
DTMRI Segmentation using DT-Snakes and DT-Livewire

Ghassan Hamarneh and Judith Hradsky
Medical Image Analysis Lab, School of Computing Science, Simon Fraser University

Burnaby, BC, V5A 1S6, Canada

Abstract— In this paper we extend two popular classical
scalar medical image segmentation techniques to diffusion tensor
magnetic resonance images (DTMRI). We propose DT-snakes
and DT-livewire through modifying the external image forces
in snakes and cost terms in livewire. The new forces and cost
terms are derived from and operate on a DT field rather
than a scalar image. This is achieved by making use of recent
advances in DT calculus and DT dissimilarity measures, as well
as DT smoothing and DT interpolation. Proper quantification of
tensor dissimilarity allows for defining spatial gradient vectors
and gradient magnitudes of DT fields, an essential component
for attracting snakes or livewire to target boundaries in DT
images. DT calculus enables weighted averaging of tensors which
is essential for both pre-smoothing of DT images prior to
segmentation, as well as interpolation of tensors on non-grid
positions in the image. We evaluate different recent DT tensor
dissimilarity metrics including the Log-Euclidean and the square
root of the J-divergence. We present qualitative and quantitative
DT segmentation results on both synthetic and real cardiac and
brain DTMRI data.

I. INTRODUCTION

Diffusion is the process by which molecules are transported
from one part of a medium to another. The flux of diffusing
molecules is a result of their random Brownian motion in
concentration gradients and is described by Fick’s law. Diffu-
sion tensor magnetic resonance imaging (DTMRI) records the
diffusion characteristics of water molecules along fiber tracts
in-vivo and is becoming increasingly valuable for assessing
the effects of disease progression and treatment evaluation on
fiber connectivity and diffusion properties [1], [2]. In DTMRI,
typically each voxel of the 3D image is assigned a rank three,
second order diffusion tensor forming a 3D tensor field. Each
tensor is expressed as a 3×3 symmetric, positive semi-definite
(PSD) matrix (with nonnegative eigenvalues). The general
classes of medical image analysis algorithms performed on
scalar medical images (filtering, segmentation, registration and
visualization of X-ray CT, T1-weighted MRI, ultrasound, and
others) need to be extended to DTMRI tensor fields in order
to glean quantitative and qualitative information, potentially
improving computer aided diagnosis, follow up of treatment
and disease progression, and statistical analysis of structural
and functional variability. In the following paragraphs we
review important contributions in processing, segmentation,
and registration of tensor field data.

The primary goal of processing is to reduce the noise in the
DTMRI data that occurs due to various imaging acquisition
artifacts. There exist numerous techniques for image process-
ing of scalar fields; an essential task in any image processing
pipelines. However, only a few methods have been recently
extended to perform basic processing and reduce noise in

diffusion tensor image data, for example median filtering,
morphological operations, interpolation, and anisotropic edge
preserving smoothing [3], [4], [5], [6].

Identifying and delineating regions of interest (ROI) in
image data is necessary for performing subsequent quantitative
analysis and qualitative visualization. Segmentation methods
rely on (a) identifying nearby voxels with similar diffusion
properties and grouping them into one coherent structure, (b)
identifying edges in the DTMRI and linking them to form
separating boundaries between neighboring structures, and (c)
incorporating prior knowledge about the shape characteristics
of the different target structures to segment. These intuitive
ideas are very well understood for the scalar case, but have
only recently been the focus of research for tensor fields [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16].

To facilitate viewing and interrogating DTMRI segmen-
tation and visualization results within the context of other
medical imaging modalities (e.g. structural MRI), the data sets
must be properly fused by bringing them into proper spatial
alignment. Image registration is also needed for quantitative
and qualitative longitudinal analysis tasks, in which DTMRI
data of the same subject at different times must be compared
[17], [18], [19], [20].

In this paper we focus on extending two classical and
popular scalar image segmentation techniques allowing us
to delineate anatomical regions and boundaries directly from
DTMRI fields. We utilize the full information in the tensors
without being forced to operate on a single derived scalar
image such as apparent diffusion coefficient (ADC) or relative
anisotropy (RA) [2].

Specifically, we extend snakes [21] and livewires [22] to DT-
snakes and DT-livewire primarily by redefining the external
image forces and cost terms in snakes and livewire, respec-
tively. The new forces and cost terms now operate directly in
the DT field rather than scalar images. This extension relies
on recent definitions of tensor dissimilarity metrics, weighted
tensor averaging, smoothing and interpolation of DT fields
[8], [23], [24]. Since the snakes and livewire methods are
formulated such that their contours are attracted to boundaries,
the definition of target boundaries is revisited for DTMRI data
making use of tensor dissimilarity measures to calculate tensor
gradients. We evaluate different alternative DT dissimilarity
metrics including the Log-Euclidean and the square root of
the J-divergence [23], [8]. Further, because it is known that
gradient calculation is sensitive to noise, and in order to
avoid having contours attracted to noisy data, the image data
is pre-smoothed prior to segmentation, utilizing a DT edge-
preserving smoothing algorithm (bilateral DT filtering) [24].
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Furthermore, to continue to have deformable models with
subpixel accuracy, tensor values need to be evaluated at non-
grid positions requiring specialized DT interpolation methods.

The remainder of the paper is organized as follows. In sec-
tion II we summarize alternative ways of quantifying diffusion
tensor dissimilarity and how it is used for tensor gradient
calculation. We follow with a summary of the approach we
adopt for tensor smoothing and interpolation, and then utilize
the previous concepts to propose the extension of snakes and
livewire to operate on DT data directly without the need to
extract scalar features. In section III we present qualitative
experimental and quantitative validation results on synthetic
and real brain and cardiac DTMRI data. We summarize and
draw conclusions in section IV.

II. METHODS

A. Diffusion Tensor Dissimilarity and Gradient Estimation

Tensors in DTMRI are 3×3 PSD matrices that do not form a
vector space thus requiring special attention when performing
DT calculations [25]. To perform segmentation we need a way
to measure differences between tensors as this will allow us
to define gradient vectors that are essential for DT-snakes
and DT-livewire, and other potential boundary based DT
segmentation techniques. Ideally, tensor dissimilarity should
reflect the geodesic distance on the space of allowable tensors;
a convex half-cone [26], [25]. Therefore, choosing Euclidean
‖T1 − T2‖, or Frobenius norm ‖T1 − T2‖F , where ‖A‖F =√

Tr(AAH) and Tr(...) denotes trace, is not appropriate for
measuring distances between tensors T1 and T2. The following
are the two main alternatives tensor distance measures recently
introduced in the literature which we will utilize to define DT
gradients. The Log-Euclidean distance and the affine-invariant
square root of the J-divergence [8], denoted respectively as
dTLE

and dTJ
, are given by

dTLE
(T1, T2) = ‖log(T1) − log(T2)‖ (1)

dTJ
(T1, T2) =

1
2

√
Tr(T−1

1 T2 + T−1
2 T1) − 2n (2)

where log denotes matrix logarithm, and n = 3 for three
dimensional diffusion.

The tensor field gradient can now be defined in a manner
analogous to central finite difference approximation of the
scalar 2D image gradient ∇f(x, y),

∇f(x, y) =
1
2

[
f(x + 1, y) − f(x − 1, y)
f(x, y + 1) − f(x, y − 1)

]
. (3)

We replace the finite difference (subtraction) approximation
with central tensor dissimilarity to obtain the tensor gradient
vector ∇T at any location (x, y) as follows,

∇T (x, y) =
1
2

[
dT ((T (x + 1, y), T (x − 1, y)))
dT ((T (x, y + 1), T (x, y − 1)))

]
(4)

where dT is either one of the tensor distance measures
presented earlier (equation (1) or (2)).

B. Diffusion Tensor Smoothing

To produce stable gradient calculation and to avoid having
contours attracted to noisy data, the image data is typically pre-
smoothed prior to segmentation. We utilize a recently proposed
bilateral edge-preserving DT field smoothing [24] that relies
on calculating a weighted average of tensors using

T (x) = k(x)−1exp

(
N∑

i=1

wi(x)log(T (ξi))

)
(5)

k(x) =
N∑

i=1

wi(x) (6)

where exp is the matrix logarithm, T (x) is the tensor resulting
from a weighted averaging of N tensors, T (ξi), in the neigh-
bourhood of x. The corresponding weights, wi, are defined to
be inversely proportional to the spatial distance and the tensor
dissimilarity between the neighboring tensors and the center
tensor, as follows

wi(x) = αf1(dT (T (x), T (ξi))) + (1 − α)f2(dS(x, ξi)) (7)

where α ∈ [0, 1] controls the relative emphasis on spatial
versus tensor distance, dT (T (x), T (ξi)) and dS(x, ξi) are
the tensor dissimilarity and spatial distance between T (x)
and T (ξi), respectively, and f1 and f2 are monotonically
decreasing functions that map the range of tensor-dissimilarity
values and spatial distances, respectively, to the interval [0, 1].

C. Diffusion Tensor Interpolation

To extend the classical deformable models with subpixel
accuracy, tensor values need to be evaluated at non-grid
positions, requiring specialized DT interpolation methods. As
described in [24], DT field interpolation is treated as a special
case of (5). A tensor is interpolated at any non-grid position
using the Log-Euclidean weighted sum of N nearby tensors,
T (ξ), where the weights are inversely proportional to the
spatial distance between the non-grid position x and the
locations of the nearby tensors, ξ. This is intuitively and
conveniently obtained by setting α = 0 in equation (??).

Based on the ideas put forward thus far, in the following sec-
tions we extend two classical segmentation methods, namely
snakes and livewire [21], [22], to operate on diffusion tensor
data.

D. DT-Snakes for DTMRI

Snakes are energy-minimizing parametric contours that de-
form to segment target structures. We extend snakes to operate
on DTMRI data. Our implementation takes the form of a
polygonal discrete active contour model [21], where the nodes
(vertices) of the snake are updated through the application of
internal (tensile and flexural) and external (image and inflation)
forces. Internal forces are implemented as in the scalar image
case [27], while external forces are modified to operate on
DT fields in the following ways. The image force, F image

i ,
at snake node i, attracts the snake to DT field edges and is
redefined as follows (Fig. 1)

F image
i = −∇‖∇T (xi, yi)‖ (8)
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(a) (b)

(c) (d)

Fig. 1. DT-snake segmentation of a synthetic DT field. The DT image in
(a) contains two homogeneous regions with different diffusion properties (a
disk and the background). The tensors are visualized using ellipses with major
and minor axes proportional to the largest and second largest eigenvalues of
the tensor, respectively. A backdrop is displayed as a scalar intensity image
with brightness inversely proportional to the tensor gradient magnitude. The
DT-snake external force vector field is shown in (b). The initialized DT-snake
is shown in (c). After the application of internal, external and inflation forces
the DT-snake properly identifies the boundary between the two regions (d).

where ∇T is defined as in (4) and (xi, yi) is the location of
the snake node i. The inflation force, F inflation

i , allow the
snake to be initialized farther away from the target boundary
[28] and is redefined as follows

F inflation
i = sign(dT (T (xi, yi), T ref ) − t)ni (9)

where dT is defined in equation (1) and(2), T ref is a reference
tensor obtained by Log-Euclidean averaging of an ROI within
the target structure, ni is the unit vector in the direction normal
to the contour at node i, and t is a tensor distance threshold
analogous to the scalar case [29].

E. DT-Livewire for DTMRI

The livewire method relies on the definition of a local cost,
C(p, q), between neighboring pixels, p and q, to calculate
globally optimal paths delineating boundaries of target struc-
tures between interactively-selected seed and target points in
the image [22]. In addition to terms that encode path smooth-
ness or shortness constraints in C(p, q), terms that favor paths
following high gradient magnitude while minimizing change
in gradient direction are encoded as well (vis-à-vis internal and
external energy terms in snakes). Internal constraint terms need
not be extended to deal with DTMRI data. However, external
gradient magnitude and direction are modified as follows. The

gradient magnitude cost term for any pixel q is now redefined
as

fM (q) = 1 − ‖∇T (q)‖/‖∇T (q)‖max (10)

where ‖∇T‖max represents the largest DT gradient magnitude
in the image and ∇T is as defined in (4), and the gradient
direction cost term for connecting pixel p to pixel q is now
redefined as

fD(p, q) =
1
π

arccos

( ∇T (p)∇T (q)
‖∇T (p)‖‖∇T (q)‖

)
(11)

The reader is referred to [22] for details on the derivations of
the scalar versions of equations (10) and (11).

III. EXPERIMENTS AND RESULTS

The DT processing and segmentation tools we develop
relate to two long term clinical applications. Firstly, we are
investigating the effect of disease progression and treatment
in multiple sclerosis patients on inter-hemispheric fibre con-
nectivity and diffusion properties within different regions of
the corpus callosum (CC) bridge [30], [31]. Secondly, we are
studying the properties of the laminar cardiac fibre sheet in the
myocardium from DTMRI. Examples of DT-snakes and DT-
livewire on synthetic and real (cardiac and brain) DT image
data are provided in this section.

Fig. 1 shows the results of applying DT-snakes to a synthetic
DT image example. The image contains two regions; a disk
and background. Each region is populated with a homogeneous
field of tensors (Fig. 1(a)). The external force vector field
resulting from this DT data is shown in Fig. 1(b). A DT-
snake is initialized within the disk via mouse-clicks. During
initialization, the user has the option of viewing any scalar field
derived from the diffusion tensor field (e.g. largest eigenvalue,
RA, ADC, or tensor gradient magnitude) or an inherent tensor
visualization, or a combination of the two (Fig. 1(c)). The
final result (Fig. 1(d)) of DT-snake deformation with internal
and external (including inflation) forces shows how the snake
latched to the interface between the two regions with different
diffusion properties.

In Fig. 2, we demonstrate the effect of smoothing on the
performance of DT-livewire segmentation, given the same
number and same location of seed points, while changing
the amount of noise in the DT image. DT-livewire performs
extremely well as expected when no noise is introduced and
manages to identify the interface between two homogeneous
regions with different diffusion properties. The performance
deteriorates when noise is added to the image and improves
again after applying bilateral DT filtering to reduce the noise.

In Fig. 3, we segment the corpus callosum from brain
DTMRI using DT-snakes. An approximate DT-snake is ini-
tialized quickly by the user and then left to deform according
internal and external forces. Given the rough initialization, the
DT-snake latched to the corpus callosum DT boundary.

In Fig. 4, we segment the endocardium from heart DTMRI
using DT-snakes. Given a rough initialization of the DT-
snake inside the heart chamber, the DT-snake dynamics are
simulated until it converges onto the inner heart wall. The
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(a) (b) (c)

Fig. 2. DT-livewire segmentation and the effect of noise and DT smoothing. In (a-c) a DT-livewire is supplied with the same seed points (terminal points
of the white livewire contour). In (a) the DT-livewire is operating on a noise-free synthetic DT field exhibiting two homogeneous regions (top and bottom
halves) with different diffusion properties. The livewire successfully latches along the DT interface. In (b), the DT-livewire is operating on a noisy version
of (a) and the livewire contour deviates from the correct interface. In (c), the DT field is smoothed (using dTJ

, α = 0.2, N = 9, and 1 iteration) yielding an
improved delineation (more similar to the livewire in (a).

(a) (b)

Fig. 3. Segmentation of the corpus callosum from brain DTMRI using DT-snakes. Initial and final snake segmentation are shown in (a) and (b), respectively.
The DT-snake contours are plotted in white. The tensors are visualized using ellipses with major and minor axes proportional to the first and second eigenvalues
of diffusion tensor, respectively. The backdrop is a scalar intensity image inversly proportional to the tensor gradient magnitude estimated using dTLE

.

(a) (b)

Fig. 4. Segmentation of the endocardium from heart DTMRI using DT-snakes. Initial and final snake contours are plotted in white in (a) and (b), respectively.
Tensor field and scalar intensity backdrop are visualized similar to Fig. 3.
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(a) (b)

Fig. 5. Segmentation of the endocardium from heart DTMRI using DT-livewire. DT-livewire is applied to (a) the original noisy DTMRI slice and to (b) a
smoothed version of the DT data (section II-B). Less number of user-selected seed points are required for performing segmentation when the data is smoothed.
The DT-livewire contour is shown in white and seed points are shown as white asterisks. Diffusion tensors and backdrop are visualized as in earlier figures.

use of DT-based inflation force allows the snake contour
to be initialized farther away from the heart wall (even in
regions with almost no tensor gradient). This behavior has
been demonstrated previously for scalar snakes, here the same
behavior is observed for DT-snakes.

In Fig. 5, we apply DT-livewire to the segmentation of the
endocardium from heart DTMRI. This example demonstrates
that livewire now operates on tensor data, as evidenced by
the livewire contour latching to inner heart wall between suc-
cessive seed points. This example also demonstrates bilateral
smoothing of DT fields and how it reduces the amount of
seed points required to complete the livewire segmentation,
compared to the original noisy data.

In Fig. 6, we segment the corpus callosum from brain
DTMRI using DT-livewire. As in the previous example,
smoothing results are visualized and its effect on DT-livewire
segmentation is demonstrated, namely reducing the number of
seed points the user needs to manually specify.

IV. CONCLUSION

DTMRI provides unique in-vivo measurements of fibre
structure in the body. The measurements are presented as 2D
or 3D images where each pixel or voxel holds a 3× 3 matrix.
There is a strong interest in the biomedical image computing
community to process, visualize, and analyze this type of
data in order to extract clinically relevant information related
to diagnosis and therapy of cardiac, neurological, and other
pathologies. However, the majority of existing techniques are
designed to operate on scalar fields (or RGB images) and more
work is needed to provide a diverse set of algorithms and
tools at par with what is available for scalar images. In this
work we extend two classical and popular 2D scalar image
segmentation techniques to operate on DT fields to delineate

regions of interest according to their anisotropic diffusion and
fibre orientation properties. Specifically, we extended snakes
and livewire to DT-snakes and DT-livewire by redefining the
external image forces and cost terms, through making use
of recent advances in DT smoothing, interpolation, and dis-
similarity metrics. We demonstrated these extensions through
several synthetic and real cardiac and brain DT segmentation
examples. We do not attempt to solve the initialization and
parameter sensitivity weaknesses of scalar snakes or to avoid
the need for interactive seed selection of livewire. These issues
are still exhibited in DT-snakes and DT-livewire. Future work
includes more rigorous evaluation of the performance of the
methods, extending other classical scalar image processing
and analysis algorithms to operate on 3D DT fields, and
the segmentation of multiple DT images related to specific
clinical applications (e.g. multiple sclerosis) and examining
relationships between fibre properties in segmented regions
and disease progression or treatment evaluation.
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