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Abstract. We present a new method to identify anatomical subnet-
works of the human white matter connectome that are predictive of
neurodevelopmental outcomes. We employ our method on a dataset of
168 preterm infant connectomes, generated from diffusion tensor images
(DTI) taken shortly after birth, to discover subnetworks that predict
scores of cognitive and motor development at 18 months. Predictive sub-
networks are extracted via sparse linear regression with weights on each
connectome edge. By enforcing novel backbone network and connectivity
based priors, along with a non-negativity constraint, the learned subnet-
works are simultaneously anatomically plausible, well connected, posi-
tively weighted and reasonably sparse. Compared to other state-of-the-
art subnetwork extraction methods, we found that our approach extracts
subnetworks that are more integrated, have fewer noisy edges and that
are also better predictive of neurodevelopmental outcomes.

1 Introduction

Preterm birth is a world-wide health challenge, affecting millions of children
every year [1]. Very preterm birth (≤ 32 weeks post-menstrual age, PMA) affects
brain development and puts a child at a high risk for delayed, or altered, cognitive
and motor neurodevelopment. It is known from studies of diffusion MR images,
that the development of white matter plays a critical role in the function of a
child’s brain, and that white matter injury is associated with poorer outcomes [2–
5]. Recently, Ziv et al. and Brown et al. showed that by representing the set of
white matter connections as a network (i.e., connectome), features of network
topology could be used to predict abnormal general neurological function and
neuromotor function respectively [4, 6].

Representing a diffusion tensor image (DTI) of the brain as a network defined
between regions of interest (ROIs) allows an anatomically informed reduction of
dimensionality from millions of tensor-valued voxels down to thousands of con-
nections (edges). However, for the purposes of prediction, thousands of features
may still be too many and cause over-fitting when limited numbers (e.g. only
hundreds) of scans are available [7]. Furthermore, region of interest based studies
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suggest that structural abnormalities related to poor neurodevelopmental out-
comes are not spread evenly across the entire brain, but instead are localized to
particular anatomy [3]. Thus, there is motivation to discover which particular
subnetworks (group of connections or edges) in the brain network best predict
different brain functions.

Some previous works have explored the use of brain subnetworks for pre-
dicting outcomes [8, 9, 7, 10]. For instance, Zhu et al. used t-tests at each edge
in a dataset of functional connectomes for group discriminance, followed by
correlation-based feature selection and training of a support vector machine
(SVM), to find subnetworks that were predictive of schizophrenia [8]. This multi-
stage feature selection and model training is not ideal, however, because it pre-
cludes simultaneous optimization of all model parameters. Munsell et al. used an
Elastic-Net based subnetwork selection for predicting the presence of temporal
lobe epilepsy and the success of corrective surgery in adults [7]. This method
encourages sparse selection of stable features, useful for identifying those edges
most important for prediction [11], but fails to leverage the underlying struc-
ture of the brain networks that might inform the importance or the relation-
ships between edges. In order to capture dependencies between neighbouring
edges, Li et al. employed a Laplacian-based regularizer (in a framework similar
to GraphNet [11]) that encouraged their subnetwork weights to smoothly vary
between neighbouring edges [10]. However, this smoothing may reduce sparsity
by promoting many small weights and blur discontinuities between the weights of
neighbouring edges that should be preserved. An ideal regularizer would encour-
age a well connected subnetwork while preserving sparsity and discontinuities.
Ghanbari et al. used non-negative matrix factorization to find a sparse set of
non-negative basis subnetworks in structural connectomes [9]. However, rather
than trying to predict specific outcomes (as we propose below), Ghanbari et al.
introduced age-regressive, group-discriminative, and reconstructive regulariza-
tion terms on groups of subnetworks, encouraging each group to covary with a
particular factor. They argued that non-negative subnetwork edge weights are
more anatomically interpretable, especially in the case of structural connectomes
which have only non-negative edge feature values.

In this paper, we present our novel approach to identifying anatomical sub-
networks of the human white-matter connectome that are optimally predictive
of a preterm infant’s cognitive and motor neurodevelopmental scores assessed at
18 months of age, adjusted for prematurity. Similar to Munsell et al., our method
is based on a regularized linear regression on the outcome score of choice. Here,
however, we introduce a constraint that ensures the non-negativity of subnet-
work edge weights. We further propose two novel informed priors designed to find
predictive edges that are both anatomically plausible and well integrated into a
connected subnetwork. We demonstrate that these priors effectuate the desired
effect on the learned subnetworks and that, consequently, our method outper-
forms a variety of other competing methods on this very challenging outcome
prediction task. Finally, we discuss the structure of the learned subnetworks in
the context of the underlying neuroanatomy.
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2 Method

2.1 Preterm Data: Our dataset contains 168 scans taken between 27 and
45 weeks PMA from a cohort of 115 preterm infants (nearly half of the infants
were scanned twice), born between 24 and 32 weeks PMA. Connectomes were
generated for each scan by aligning an infant atlas of 90 anatomical brain re-
gions with each DTI. Full-brain streamline tractography was then performed in
order to count the number of tracts (i.e., edge strength) connecting each pair of
regions. Our previous works provide details on the scanning and connectome con-
struction processes [6] and a discussion on interpreting infant connectomes [5].
Cognitive and neuromotor function of each infant was assessed at 18 months of
age, corrected for prematurity, using the Bayley Scales of Infant and Toddler
Development 3rd edition [12]. The scores are normalized to 100 ± 15; adverse
outcomes are those with scores at or below 85 (i.e., ≤ −1 std.).

Our dataset is imbalanced, containing few scans of infants with high and low
outcome scores. In order to flatten this distribution, the number of connectomes
in each training set was doubled by synthesizing instances with high and low
outcome scores, using the synthetic minority over-sampling technique [13].

2.2 Subnetwork Extraction: Given a set of preterm infant connectomes,
our goal is to find a subnetwork that is: a) predictive (i.e., contains edges that
accurately predict a neurodevelopmental outcome), b) anatomically plausible
(i.e., edges correspond to valid axon bundles), c) well connected (i.e., high net-
work integration [5]), d) reasonably sparse and e) non-negative.

Each connectome is represented as a graph G(V,E) comprising a set of 90
vertices, V , and M = 90 × 89/2 = 4005 edges, E. The tract counts associated
with the edges are represented as a single feature vector x ∈ R1×M and the
entire training set of N subjects is represented as X ∈ RN×M with outcome
scores y ∈ RN×1. To find a subnetwork that fits the above criteria, we optimize
an objective function over a vector of subnetwork edge weights, w ∈ RM×1:

w∗ = argmin
w
||y −Xw||2 + λL1||w||1 + λB(wTBw) + λC(wTCw) (1)

such that w ≥ 0, (2)

where ||w||1 is a sparsity regularization term, B is the network backbone prior
matrix (see Section 2.3), and C is the connectivity prior matrix (see Section 2.4).
Hyper-parameters, λB , λC and λL1 are used to weight each of the regularization
terms. Given a set of learned weights, w∗, the outcome score of a novel infant
connectome, xnew can be predicted as ypred = xneww

∗.
Note that since X is non-negative and since w is required to be non-negative,

we also require y to be non-negative, as they should since the true Bayley scores
range between 45 and 155. To perform this optimization we used the method
(and software) of Schmidt et al. [14].
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2.3 Network Backbone Prior: Many of the 4005 possible connectome edges
are anatomically unlikely (i.e., between regions not connected by white matter
fibers) but may be non-zero in certain scans due to imaging noise and accu-
mulated pipeline error (i.e. due to atlas registration, tractography, and tract
counting) [15]. With many more edges than training samples, some edges may
appear discriminative by pure chance, when in fact they are just noise. Therefore,
we propose a network backbone prior term that encodes a penalty discourag-
ing the subnetwork from including edges with a low signal-to-noise ratio (SNR)
in the training data. The SNR of the j-th edge can be computed as the ratio
MEAN(X:,j)/SD(X:,j). However, this may falsely declare an edge as noisy when
the variability (c.f. denominator) in the edge value is not due to noise but rather
due to the edges values changing in a manner that correlates with the outcome
of the subject. To counteract this problem, we divide the scans into two classes:
scans with normal outcomes, H, and scans with adverse outcomes, U . The SNR
is then computed separately for each class. Let XΩ represent a matrix with a
subset of the rows in X where Ω ∈ {U,H}. The SNR for each edge, j, in each

class, Ω, is computed as SNR(XΩ,j) =
MEAN(XΩ,j)
SD(XΩ,j)

. In order not to favour the

strongest fiber bundles over weak yet important bundles, we threshold the SNR
at each edge conservatively, to exclude only the least anatomically likely edges.
An edge, j, is only penalized if both SNR(XU,j) and SNR(XH,j) are less than
or equal to 1 (i.e., signal is weaker than noise in both classes). In particular, B
is an M ×M diagonal matrix, such that,

Bj,j =

{
1, if SNR(XH,j) ≤ 1 and SNR(XU,j) ≤ 1

0, otherwise.
(3)

So wTBw only penalizes edges that do not pass the SNR threshold among either
instances with normal outcomes or abnormal outcomes, and thus are likely noisy.
Fig. 1 shows an example of B. Note that, especially for infant connectomes, even
edges with high SNR may not represent white matter fibers but instead high FA
from other causes [5]. Nevertheless, such high-SNR edges are not likely due to
noise but instead to some real effect and thus may aid prediction.

2.4 Connectivity Prior: We also want to encourage the subnetwork to be
highly integrated as opposed to being a set of scattered, disconnected edges.
This is motivated by the fact that functional brain network activity is generally
constrained to white matter structure [16] and white matter structure is orga-
nized into well connected link communities [17]. Thus, we do not expect there
to be many, disconnected sub-parts of the brain that are all highly responsi-
ble for any particular neurodevelopmental outcome type. To embed this prior,
we incentivize pairs of edges in the target subnetwork to share common nodes.
For edge ei,j , between nodes i and j, and edge ep,q between nodes p and q, we
construct the matrix,

C(ei,j , ep,q) =

{
−1, if i = p or i = q or j = p or j = q

0, otherwise,
(4)
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Fig. 1. a) A sample backbone prior network (i.e., all edges where Bj,j = 0) mapped on
to a Circos ideogram (http://circos.ca/). Inter-hemispherical connections are in green
and intra-hemispherical connections are in red (left) and blue (right). Opacity of each
link is computed as SNR(XU,j) × SNR(XH,j). b) Axial, c) sagittal and d) coronal
views of the same network rendered as curves representing the mean shape of all tracts
between those connected regions (from one infant’s scan).

such that the term wTCw becomes smaller (i.e., more optimal) for each pair of
non-zero weighted subnetwork edges sharing a node. This term places a priority
on retaining edges in the subnetwork that are connected to hub nodes. This is
desirable since subnetwork hub nodes indicate regions that join many connections
(i.e., edges) predictive of outcome. In contrast to a Laplacian based regularizer
which would encourage subnetwork weights to become locally similar, reducing
sparsity, our proposed term simply rewards subnetworks with stronger hubs.

3 Results

We compare the proposed subnetwork-driven predicted outcomes for the preterm
infant cohort (N=168) with competing outcome prediction techniques. Methods
are evaluated using i) Pearson’s correlation between ground truth and predicted
scores, and ii) the area over the regression error characteristic curve (AOC),
which provides an estimate of regression error [18]. Some previous studies have
focused on predicting a binary abnormality label instead of predicting actual
scalar outcome scores [6, 4]. Thus, to compare more directly to these works, we
also evaluate the accuracy of our models as a binary classifier for predicting scores
above or below 85. Similar to Brown et al., an SVM was used to classify normal
from abnormal instances as it was found to perform better than thresholding
the predicted scores at 85. SVM learns a max-margin threshold for the predicted
scores (i.e., one input feature), optimal for classification over the training set.

For each method (both proposed and competing), coarse grid searches were
performed in powers of two over the method’s hyper-parameters to find the
best performance for both cognitive and motor outcomes independently. For the
proposed method, this search was over λL1, λC , λB ∈ {20, ..., 29}. A finer grid
search was not performed to avoid over-fitting to the dataset. For each setting of
the parameters, a leave-2-out, 1000-round cross validation test was performed.
If two scans were of the same infant, those scans were not split between test and
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Motor Cognitive

Method r AOC acc. r AOC acc.

Zhu et al. [8] 0.159 27.39 45.1 0.021 28.05 49.7
Elastic-Net [7] 0.270 24.58 58.8 0.207 24.83 54.8
Brown et al. [6] - - 62.9 - - 52.6

Linear Regression 0.270 24.78 58.8 0.245 24.72 55.2
+ L1 regularization 0.314 18.55 64.0 0.244 24.75 55.2

+ Non-neg. Constraint 0.433 14.53 68.8 0.317 17.73 57.7
+ Backbone Prior 0.436 14.47 68.6 0.327 17.82 58.5

+ Connectivity Prior (Ours) 0.442 14.25 70.8 0.343 17.38 59.5

Table 1: Correlation (r) between ground-truth and predicted scores, area over
REC curve (AOC) values and classification accuracy of scores at or below 85
(acc.) for each model, assessed via 1000 rounds of leave-2-out cross validation.
Note that Brown et al.’s method [6] performs binary classification only.

training sets. Table 1 shows a comparison of the different methods tested on the
preterm infant connectomes for prediction of motor and cognitive scores.

Our proposed method with backbone and connectivity priors achieved the
highest correlations, lowest AOCs and best 2-class classification accuracies for
both motor and cognitive scores (for parameter settings, [λL1, λC , λB ] of [22, 21, 26]
and [25, 22, 25], respectively). For 2-class classification in particular, our method
outperformed Brown et al.’s method by 7.4%, Elastic-Net [7] by 8.4% and Zhu
et al.’s method [8] by 17.6% higher accuracy on average. Using a two-proportion
z-test, we found all these differences to be statistically significant (p < 0.05).
Also, note that, beginning with standard linear regression, the correlation val-
ues improved as each regularization term was added. All tested methods had
statistically significant (p < 0.05) correlations since, for 1000 × 2 = 2000 total
predictions, the threshold for 95% significance is r ≥ 0.0439.

Fig. 2 displays the predictive subnetworks learned by our proposed method
(averaged over all rounds of cross validation). Subnetworks were stable across
rounds: 93.6% of all edges were consistently in or out of the subnetwork 95% of
the time. We examined the structure of the selected subnetworks to analyse the
effect of the proposed regularization terms. By including the L1 regularization
term, the learned subnetworks were very sparse, having an average of 71.6% and
98.2% of edge weights set to zero for motor and cognitive scores, respectively,
up from only 6.7% (for either score) without the L1 term. Adding the backbone
network prior reduced the number of low SNR edges (i.e., Bj,j = 1) by 18.6% per-
cent for motor score prediction and 11.2% for cognitive score prediction. Adding
the connectivity prior improved subnetwork efficiencies (a measure of network
integration [5]) by a factor of 6.8 (from 0.0059 to 0.0403) and 2.2 (from 0.2807 to
0.6215) for subnetworks predictive of motor and cognitive scores, respectively.

As expected, the predictive motor subnetwork clearly includes the cortico-
spinal tracts (Fig. 2a.i). The predictive cognitive subnetwork was more sparse
and had generally lower weights than the motor subnetwork (as visualized by
less dense, more transparent streamlines), due to the larger L1 weight used
for best prediction of the cognitive scores. However, the left and right medial
superior frontal gyri (SFGmed) and the connection between these two regions
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Fig. 2. (Top) Optimal weighted subnetworks for prediction of a) motor and b) cog-
nitive outcomes. Stronger edge weights are represented with more opaque streamlines.
(Bottom) Circos ideograms for the c) motor and d) cognitive subnetworks.

that had stronger weights (factor of 2.1) in the cognitive network than in the
motor network, (Fig. 2d.ii). This is not surprising as these regions contain the
presupplementary motor area which is thought to be responsible for a range of
cognitive functions [19].

4 Conclusions
To better understand neurodevelopment and to allow for early intervention when
poor outcomes are predicted, we proposed a framework for learning subnetworks
of structural connectomes that are predictive of neurodevelopmental outcomes
for infants born very preterm. We found that by introducing our novel network
backbone prior, the learned subnetworks were more robust to noise by includ-
ing fewer edges with low SNR weights. By including our connectivity prior, the
subnetworks became more highly integrated, a property we expect for subnet-
works pertinent to specific functions. Compared to other methods, our approach
achieved the best accuracies for predicting both cognitive and motor scores of
preterm infants, 18 months into the future.
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