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Abstract. Extracting centerlines of anatomical trees (e.g., vasculature
and airways) from 3D medical images is a crucial preliminary step for
various medical applications. We propose an automatic tree extraction
method that leverages prior knowledge of tree topology and geometry
and ensures globally-optimal solutions. We define a pictorial structure
with a corresponding cost function to detect tree bifurcations in anatom-
ical trees with predefined topology. The tree bifurcations are encoded as
nodes in the pictorial structure and are associated with an artificial neu-
ral network (ANN) based unary term. The geometrical (direction and
length) statistics of tree branches are learned from a training set and en-
coded as geometrical priors for regularizing the pictorial structure edges.
Finally, detected bifurcations as well as the ANN tubularity scores, are
leveraged to trace globally optimal minimal paths along 3D tree cen-
trelines. Our method outperforms competing state-of-the-art when eval-
uated on 3D synthesized vasculature and lung airways in CT and our
results demonstrate the advantages of incorporating tree statistics and
global optimization for this task.
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1 Introduction

Branching tree-like anatomical structures are abundant in the human body (i.e.,
vascular and airway trees of circulatory and respiratory systems) and analyzing
their properties is important for various clinical applications, e.g., diagnosis and
surgical planning. A necessary precursor to morphological tree analysis is seg-
menting the trees from 3D medical images. However, 3D segmentation of tree
structures is challenging due to, e.g., insufficient contrast between vessels or air-
ways and background, neighbouring/touching tissue, and geometrical variability.
Extracting the trees amounts primarily to identifying the bifurcations and the
curvilinear paths between them.

Several previous works on segmentation of tree-like structures relied on local,
voxel/patch-level information. For example, Frangi et al. proposed a filter based

†Joint first author.



2 Mirikharaji, Zhao, and Hamarneh.

on local Hessian matrix [7]; Law et al. estimated branch direction based on
optimal local inward flux orientation [10]; Schneider et al. used steerable filters
and random forest for pixel-wise classification [22]; and Wu et al. proposed a
deep learning framework to classify local patches for tracking [26].

Tracking based methods, on the other hand, provide better structural infor-
mation, but they generally fail to build a global tree structure. Lesage et al.
proposed a particle filtering method to track coronary vessels, which incorpo-
rate vessel geometry using flux based features [11]. Macedo et al. [13] proposed
a centerline-tracking method, on top of a 2D feature based bifurcation detector.

Incorporating prior knowledge, like geometry and topology, into optimization
based image segmentation algorithms has been proven useful for obtaining more
accurate and plausible results [17]. However, these priors typically introduce
non-convexities in the objective functions.

Although tree-like structures were extracted in [19,20,23,24,25], in contrast
to our work, their trees need to be seeded in tubularity measurement maps
and the initial tree topologies are seeding-dependent. In [24,25], edge pair-wise
geometrical, instead of topological, prior dominated the optimization process,
which makes it impossible to maintain a desired, fixed anatomical structure.
While in [19,20,23], the topological priors were interpreted as 2-tuple or 3-tuple
of neighboring edges, instead of constructing the whole anatomical tree structure.
To segment coronary vessels on 2D xray sequences, M’hiri et al. used temporal
and spatial prior inherited from an earlier xray image, but the method is difficult
to extend to 3D [15]. Beriault et al. proposed a CRF framework that used brain
structures (e.g., basal ganglia) and sinuses locations as anatomical priors for
segmenting the cerebral vasculature [2]. But none of these methods addressed
the global branching aspect of anatomical tree structures.

Our goal in this work is to perform 3D tree extraction while satisfying these
two important objectives: (i) encode the geometrical and topological priors of
trees and (ii) ensure a globally optimal tree extraction solution. In this paper,
we achieve both objectives by adopting, for the first time, pictorial structures
for tree extraction.

Pictorial structure were introduced into the computer vision community in
2005 (Felzenszwalb et al. [5]) and an extensive literature (e.g., Belagiannis et
al. [1], Burenius et al. [3]) has been established based on this concept since then.
To ensure global optimality, pictorial structures require a model with a tree-like
topology. This property makes them a natural and ideal fit to the problem of
anatomical tree extraction.

2 Methodology

At a high level, our automatic approach comprises two key steps (Fig. 1): (i)
detecting bifurcations and (ii) extracting centerlines of branches connecting bi-
furcations. Step (i) is achieved via fitting the pictorial structure to the 3D image
data by globally optimizing an energy function with an artificial neural network
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Fig. 1: An overview of the proposed method.

(ANN) derived unary term and a geometrical statistics based binary term. Step
(ii) is achieved via a globally optimal minimal path extraction.

2.1 Bifurcation Detection

We formulate the problem of bifurcation detection in 3D as a pictorial struc-
ture optimization. A pictorial structure models a deformable object by a set of
connected parts. This technique finds the instances of an object in an image
by measuring the matching cost for each part and a deformation cost between
each two connected components. Felzenszwalb et al. [5] restricted the connec-
tion of components to form an acyclic graph G = (V,E), where each vertex vi
corresponds to a component and each edge eij = (vi, vj) models a connection
between vertices vi and vj . We encode the 3D anatomical tree bifurcations as the
nodes of the pictorial structure whereas branch directions and lengths statistics
are learned as geometrical priors for regularizing pictorial edges. Let I(x) be
an N dimensional image and x ∈ RN , we optimize an energy function over the
location of n nodes in N dimensional space, as follows:

L∗ = arg min
L={L1,...,Ln}

(

n∑
i=1

U(Li|I)︸ ︷︷ ︸
unary term

+
∑
eij∈E

B(Li,Lj)︸ ︷︷ ︸
binary term

) (1)

where U(I,Li) is the unary term penalizing locating vi at location Li and
B(Li,Lj) is the binary term penalizing the deformation of the vector Lij =
Lj −Li away from geometrical priors learned from training data. By leveraging
the generalized distance transform [6], the pictorial energy function in (1) is
efficiently and globally minimized.

Unary Term via an Artificial Neural Network: We train a three layer
neural network stacked with Restricted Boltzmann Machines (RBM) to build a
distance map and use it as the unary term in (1). RBM is a two-layer network
of visible and hidden units with no intra-layer connections and symmetrically
weighted inter-layer connections. Instead of initializing the network by small
random weights, we pre-train the network unsupervisely using RBMs [8]. RBMs
compute the joint probability of visible and hidden units and provide a high level
representation of data in an unsupervised manner. We construct the network
by stacking three RBMs, considering hidden units of preceding ones as visible
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units of following RBMs. We then fine-tune an ANN, end-to-end, to predict
tree voxels by minimizing the total cross entropy between predicted and ground
truth segmentations of a training dataset. To encourage a detected bifurcation
to be close to the center of its neighboring branches, we instead compute and
predict a distance map from segmented edges rather than the segmentation maps
themselves.

Binary Term from Geometrical Statistical Priors We learn distribution
of branch angles and lengths of anatomical trees from the skeletons of the ground
truth segmentations of a training dataset. Anatomical branch angles and lengths
are encoded as three dimensional displacement vectors pointing from bifurcations
at lower generations of the tree to upper generations. We model the joint prior
distribution of locations of two pictorial connected components as a multivariate
Gaussian. The mean vector µij and covariance matrix Σij of a displacement
vector between nodes vi and vj are estimated from the training data. By applying
singular value decomposition, i.e., Σij = U ′ijM

−1
ij Uij , we write the following joint

likelihood estimation in the form of the Mahalanobis distance:

− log p(Li,Lj) ∝ dij(Li,Lj) = [Tij(Li)− Tji(Lj)]′M−1ij [Tij(Li)− Tji(Lj)](2)

where Li and Lj are the locations of nodes vi and vj , respectively; Tij = U ′ij(Li−
µij) and Tji = U ′ij(Lj) are rigid (i.e. 6 DOF) spatial transformations [5]; and
Mij is a diagonal matrix weighting the deformation cost of connection eij .

To efficiently find a global solution to (1), we must pick a set of connections
between pictorial components that form an acyclic graph (tree). One natural
option is to adopt the anatomical tree connectivity as the pictorial structure
tree connectivity (option 1). However, it is more informative to connect pairs of
nodes with a consistent behaviour across the training data [6]. So, alternatively
(option 2), we construct a complete weighted graph over all vertices, assign to
edge eij a weight wij equal to 2-norm of covariance matrix of three dimensional
displacement vectors ‖Σij‖2, and finally find the Minimum spanning tree (MSP)
of this graph by Prim’s algorithm [18]. We found that the detected tree structure
is the same as anatomical tree.

2.2 Branch Centerline Extraction

We use a globally optimal minimal path extraction, based on the fast marching
method, to extract the centerlines of all tree branches. While most minimal path
extraction methods are semi-automatic and require users to provide a path’s
start and end points [9,12,14,16], we used the bifurcation locations detected by
the pictorial model optimization to initialize the minimal path extraction.

In tubular structures, if the speed function of the minimal path algorithm
is homogeneous or has a small variation near the actual centerline, the shortest
path is detected as the Euclidean path instead of the medial path or center-
line. To ensure that the detected paths pass along the centers of branches, we
adapted Deschamps’ path centering algorithm [4]. Deschamps first extracted a
rough centerline for tubular structures and then used the detected centerline
to achieve a rough binary segmentation of vasculatures. A distance transform



Globally-Optimal Anatomical Tree Extraction 5

of the detected edges in the segmented vasculatures is computed and is fed to
the minimal path algorithm as a new speed function. In this paper, instead of
segmenting using estimated centerline, we use the output mask from our ANN
as an approximate segmentation.

3 Experiments

3.1 Data Description

Synthetic data: We generated 50 volumes, each of size 1503 and containing a
binary tree structure with 4 levels. The tree statistics are set as: mean branch
lengths of {50, 40, 30, 20} (voxels) and standard deviation (std) of 2; the mean
angles between the neighboring levels are {π4 ,

π
6 ,

π
12} with std = π

36 .
Clinical CT data: We used 19 chest computed tomography (CT) scans1.
We performed 3-fold cross validation to train the model. The ANN is trained
with 240,000 2D patches of size 29×29 along axial planes around each voxel. We
chose our ANNs based on empirical evidence and previous works. Other ANN
designs, or even other non-ANN methods for calculating the unary term, may
yield even better results. A grid search is performed to set and fix the ANN
hyperparameters. Our pictorial model consists of the seven components of the
first four levels of an airway tree (i.e., trachea, left and right main bronchi, etc.)

3.2 Evaluation Measures

Bifurcation detection evaluation: The performance of the proposed ap-
proach is assessed by i) ND: number of detected bifurcations with distance less
than D from the ground truth locations; ii) M : mean distance between the
ground truth bifurcations and the corresponding closest detected bifurcations.
Branch extraction evaluation: We measure how well the detected curvilinear
centerlines match the ground truth centerlines by computing µD: the average
distance between centerlines [21].

3.3 Experimental Results

Advantage of statistics: To confirm the advantage of incorporating tree statis-
tics, we removed the tree statistics of real data and globally optimized the objec-
tive function. In practice, we mimicked a uniform geometrical prior by scaling up
the covariance matrix elements by a factor of 20. Rows D and E in Table 1 show
that incorporating statistics improves M and µd by 42% and 28%, respectively.
Robustness to noise: To evaluate the robustness of our bifurcation detector
to noise, we added three levels of Gaussian noise with SNR= [10, 5, 3.3] to the
noise-free synthetic data. A distance map from the edges of the tree mask is used
as the unary term. Table 2 shows that our method is stable even to high level
of noise. For example, in columns 3 and 4 of Table 2, SNR is doubled while M
is increased about one voxel.

1 http://image.diku.dk/exact/

http://image.diku.dk/exact/
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Table 1: Performance of different methods on clinical data with measure M and
µD. Distance unit in mm and values shown in format mean± std.

Method M (mm) µD (mm) bif. det./path init.

A Tracker [13] 9.41 ± 6.84 9.21 ± 9 manual root seed

B OOF [10] NR† 3.24 ± 1.68 manual bif. det.

C Minimal path + ANN + DT NR† 3.09 ± 1.5 manual bif. det.

D ours (pict w/o stats + mininal path) 14.54 ± 16.54 4.87 ± 4.84 automatic

E ours (pict with stats + minimal path) 8.39 ± 7.41 3.51 ± 2.4 automatic

†NR: Not reported since bifurcations are manually selected.

SNR M (voxel)

∞ (noise-free) 5.19 ± 3.30

10 5.29±3.23

5 6.69±11.29

3.3 7.83±9.3

Table 2: Effect of SNR
on measure M for syn-
thetic data (mean ±
std).

Fig. 2: Variation of ND on real data for proposed
method and Tracker [13].

Advantage of globally optimal model fitting: We examined the drop in
performance when a gradient descent local optimizer approach is used. As ex-
pected, the bifurcation localization result is highly sensitive to initialization even
if the initialization is close to the ground truth locations. This sensitivity can be
attributed to not having a reliable and clean (noise-free) data term, causing the
local optimizer to get trapped in local optima. It is also worth noting that our
algorithm is linear in both the number of branching points and the number of
possible locations for each node. We also compare the proposed method to two
competing methods, a tracker based on a bifurcation estimator (Tracker) [13]
and the model-based optimally oriented flux method (OOF) [10].

Comparing to Tracker: The root seed point of Tracker is manually set in the
trachea trunk. Since the tracker doesn’t have a built-in anatomical tree topology,
we match each ground truth bifurcation to its closest one among all the detected
bifurcations. Fig. 2 reports ND as a function of D for the proposed method (blue
curve) and Tracker (brown curve) on real data. The two different plateau levels
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of the two curves illustrate that not all the bifurcations are detected by Tracker.
Also, rows A and E in Table 1 illustrate that the proposed method outperforms
Tracker, reducing the error by 10% in M and 62% in µD.

Comparing to OOF: To trace the centerlines using the tubularity score of
OOF, we had to manually select bifurcations before using the fast marching
algorithm to generate the path between those bifurcations. A Näıve comparison
of rows B and E in Table 1 shows that OOF outperforms our method by about 3
mm in µD on real data. However, our proposed method doesn’t need initialization
and is fully automatic. So, for a fair comparison, we used the same manually
selected bifurcations and the centerline extraction approach in section 2.2. The
result is reported in row C. Now, comparing rows B and C shows that, using
the same set of bifurcations, the minimal path on distance transform of ANN
output (i.e., our approach) outperforms OOF. Moreover, since the variation of
µD for rows B, C and E is less than the average voxel size of our clinical data
(0.67*0.67*0.95 mm3), these experiments confirm that by detecting bifurcations
using the pictorial structure, the tracing algorithm becomes fully automatic while
the accuracy of the centerline detection remains practically unchanged.

4 Conclusions

We presented the first global method for extracting tree-like structures from 3D
medical images while encoding geometrical tree priors. The global model-to-data
fitting made centerline tracing free from any initialization and the incorporation
of priors made the method more robust to noise. Incorporating fixed topological
priors for consistent branches is advantageous of this paper. In the existence of
topological variability, e.g. pathology cases or generations deep down the tree;
our method is not designed to handle these cases. Nevertheless, we note that
the pictorial algorithm [5] is stable to occlusions, so even when the tree model
has a fixed topology, it should still be able to locate actual trees with slight
topological variations. Future work will involve integrating the minimal path
optimization within the pictorial algorithm and encoding more elaborate branch
statistics (e.g. medial curvature and radii). It is also interesting to explore auto-
matic ways to detect pathological deviations from priors that are supported by
image evidence, as these may indicate pathology.

Acknowledgments. Thanks to the Natural Sciences and Engineering Research
Council (NSERC) of Canada for partially funding this work.
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