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Abstract. Kidney volume is an important bio-marker in the clinical
diagnosis of various renal diseases. For example, it plays an essential
role in follow-up evaluation of kidney transplants. Most existing meth-
ods for volume estimation rely on kidney segmentation as a prerequisite
step, which has various limitations such as initialization-sensitivity and
computationally-expensive optimization. In this paper, we propose a hy-
brid localization-volume estimation deep learning approach capable of
(i) localizing kidneys in abdominal CT images, and (ii) estimating renal
volume without requiring segmentation. Our approach involves multiple
levels of self-learning of image representation using convolutional neural
layers, which we show better capture the rich and complex variability
in kidney data, demonstrably outperforming hand-crafted feature repre-
sentations. We validate our method on clinical data of 100 patients with
a total of 200 kidney samples (left and right). Our results demonstrate
a 55% increase in kidney boundary localization accuracy, and a 30% in-
crease in volume estimation accuracy compared to recent state-of-the-art
methods deploying regression-forest-based learning for the same tasks.

1 Introduction

Chronic kidney disease (CKD) refers to the reduced or absent functionality of
kidneys for more than 3 months, which has been identified as a major risk factor
for death worldwide [1]. It is reported that about 3 million adults in Canada [1]
and about 26 million adults in the United States [2] live with CKD. Detection of
CKD is difficult. Biochemical tests like the ‘estimated glomerular filtration rate’
and ‘serum albumin-to-creatinine ratio’ have been shown to be unreliable in
detecting disease and tracking its progression [3]. However, CKD is most often
associated with an abnormal change in kidney volume and thus, quantitative
‘kidney volume’ has emerged as a potential surrogate marker for renal function
and has become useful for predicting and tracking the progression of CKD [4].
In addition, kidney volume has been used in evaluating the split renal function
in kidney donors as well as in follow-up evaluation of kidney transplants [4].

Kidney volume measurement from 3D CT volumes in clinical environments
typically requires a two step procedure: (i) localizing kidneys, and then (ii) esti-



2 M. A. Hussain et al.

mating volumes of the localized kidneys. For years, kidneys were typically local-
ized manually in clinical settings. To automate this process, Criminisi et al. [5,6]
proposed regression-forest (RF)-based anatomy localization methods that pre-
dict the boundary wall locations of a tight region-of-interest (ROI) encompass-
ing a particular organ. However, their reported boundary localization error for
typical healthy kidneys (size ∼13×7.5×2.5 cm3) was ∼16 mm, which could sig-
nificantly affect the subsequent volume estimation, depending on the volume
estimation process. Cuingnet et al. [7] fine tuned the method in [5] by using
an additional RF, which improved the kidney localization accuracy by ∼60%.
However, the authors mentioned (in [7]) that their method was designed and
validated with only non-pathological kidneys. Recently, Lu et al. [8] proposed a
right-kidney localization method using a cross-sectional fusion of convolutional
neural networks (CNN) and fully convolutional networks (FCN) and reported
a kidney centroid localization error of ∼8 mm. However, the robustness of this
right-kidney-based deep learning model in localizing both kidneys is yet to be
tested as the surrounding anatomy, and often locations, shapes and sizes of left
and right kidneys are completely different and non-symmetric.

Subsequent to localization, kidney volumes are typically estimated using dif-
ferent segmentation methods, a strategy that has various limitations. For ex-
ample, graph cuts and active contours/level sets-based methods are sensitive
to the choice of parameters, prone to leaking through weak anatomical bound-
aries, and require considerable computations [4]. Recently, Cuingnet et al. [7]
used a combination of RF and template deformation to segment kidneys, while
Yang et al. [9] used multi-atlas image registration; these methods rely exten-
sively on prior knowledge of kidney shapes. However, building a realistic model
of kidney shape variability and deciding the balance between trusting the model
vs. the data are non-trivial tasks. In addition, these prior-shape-based methods
are likely to fail for pathological cases, e.g., presence of large exophytic tumors.
To overcome these segmentation-based limitations and associated computational
overhead, Hussain et al. [4] recently proposed a segmentation-free kidney volume
estimation approach using a dual RF, which bypassed the segmentation step al-
together. Although promising, their approach relied on manual localization of
kidneys in abdominal CT. In addition, they used hand-engineered features that
may be difficult to optimally design.

In this paper, we propose a hybrid deep learning approach that simulta-
neously addresses the combined challenges of (i) automatic kidney localization
and (ii) segmentation-free volume estimation. Our method uses an effective deep
CNN-based approach for tight kidney ROI localization, where orthogonal 2D
slice-based probabilities of containing kidney cross-sections are aggregated into
a voxel-based decision that ultimately predicts whether an interrogated voxel
sits inside or outside of a kidney ROI. In addition, the second novel module in
our hybrid localization-segmentation approach is the direct estimation of kidney
volume using a deep CNN that skips the segmentation procedure. To the best of
our knowledge, our segmentation-free method is the first that uses deep CNN for
kidney volume estimation. We estimate slice-based cross-sectional kidney areas
followed by integration over these values across axial kidney span to produce the
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volume estimate. Our hybrid approach involves multi-level learning of image rep-
resentations using convolutional layers, which demonstrably better capture the
complex variability in the kidney data outperforming the hand-crafted feature
representations used in [4,6,7].

2 Materials and Methods

2.1 Data

Our clinical dataset consisted of 100 patient scans accessed from Vancouver
General Hospital (VGH) records with all the required ethics approvals in place. A
CT scanner Siemens SOMATOM Definition Flash (Siemens Healthcare GmbH,
Erlangen, Germany) was used to acquire abdominal CT images. Of the 100
scans, 45 had involved the use of contrast agents. We accumulated a total of 200
kidney samples (both left and right kidneys) among which 140 samples (from
70 randomly chosen patients) were used for training and the rest for testing.
Our dataset included 12 pathological kidney samples (with endo- and exophytic
tumors), and our training and test data contained 6 cases, each. The in-plane
pixel size ranged from 0.58 to 0.98 mm and the slice thickness ranged from 1.5 to
3 mm. Ground truth kidney volumes were calculated from kidney delineations
performed by expert radiologists. Both CNNs were implemented using Caffe [10].
Training is performed on a workstation with 2 Intel 3 GHz Xeon processors,
an Nvidia GeForce GTX 460 GPU with 1 GB of VRAM, and 8 GB of host
memory. For basic pre-processing of the data, we programmed an automatic
routine for ‘abdominal’ CT that separates left and right kidneys. Since left and
right kidneys always fall in the separate half volumes, the routine simply divided
the abdominal CT volume medially along the left-right direction. Relying on
the DICOM attributes (i.e., slice thickness and total number of axial slices),
the routine also discarded few slices in the pelvic region from an image (where
applicable). However, this step was optional and only carried out on slices beyond
∼52 cm (4 times the typical kidney length ∼13 cm) from the chest side of the
image. Finally, our data pre-processing routine re-sized the medially separated
CT volumes to generate fixed resolution cubic volumes (e.g., 256×256×256 voxel
in our case) using either interpolation or decimation, as needed.

2.2 Kidney Localization

We use a deep CNN to predict the locations of six walls of the tight ROI bound-
ary around a kidney by aggregating individual probabilities associated with three
intersecting orthogonal (axial, coronal and sagittal) image slices (Fig. 1(b)). The
CNN has eleven layers excluding the input. It has five convolutional layers, three
fully connected layers, two softmax layers and one additive layer. All but the last
three layers contain trainable weights. The input is a 256×256 pixel image slice,
either from the axial, coronal or sagittal directions, sampled from the initially
generated local kidney-containing volumes. We train this single CNN (from layer
1 to layer 8) using a dataset containing a mix of equal numbers of 3D orthogonal
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Fig. 1. Example kidney data from our patient pool demonstrating data variability
present (ranging from normal to pathological), and our hybrid kidney localization-
volume estimation approach. (a) Some CT snapshots showing variations in normal and
pathological kidney shape and size, (b) orthogonal decision aggregated CNN for kidney
localization, and (c) segmentation-free kidney volume estimation using deep CNN.

image slices. Convolutional layers are typically used for sequentially learning the
high-level non-linear spatial image features (e.g., object edges, intensity vari-
ations, orientations of objects etc). Subsequent fully connected layers prepare
these features for optimal classification of the object (e.g., kidney cross-section)
present in the image. In our case, five convolutional layers followed by three
fully connected layers make reasonable decision on orthogonal image slices if
they include kidney cross-sections or not. During testing, three different orthog-
onal image slices are parallel-fed to this CNN and the probabilities for each slice
of being a kidney slice or not are acquired at the softmax layer, S1 (Fig. 1(b)).
These individual probabilities from the three orthogonal image slices are added
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class-wise (i.e., containing kidney cross-section [class: 1] or not [class: 0]) in the
additive layer, shown as

∑
P1 and

∑
P0 in Fig. 1(b). We then use a second

softmax layer S2 with
∑

P1 and
∑

P0 as inputs. This layer decides whether
the voxel where the three orthogonal input slices intersect is inside or outside
the tight kidney ROI. The second softmax layer S2 is included to nullify any
potential miss-classification by the first softmax layer S1. The voxels having
probability (∈[0,1]) > 0.5 at S2 are considered to be inside the kidney ROI.
Finally, the locations of six boundary walls (two in each orthogonal direction)
of this ROI are recorded from the maximum span of the distribution of these
voxels (with probability > 0.5) along three orthogonal directions.

2.3 Segmentation-free Volume Estimation

In sect. 2.2, we estimated the kidney encompassing tight ROI. Typically, kidney
shape and appearance vary across patients (Fig. 1(a)). Training our CNN re-
quires 2D image patches of consistent size. In addition, the patch size needs to
be universal so that kidney cross-sections are always contained in it regardless of
its size and shape. Therefore, to generate training data, we choose a patch size
of 120 × 120 pixel, making sure that the cross-section of the initially estimated
kidney ROI is at the centre of it. We also ensure that there is enough free space
around a kidney cross-section as well as at the top and bottom in the axial di-
rection. The ratio between the number of pixels fall inside a kidney cross-section
to the total number of pixels in the image patch (120× 120 pixel) is considered
as the output variable (label) for that particular image patch.

We estimate the cross-sectional area of a kidney in each slice using a deep
CNN shown in Fig. 1(c). The CNN performs regression and has seven layers
excluding the input. It has four convolutional layers, three fully connected layers,
and one Euclidean loss layer. We also use dropout layers along with the first two
fully connected layers in order to avoid over-fitting. As mentioned earlier, the
input is a 120×120 pixel image patch and the output is the ratio of kidney pixels
to the total image size. The CNN is trained by minimizing the Euclidean loss
between the desired and predicted values. Once the CNN model is trained, we
deploy the model to predict the kidney area in a particular image patch. Finally,
the volume of a particular kidney is estimated by integrating the predicted areas
in all of its image patches in the axial direction.

3 Results

We provide results of our proposed kidney localization and volume estimation
stages separately to enable direct comparisons with those obtained by recently re-
ported kidney localization [5,6,7,8] and volume estimation methods [4,7,9,11,12].
Since the recently reported methods we use for comparison are mostly either
RF-based or deep CNN-based, reproduce their results are impossible without
access to the code and data on which they were trained. However, since the type
of data these methods were validated is similar to ours in terms of resolution
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Table 1. Comparison of mean kidney ROI boundary localization error (mm) and
mean kidney ROI centroid localization error (mm) in terms of Euclidean distance. Not
reported values are shown with (-).

Methods Boundary Error (mm) Centroid Error (mm)
Left Right Left Right

Cascaded RF (MICCAI’12) [7] 7.00± 10.0 7.00± 6.00 11.0± 18.0 10.0± 12.0
RF1 (MCV’10) [5] 17.3± 16.5 18.5± 18.0 - -
RF2 (MedIA’13) [6] 13.6± 12.5 16.1± 15.5 - -
CS-(CNN+FCN) (LABELS’16) [8] - - - 7.80± 9.40
Proposed Method 6.19±6.02 5.86±6.40 7.71±4.91 7.56±4.10

and imaging modality, we conservatively use their reported accuracy values for
comparison, rather than using our own implementation of their models.

In Table 1, we present kidney boundary and centroid localization perfor-
mance comparisons of cascaded RF-based [7], single RF-based (RF1 [5] and
RF2 [6]), cross-sectional (CS) fusion of CNN and FCN-based [8], and our pro-
posed method. The cascaded RF method used the RF1 [5] for coarse localization
of both left and right kidneys, then finetuned these locations using an addi-
tional RF per left/right kidney. Even then its centroid localization errors and
boundary localization errors were higher than those of the proposed method. The
RF2 [6] was an incremental work over the RF1 [5], and both use regression-forests
for different anatomy localization. Both methods exhibited higher boundary lo-
calization errors than those of the cascaded RF and proposed methods, and
did not report any centroid localization accuracy. The recently proposed CS-
(CNN+FCN) [8] method reported significantly better kidney centroid localiza-
tion performance with respect to the cascaded RF [7]. However, this method was
only validated on right kidneys, and did not report the kidney boundary local-
ization accuracy. As evident from the quantitative results, compared to all these
recent methods, the proposed method demonstrates better performance in both
kidney boundary and centroid localization by producing the lowest localization
errors in all categories.

Table 2. Volume estimation accuracies compared to state-of-the-art competing
methods. Not reported values are shown with (-).

Method Methods Kidney Mean Volume Mean Dice
Types Samples Error (%) Index

Manual Ellipsoid Fit (Urology’14) [11] 44 14.20± 13.56 -

Seg
RF+Template (MICCAI’12) [7] 358 - 0.752± 0.222 †

Atlas-based (EMBS’14) [9] 22 - 0.952± 0.018

Seg-free
Single RF (MICCAI’14) [12] 44 36.14± 20.86 -
Dual RF (MLMI’16) [4] 44 9.97± 8.69 -
Proposed Method 60 7.01±8.63 -

† Estimated from reported Dice quartile values (in [7]) using the method in [13].

Table 2 shows quantitative comparative results of our direct volume estima-
tion module (including the localization step) with those obtained by a manual el-
lipsoid fitting method, two segmentation-based methods, and two segmentation-
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free regression-forest-based methods. We use the mean volume errors by [11,12]
reported in [4] for comparison. For the manual approach [11], we see in Table 2
that the estimated mean volume error for this approach is approximately 14%
with high standard deviation. Then we consider two segmentation-based meth-
ods [7,9]. These methods reported their volume estimation accuracy in terms
of Dice similarity coefficient (DSC), which does not relate linearly to the per-
centage of volume error. Since segmentation-free methods do not perform any
voxel classification, DSC cannot be calculated for these methods. Therefore, it is
difficult to directly compare DSC performance to percentage of volume estima-
tion error. However, [7] used 2 RFs, an ellipsoid fitting and subsequent template
deformation for kidney segmentation. Even then, authors in [7] admitted that
this method did not correctly detect/segment about 20% of left and 20% of right
kidneys (DSC < 0.9, non-correctness criterion in [7]), and failed on about 10%
left and 10% right kidneys (DSC < 0.65, failing criterion in [7]). But our method
successfully estimated volumes for all our kidney samples and achieved a mean
volume error of 7%. Moreover, authors in [7] mentioned that the RF-based voxel
classification was uncertain and the subsequent deformation step relies on the
initial kidney shape. Due to this drawback, [7] is likely to fail on pathological
kidneys. Crucially, authors in [7] did not include the truncated (tumor removal
during partial nephrectomy) kidneys (16% of their data) in their evaluation. For
similar reason, the multi-atlas image registration-based method [9] was evaluated
only on 22 kidney samples out of 28, because 6 samples contained tumors. In
addition, the test dataset size in [9] was very small (22 vs. 60 in our dataset). In
contrast, our dataset includes 12 pathological kidney samples, where our train-
ing and test data contained 6 cases, each. As the results show, our method does
not fail for any kidney and thus, suggests it is less senstive to kidney truncation
or tumors. Finally, we consider two RF-based segmentation-free kidney volume
estimation approaches [4,12]. For the single RF-based method [12], we see that
the corresponding volume estimation error is worse than those of the dual RF
and proposed methods as seen in Table 2. Using smaller 2D patches and the
dual RF, [4] outperformed [12] but still shows higher volume estimation error
than the proposed method likely due to the use of non-optimal hand-engineered
features. The last row of Table 2 reports the mean error of our proposed method
around 7%, which is the lowest among all three segmentation-free methods.

4 Conclusions

We proposed a deep learning approach for hybrid localization-volume estimation
for kidneys. This end-to-end method enabled a clinical approach for simultaneous
(i) localization and (ii) segmentation-free volume estimation for kidneys from the
raw abdominal CT data. We formulated an effective deep CNN-based method
for kidney ROI localization, which aggregates 2D orthogonal slice-based kidney
candidacy decisions. In addition, we formulated our volume estimation problem
as a 2D image patch-based regression problem and were able to skip the often
problematic segmentation step. Our deep CNNs better captured the rich and
complex variability in kidney anatomy and outperformed the hand-engineered
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feature representations used in [4,6,7]. Our experimental results demonstrated a
55% increase in kidney boundary localization accuracy, and a 30% increase in
volume estimation accuracy compared to those of recent literature [4,6].

Acknowledgement: We thank Dr. Timothy W. O’Connell and Dr. Mohammed
F. Mohammed at VGH for their kidney tracing to produce the ground truth.
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