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Abstract. The recent success of deep learning techniques in classifi-
cation and object detection tasks has been leveraged for segmentation
tasks. However, a weakness of these deep segmentation models is their
limited ability to encode high level shape priors, such as smoothness and
preservation of complex interactions between object regions, which can
result in implausible segmentations. In this work, by formulating and
optimizing a new loss, we introduce the first deep network trained to en-
code geometric and topological priors of containment and detachment.
Our results on the segmentation of histology glands from a dataset of
165 images demonstrate the advantage of our novel loss terms and show
how our topology aware architecture outperforms competing methods by
up to 10% in both pixel-level accuracy and object-level Dice.

1 Introduction

Object segmentation, assigning semantic labels to pixels within an object, is a
fundamental problem in medical image analysis. Reproducible classification or
grading of adenocarcinomas benefits from accurate segmentation of epithelial
glands from histology images [4, 6]. Despite great advances in histology gland
segmentation, many challenges remain. The complexity of glandular objects’
appearance, which correlates with the degree of cancer differentiation (e.g. high
grade tumours present degenerated glands), and the high variability in histology
image acquisition (i.e. microscope, lighting, and staining) accounts for two of the
major challenges in histopathology gland segmentation [13].

Generally, state-of-the-art segmentation techniques benefit from incorporat-
ing prior knowledge about the target structures into the segmentation formula-
tion [2, 10]. Recent gland segmentation methods, e.g. [5, 13], are no exception
as they do encode gland geometrical priors into their formulation, namely that
glands are smooth tubular structures, composed of a central area (lumen) sur-
rounded by epithelial cells forming a nuclear boundary around the lumen (ex-
amples in figure 1-(a,b)). However, a limitation of these works is that they rely
on hand-crafted features (often pixel-level color and texture cues) to detect each
glandular component, which can be susceptible to biological and staining vari-
ation. To counteract these problems, existing works commonly resort to ad-hoc
post-processing methods for false negative removal and object delineation.
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Fig. 1: Multi-region gland representation. Example delineations of (a) benign and (b)
malignant colon adenocarcinoma glands. Example of segmentation output of (c) FCN
trained without topological priors and of (d) FCN trained with a topology-aware loss.
Topological violations are indicated with red arrows. (e) The topological relationships
between the multi-region gland components. (f) Topological validity indicator V (yp) for
each possible labelling y of a pixel p. Blue regions in (a,b) represent the inside glandular
lumen as well as goblet cells if present (denoted U in (e,f)). Green regions delineate the
Epithelial boundary around the gland (E in (e,f)). The background (purple) indicate
stromal nuclei (S in (e,f)).

The recent success of deep convolutional networks (CNN) for object recogni-
tion and classification tasks has been leveraged for segmentation, or pixel-level
classification, through the introduction of fully convolutional networks (FCN) [8],
in which all fully-connected layers of a standard classification CNN are converted
into convolutional layers. FCNs have been proven capable of learning high-level
complex hierarchies of descriptive and discriminative features useful for per-pixel
predictions [8, 9, 11]. Models inspired by FCN architectures were successfully ap-
plied and adapted to various biomedical image segmentation applications [11].

Despite their success, FCN-based segmentations suffer from relying on a
pixel-level prediction that is not designed to account for higher-order prop-
erties, such as boundary smoothness and the topological label interactions of
multi-part objects (as in the lumen and epithelium of glands). Moreover, FCNs
tend to produce low-resolution segmentations due to the subsampling resulting
from stacked layers of convolutions and pooling. To overcome FCN’s limita-
tions, different strategies have been explored to preserve object boundaries. One
approach consists of adding trainable upsampling layers using deconvolution op-
erations [8, 9]. While these layers are useful in reconstructing the input image
size from coarser outputs, they only partially recover object boundaries. Other
approaches attach a dense conditional random field (CRF) to the FCN, either
as a post-processing step [1] or jointly trained with the FCN [14], in order to
increase the sharpness of the output. However, both approaches require extra
computational costs for optimizing the CRF and only specific graphical models
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can be integrated into the FCN learning pipeline. To the best of our knowledge,
none of the existing works incorporates topology priors in the learning of FCNs.

In this work, we propose to encode smoothness of, and topological constraints
between, segmented regions of spatially-recurring, multi-part objects (e.g. several
glands, each with lumen and epithelium) into the learning of FCNs. Our aim is to
train a deep network that produces topologically plausible, high-resolution seg-
mentation output. Our strategy is to design a loss function with specific penalty
terms that encode the desired boundary smoothness priors and hierarchical re-
lationships between regions labels. In our specific application, the multi-region
relations correspond to containment and exclusion properties observed between
the smooth lumen and epithelial gland boundaries (figure 1-c,d,e).

Our proposed loss exploits the elegant graph formulation of hierarchical label
relationships used in the context of image classification [3], and the popular
energy-based multi-region labelling framework introduced by Delong and Boykov
[2]. In contrast to these previous works, our formulation is specifically designed
for object segmentation and pixel-level interactions in an end-to-end trainable
deep network. Further, our formulation does not require post-hoc processing or
additional heavy, test-time computational costs associated with the previously
explored CRF optimization based approaches. Extensive experiments on the
publicly available Warwick-QU dataset of histology colon glands and on different
FCN architectures and training strategies (e.g. combining FCNs with CRFs)
demonstrate the advantage of our method in learning more regularized deep
networks for gland segmentation.

2 Method

Our goal is to incorporate topological priors: containment and exclusion, and
geometrical prior: boundary smoothness, into the learning of deep fully convo-
lutional networks. In the context of histology glands, there is a containment
relation between lumen and epithelial boundary and an exclusion relation be-
tween stroma and all other regions (figure 1-(e)). We also know that a smooth
epithelial boundary separates the lumen from the stroma (figure 1-(a,b)).

We train an FCN from a set of images and their corresponding ground truth
segmentations, {(x(n), y(n));n = 1, 2, . . . , N}. We drop the superscript (n) when
referring to any image x or segmentation y. The FCN’s prediction of y is denoted
y∗. A (crisp) segmentation of a color image x ∈ RH×W×3 assigns the p-th pixel
xp in x a vector yp = (y1p, y

2
p, ..., y

L
p ) ∈ {0, 1}L, where yrp indicates whether pixel

xp belongs to region r, and L is the number of region labels.

FCN’s per-pixel loss: Training an FCN for segmentation amounts to finding
the network’s parameters θ that solves the following optimization:

θ∗ = argmin
θ

N∑
n=1

L(x(n); θ), (1)

L(x; θ) =
∑
p∈Ω

L∑
r=1

−yrp logP (yrp = 1|xp; θ), P (yrp = 1|xp; θ) = exp(ar(xp))
L∑

k=1
exp(ak(xp)

(2)
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where Ω is the pixel space, L is the multinomial cross-entropy loss, and P are the
class probabilities output of the softmax function of the FCN, which is based on
ar(xp), the output activation for region r and pixel p. L measures the compati-
bility between the predictions P (yrp = 1) and the corresponding ground truth yrp
for each pixel xp in the training dataset.

Multi-region interactions: We now modify (1) and (2), by introducing addi-
tional hierarchical relations between region labels and add a regularization term,
and perform the following minimization of the new topology-aware loss:

θ∗ = argmin
θ

N∑
n=1

α1LT (x(n); θ) + α2LS(x(n); θ); (3)

where LT and LS refer, in order, to the pixel-level loss functions that encode the
topological relations between labels and the smoothness constraints. We elabo-
rate on the design of each term of the proposed loss below. Note that α1 and α2

are user-defined weights used to balance the contribution of each prior. We dis-
cuss the impact of these terms in the Experiments.

Hierarchical label relations: The goal here is to define LT such that the
network is trained, not only to penalize incorrect label assignment per pixel, but
to also penalize incorrect label hierarchy. In gland segmentation, for example,
the fact that region U (lumen) should be contained in region E (epithelium), not
only requires P (yUp = 1) to be high at a lumen pixel p but so should P (yEp = 1)

and P (ySp = 0). In other words, the joint probability P (ySp = 0, yUp = 1, yEp = 1)

should be high. Given L labels or tissue classes, there are 2L possible assignments
per pixel (figure 1-f). Some of these assignments would be plausible, as they
respect the label hierarchy imparted by the containment and exclusion priors,
while others would not. Inspired by the strategy used in [3], which introduces
a generic CRF-based approach for image classification with structured label
relations, we define the following unary loss:

P (yp|xp; θ) =
1

Z

L∏
r=1

exp
(
ar(xp)× yrp

)
×V (yp),∀yp ∈ {0, 1}L Z =

∑
yp

P (yp|xp; θ);

(4)
where P is the normalized joint probability for the label vector yp, Z is the
partition function, ar(x) is the FCN’s output prediction for region label r and
V (yp) ∈ {0, 1} is a validity indicator function returning 1 if a given label vector
yp corresponds to a topologically-valid assignment, and zero otherwise (see figure
1-(f)). The probability of a region r is computed by marginalizing all other region
labels: P (yrp = 1|xp; θ) =

∑
yp:yrp=1

P (yp|xp; θ).

Combined with a softmax loss, the hierarchical probabilities P (yrp|xp; θ) form
our first penalty term LT . Note that if all regions are mutually exclusive, P (yrp =
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1|xp; θ) is equivalent to the softmax probability defined in (2).

Pairwise penalties: The goal here is to define LS such that the network is
trained to produce segmentations with smooth boundaries. We encode this geo-
metrical property via a binary pairwise label interaction softmax loss:

LS(x; θ) =
∑
p∈Ω

L∑
r=1

∑
q∈Np

Bp,q × yrp
∣∣P (yrp|xp; θ)− P (yrq |xq; θ)

∣∣ ; Bp,q = { 1 if yrp = yrq
0 else

(5)
where N p corresponds to the 4-connected neighborhood of pixel p. LS trains the net-
work to output regularized pairs of softmax label probabilities of neighbouring pixels p
and q (i.e. having similar predicted probabilities) when ground truth pixel pairs belong
to the same tissue label (Bp,q = 1). At the same time, LS trains the network to allow
discontinuities across tissue boundaries (Bp,q = 1).

Optimization and inference: The proposed loss is optimized using stochastic gra-
dient descent. To infer the output predictions y∗ (e.g. a probability score for each
region and each pixel), a simple forward pass through the trained network is required.
Probabilities are computed following the label relations defined in (4). The final binary
output segmentation y∗ corresponds to the region with maximum probability per pixel.

3 Experiments

The implementation of our proposed model was realized as a new loss layer in Caffe
deep learning library [7] and can be used on top of any fully convolutional model
given multi-region relations. Given the large input image size (500 × 500), we used a
mini-batch size of 1 with a momentum of 0.99. The learning rate was tuned for each
model on a validation set during training. We used the totality of the publicly available
Warwick-QU colon adenocarcinoma dataset released as part of the GlaS Challenge [12],
which consists of 85 training and 80 test images. In all experiments, we used 70 images
for training, 15 for validation and 80 for test. We kept the training and test splits
provided by the challenge organizers. We used a series of elastic (warping) and affine
transformations (rotation, scaling, color shifts) to augment the training dataset by a
factor of ∼ 150. All models were trained on a NVIDIA 12 GB GPU card and training
time ranged between 2 hours for relatively small models (∼6 layers) and 36 hours for
deeper models. Test times were ∼1 s/image for all models.

To test the advantage of adding topological priors in the learning of FCN,
we compared the performance of four network architectures that implement different
sampling strategies for border sharpening and with increasing number of layers, trained
with vs. without including our multi-region priors LT and LS : i) Alexnet-FCN and ii)
FCN-8s (with a stride of 8) [8] use a simple bilinear interpolation for upsampling; iii)
U-Net [11] includes bridge-like layers between coarser layers’ outputs and finer layers;
whereas iv) DN [9] uses deconvolution layers as upsampling strategy.

We used two evaluation metrics: 1) pixel-level accuracy and 2) object-level Dice
similarity coefficient (figure 2). Our results show that, for the same optimizer and the
same network complexity, using our proposed loss yields an average improvement of 9
to 15% in correctly labelling pixels and 3 to 5% in delineating glands.

We tested the robustness of our results to the hyper-parameters in (3). We
used a validation set to tune these parameters and found that regardless of the model’s
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Fig. 2: Advantage of the proposed loss: “Origina” refers to the cross-entropy loss L.
“+Smoothness” refers to using the proposed penalty term LS and “+Topology” refers to
adding our topology prior LT . The asterisk (*) corresponds to statistically significant
differences from the original models obtained using a Wilcoxon matched-pairs signed
rank sum test at p<0.05.

architecture using equally weighted penalty terms generally gave us best results. We
observed a minimal change in pixel accuracy and object Dice (less than 1e−4) when
varying the difference between α1 and α2 by ±20%.

We also compared our method with the winner of the GlaS Challenge [12], CuMed-
Vision2, which also used a FCN-based model with a special upsampling strategy. Note
that winners’ model architecture was not released and only the number of pooling layers
were reported [12]. For fair comparison we report results with FCN-8s that has similar
number of pooling layers. Using our topology-aware loss with FCN-8s architecture, we
outperformed the reported results of CuMedVision2 by 18% for F1 score, 3% for object
Dice but CuMedVision2 surpassed our approach by 12% in terms of Hausforff distance.

To compare applying the proposed loss penalties vs. graphical models, we test
the performance of FCN-32s (with a stride of 32) trained with LT + LS with: a) the
original FCN-32s model that optimizes per-pixel loss (L), and with two methods that
refine FCN’s segmentation by incorporating a probabilistic graphical model optimiza-
tion: b) DeepLab [1], which uses a special fully-connected CRF, where the pairwise
terms depend on pixels positions and color intensities as a post-processing step, and

Method Pixel Accuracy Object Dice Inference

FCN-32s [8] 0.80 ± 0.12 0.70 ± 0.17 28.62s
DeepLab [1] 0.78 ± 0.12 0.69 ± 0.19 38.02s
CRF-RNN [14] 0.73 ± 0.19 0.42 ± 0.12 32.50s
FCN+Smoothness 0.86 ± 0.07 0.78 ± 0.11 28.62s
FCN+Smoothness+Topology 0.76 ± 0.09 0.80 ± 0.12 28.63s

Table 1: Penalty terms vs. graphical models. +Smoothness refers to adding LS in the
FCN-32s training. +Smoothness+Topology refers to LT + LS .
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Input Ground Truth FCN-32s DeepLab CRF-RNN +Smoothness +Smoothness
+Topology

Fig. 3: Qualitative comparisons. Note the smoother boundaries and individually de-
tected glands produced by our method (last two columns). Red arrows highlight chal-
lenging cases that were not successfully segmented.

c) CFR-RNN [14], where the same CRF model is jointly trained with the FCN. In
DeepLab and CRF-RNN, the CRF energy function is optimized using iterations of the
mean field approximation.

As shown in table 1, using our additional smoothness and topology priors in the
training of FCN-32s, our model achieves 13 to 38% higher object Dice compared to
the original FCN-32s, DeepLab or CRF-RNN. It is also worth pointing out that our
proposed method does not incur any additional computational cost during inference,
contrarily to DeepLab and CRF-RNN.

It is worth noting that DeepLab and CRF-RNN degrade the performance of the
original FCN-32s model. This initially surprising result may be explained by the fact
that the special CRF model used in DeepLab and CRF-RNN includes image (color)-
based pairwise terms in their energy functions, which are sensitive to stain variations
among glands and between stroma and glands.

Finally, we observe that adding our topology priors result in an increase in Dice by
10% over FCN-32s (0.70% to 0.80%) despite a smaller decrease of 4% in pixel accuracy
(0.80% to 0.76%). This implies that the additional priors are critical for the detec-
tion of individual glands, particularly due to how the topology prior encodes relevant
object-level (i.e. beyond pixel-level) information during training. Qualitative results
are presented in figure 3. Adding topology penalties generally resulted in smoother
boundaries and individually segmented glands. However, it did not fully compensate
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for the loss of fine-grained details resulting from upsampling the probabilities in some
very challenging cases where glands’ boundaries are extremely thin.

4 Conclusion

We hypothesized that the inclusion of prior knowledge in the training of deep fully con-
volutional networks for the segmentation of histology glands can result in more accurate
segmentations. To test our hypothesis, we presented a novel loss function inspired by
energy-based models for multi-region labelling and adapted for deep networks. Our
findings show that our approach yields significantly more accurate and plausible seg-
mentations while being more computationally efficient at test-time. We plan to further
investigate the effect of equipping deep learning models with relevant prior knowledge
for training more regularized networks on different medical segmentation applications.
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