nearly
orthogonal, and thus there is a high degree of uncertainty about the most likely fiber
trajectory. At smaller angles, the tensors nearly agree and so there is less uncertainty.
As we expect, the tract confidence regions become thicker across the affected band
as the angle becomes closer to 90◦.

Next, our method is validated on 12 images from the John Hopkins MILBA MRI
In Vivo Human Database [16]. Tracts are sampled along a fiber in the corpus cal-
losum (CC) that crosses the corticospinal tract. We hypothesize that this crossing
region causes greater uncertainty to the tractography algorithm and should result in
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Fig. 3 Four more dMR phantom images of a single tract, instead with a narrow band of simu-
lated crossing fibers at increasing angles. Tract curves are sampled between end points and tract
confidence regions are plotted with the sample mean tract above a representative FA slice of each
phantom. Each pair of red arrows indicates the primary tensor directions of the main and crossing
fibers.

a noticeable bulge in the resulting confidence region. The end-points are selected
to be anatomically consistent across subjects, removing the need for image regis-
tration. Fig. 4 shows that, as expected, the trajectory of the sampled tract becomes
more uncertain at the region of fiber crossing. This elevated uncertainty causes a
thickening of the confidence region across this area. Measurements of the confi-
dence region thickness (diameter) in Table 1 show that the thickening is present in
all subjects and that the thickness both inside and outside of this region is reasonably
consistent across subjects.

Table 1 Average confidence region thickness (in mm) per section of CC tract. Note the consistently
greater confidence region thickness within the crossing region, indicative of greater uncertainty.

Subject a b c d e f g h i j k l mean var
Crossing Region 2.08 2.73 1.88 1.89 2.02 2.01 1.74 2.65 2.51 2.16 2.09 2.40 2.18 0.15

Rest of Tract 1.84 2.10 1.65 1.64 1.61 1.67 1.55 2.01 1.60 1.68 1.72 1.99 1.75 0.10

Finally, we compute tract confidence regions in brains of diseased human sub-
jects. Two subjects are afflicted with MS and the other two with malignant tumors.
In each of the four subjects we examined, tracts are sampled from both hemispheres
of the brain with one side showing a healthy tract and the other side containing an
MS lesion or tumor on the corresponding tract. A clear bulge is expected in each
example where the tracts cross the lesion/tumor, indicating increased uncertainty
in tract trajectory. Conversely, confidence regions for both tracts passing through
healthy brain tissue should have a more uniform thickness and be narrower. Fig. 5
shows that our confidence region appraoch provides that expected result, suggest-
ing that tract confidence regions could be useful in measuring the severity of these
abnormalities.

4 Conclusions

We have presented here a novel method for examining uncertainty in tractography
results based on the statistical examination of sample tracts between fixed endpoints.
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Fig. 4 Tract confidence regions along CC tracts overlaid on the subject’s FA map for six subjects
from the John Hopkins MILBA dataset [16]. In each example, the confidence region is thickest at
the crossing between the CC and the corticospinal tract.

Given sample tract curves from a tractography algorithm, we compute a confidence
region for the mean of the tract distribution and show how to visualize this high-
dimensional confidence region in the 3D image space. Finally, we showed experi-
mentally that thickened sections in tract confidence regions correlate strongly with
expected regions of high uncertainty: noisy regions, crossing fibers and regions af-
fected by pathology. Future work will focus on examining specific features of tract
confidence regions and interpreting their anatomical significance in more detail.
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