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Abstract— In this paper we present a bilateral image filtering
algorithm for edge-preserving smoothing of diffusion tensor mag-
netic resonance imaging (DTMRI) data. The bilateral filtering is
performed in the Log-Euclidean framework which guarantees
valid output tensors. Smoothing is achieved by weighted aver-
aging of neighboring tensors. Analogous to bilateral filtering of
scalar images, the weights are chosen to be inversely proportional
to two distance measures: The geometrical Euclidean distance
between the spatial locations of tensors and the dissimilarity of
tensors. The following methods for tensor dissimilarity measures
are compared: The Log-Euclidean, the similarity-invariant Log-
Euclidean, the square root of the J-divergence, and the distance
scaled mutual diffusion coefficient. We describe the non-iterative
DT smoothing equation in closed form. Interpolation of DT
data is treated as a special case of bilateral filtering where only
spatial distance is used. We present qualitative and quantitative
smoothing and interpolation results on both synthetic tensor field
data and real cardiac and brain DTMRI data.

I. INTRODUCTION

Diffusion is the process by which molecules are transported
from one part of a medium to another. The flux of diffusing
molecules is a result of their random Brownian motion in
concentration gradients and is described by Fick’s law. Diffu-
sion tensor magnetic resonance imaging (DTMRI) records the
diffusion characteristics of water molecules along fiber tracts
in-vivo and is becoming increasingly valuable for assessing
the effects of disease progression and treatment evaluation
on fiber connectivity and diffusion properties [1], [2]. In
DTMRI, typically each voxel of the 3D image is assigned a
rank three, second order diffusion tensor forming a 3D tensor
field. Each tensor is expressed as a 3× 3 symmetric, positive
semi-definite (PSD) matrix (with nonnegative eigenvalues).
The general classes of medical image processing and analysis
algorithms performed on scalar medical images (e.g. filtering,
segmentation, registration and visualization of X-ray CT, T1-
weighted MRI, ultrasound, and others) need to be extended
to DTMRI tensor fields in order to glean quantitative and
qualitative information, potentially improving computer aided
diagnosis, follow up of treatment and disease progression, and
statistical analysis of structural and functional variability. In
the following paragraphs we review important contributions
in processing, segmentation, and registration of tensor field
data.

The primary goal of processing is to reduce the noise in the
DTMRI data that occurs due to various imaging acquisition
artifacts. There exist numerous techniques for image process-
ing of scalar fields; an essential task in any image processing
pipelines. However, only a few methods have been recently
extended to perform basic processing and reduce noise in
diffusion tensor image data; for example median filtering,

morphological operations, interpolation, and anisotropic edge
preserving smoothing [3], [4], [5], [6].

Identifying and delineating regions of interest (ROI) in
image data is necessary for performing subsequent quantitative
analysis and qualitative visualization. Segmentation methods
typically rely on (a) identifying nearby voxels with similar
diffusion properties and grouping them into one coherent
structure, (b) identifying edges in the images and linking them
to form separating boundaries between neighboring structures,
and (c) incorporating prior knowledge about the shape char-
acteristics of the different target structures to segment. These
intuitive ideas are very well understood for the scalar case, but
have only recently been the focus of research for tensor fields
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16].

To facilitate viewing and interrogating DTMRI segmen-
tation and visualization results within the context of other
medical imaging modalities (e.g. structural MRI), the data sets
must be properly fused by bringing them into proper spatial
alignment. Image registration is also needed for quantitative
and qualitative longitudinal analysis tasks in which DTMRI
data of the same subject at different times must be compared
[17], [18], [19], [20].

In this paper we propose a bilateral diffusion tensor filtering
algorithm, which carries the same intuitive ideas as of its scalar
field counterpart. Towards this goal, tensors must be averaged
appropriately without producing invalid tensors, and similarity
between tensor values must be calculated in a meaningful way.
In order to realize this extension, we make use of two major re-
cent advancements in the field of DTMRI processing, namely
tensor calculus and diffusion tensor dissimilarity measures.

The remainder of the paper is organized as follows. Fol-
lowing a brief review of bilateral filtering for scalar images in
section II, we propose the closed form solution for bilateral
filtering of DT fields and describe its reliance on the Log-
Euclidean framework and the tensor dissimilarity measures. In
section III, we present smoothing and interpolation results on
synthetic and real data. We summarize and draw conclusions
in section IV.

II. BILATERAL FILTERING OF DTMRI

A. Bilateral Filtering of Scalar Images

Bilateral filtering smoothes image data while preserving
edges by means of a nonlinear combination of nearby image
values [21]. For an input image f(x), the filtered output image
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h(x) is defined as follows:

h(x) = k−1(x)
∫ ∞

−∞

∫ ∞

−∞
f(ξ)c(ξ, x)s(f(ξ), f(x))dξ (1)

k(x) =
∫ ∞

−∞

∫ ∞

−∞
c(ξ, x)s(f(ξ), f(x))dξ

where c(ξ, x) is inversely proportional to the spatial distance
between the neighbourhood center x and a nearby location
ξ, and s(f(ξ), f(x)) is the photometric similarity (e.g. in
grey level values) between the image function at x and ξ.
This essentially means that image values with closer spatial
and photometric proximity contribute more to the output
filtered pixel by having a higher weight in a weighted-average
implementation. Trilateral filtering has been recently proposed
to take texture of scalar intensity images into account as well
[22].

For DTMRI data, calculating the spatial proximity (Eu-
clidean distance) of tensors in the image domain clearly
remains the same as in the scalar case. However, two im-
portant operations must be redefined for tensor fields, namely,
weighted-averaging of DTs and calculating tensor dissimilar-
ity.

B. Weighted Averaging of Diffusion Tensor

Diffusion tensors do not form a vector space since they
are symmetric PSD matrices whose space is restricted to a
convex half-cone [23]. Therefore, special care needs to be
taken when performing calculations and statistics on diffusion
tensors. For example, simply subtracting two DTs in general
gives an invalid DT [24], [23]. Arsigny et al recently proposed
the Log-Euclidean Riemannian framework allowing simple
tensor computations in the domain of matrix logarithms [25].
Specifically, for the proposed extension of bilateral smoothing
to tensor fields, the weighted average of tensors is given by:

T (x) = k(x)−1exp

(
N∑

i=1

wi(x)log(T (ξi))

)
(2)

k(x) =
N∑

i=1

wi(x) (3)

where T (x) is the tensor resulting from averaging N tensors,
T (ξi), in the neighbourhood of x with corresponding weights
wi. exp and log denote matrix exponential and logarithm,
respectively. To perform DT smoothing, equation (2) is applied
at each location x in the image and each tensor T (x) is re-
placed by a weighted average of N neighboring tensors T (ξi).
For example, N=9 for a 3×3 8-connected 2D neighbourhood,
and N=27, for a 3 × 3 × 3 26-connected 3D neighbourhood.

C. Bilateral Filtering of Diffusion Tensors

The smoothing effect now clearly depends on the choice of
the weights, wi. A simple implementation of (equal-weight)
averaging is achieved by setting wi = 1/N for all i. However,
this operation blurs interfaces between tissues of different
diffusion properties; e.g. white and gray matter in the brain.
This is where the bilateral filtering ideas are essential for

edge-preserving smoothing. Towards this end, to replace the
tensor at each pixel in the image, we define the weights to be
inversely proportional to the spatial distance and to the tensor
dissimilarity between the neighboring tensors and the center
tensor, according to

wi(x) = αf1(dT (T (x), T (ξi))) + (1 − α)f2(dS(x, ξi)) (4)

where dT (T (x), T (ξi)) is the tensor dissimilarity between
T (x) and T (ξi), dS(x, ξi) is the spatial euclidean distance
between x and ξ, f1 and f2 are monotonically decreasing
functions that map the range of tensor-dissimilarity values
and spatial distances, respectively, to the interval [0, 1], and
α ∈ [0, 1] controls the relative emphasis on spatial versus
tensor distance.

D. Diffusion Tensor Dissimilarity

What remains is a proper definition of tensor dissimilarity,
dT (T1, T2), between two tensors, T1 and T2. The Frobenius
norm, ‖T1−T2‖F , where ‖A‖F =

√
Tr(AAH), would be an

obvious choice had the diffusion tensors spanned a Euclidean
space. However, given the PSD nature of the diffusion tensors,
such measure of dissimilarity is inappropriate.

We adopt and compare (see section III) four approaches
proposed recently for calculating tensor dissimilarity in the
proposed bilateral diffusion filtering algorithm: The Log-
Euclidean distance, the similarity-invariant Log-Euclidean dis-
tance [25], the affine-invariant square root of the J-divergence
[8], and the distance scaled mutual diffusion coefficient [26],
denoted respectively as dTLE

and dTLEI
, dTJ

, and dTK
and

are given by

dTLE
(T1, T2) = ‖log(T1) − log(T2)‖ (5)

dTLEI
(T1, T2) =

√
Tr((log(T1) − log(T2))2) (6)

dTJ
(T1, T2) =

1
2

√
Tr(T−1

1 T2 + T−1
2 T1) − 2n (7)

dTK
(T1, T2) =

[(v′T1v)(v′T2v)]γ

σ2
(8)

v = (x1 − x2)/σ, σ = ‖x1 − x2‖, γ = 1,

where xi describes the location of Ti (see [26] for details), and
n is the size of the square tensor, i.e. n = 3 in 3D DTMRI
images.

The resulting method is a closed-form, edge-preserving
filtering extending the original scalar bilateral filter to diffusion
tensor data. The method is non-iterative, nevertheless, multiple
smoothing iterations can still be performed as is typical in
scalar image filtering algorithms. Further, we handle diffusion
tensor field interpolation as a special case of bilateral filtering
(equation (2)) as follows. We interpolate a tensor at any non-
grid position as the Log-Euclidean weighted sum of N nearby
tensors, T (ξ), where the weights are inversely proportional
to the spatial distance between the non-grid position x and
the locations of the nearby tensors, ξ. This is intuitively and
conveniently obtained by setting α = 0 in equation (4). We
also note that it is straightforward to generalize the proposed
method to any dimension.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Smoothing on two synthetic tensor fields. a) shows the original homogenous tensor field, d) shows another original tensor field that contains the
interface. b) and e) show the noisy version of a) and d) respectively, while c) and f) show the smoothing results on b) and e). dTJ

, α = 1, N = 9 are used
as an example. The effect of changing these parameters are shown in other figures.
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Fig. 2. Effect of α on the denoising of synthetic data. Mean error values shown are calculated by averaging all the tensor distances between corresponding
pixels in the denoised image and the original image. Mean and standard deviation of error are shown for different values of α. The first error entry (at “None”)
represents the error of the noisy image. The error results are measured using dTJ

for (a) the homogeneous tensor field (Figure 1b) and for (b) the DT field
with the interface (Figure 1e). Fig. 4 may be useful to relate these distances to tensors differences.
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Fig. 3. Effect of number of iterations on bilateral DT smoothing. This figure depicts the error values as the number of bilateral filtering iterations is increased,
from 1 to 19 iterations. Iteration 0 corresponds to the noisy image without filtering. The error is calculated as the average tensor distance between the smoothed
and the original image. Note the sharp decrease in error in the first 5 iterations. In (a) the original image did not contain any clear boundaries whereas (b)
contained a clear edge (similar to Fig. 1e). Note how in (b) the error begins to increases slightly due to blurring the edge if an excessive number of iterations
is performed.The error is measured using dTJ

, α = 1, and N = 9.

Tensor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 1.1619 2.1909 0.67082 1.2649 0.67082 1.2649 0.67082 1.2649 0.83666 1.2649 0.83666 1.2649 0.83666 1.2649 0.83666 1.2649 1.2302 1.8923 0.60885
2 0.91629 0 0.86603 0.94868 1.0724 0.94868 1.0724 0.94868 1.0724 1.4318 1.0724 1.4318 1.0724 1.4318 1.0724 1.4318 1.0724 0.33531 3.3782 1.3808
3 1.6094 0.69315 0 1.8574 1.7889 1.8574 1.7889 1.8574 1.7889 2.429 1.7889 2.429 1.7889 2.429 1.7889 2.429 1.7889 0.94354 5.0241 2.4099
4 0.91629 0.91629 1.6094 0 0.5 0.94868 1.4318 0.94868 1.4318 1.0724 1.0724 1.0724 1.0724 1.0724 1.4318 1.0724 1.0724 0.89026 2.0401 0.742
5 1.6094 0.91629 1.6094 0.69315 0 1.4318 1.7889 1.4318 1.7889 1.5811 1.2649 1.5811 1.2649 1.5166 1.7889 1.5811 1.2649 0.93088 2.3423 1.1729
6 0.91629 0.91629 1.6094 0.91629 1.6094 0 0.5 0.94868 1.4318 1.0724 1.0724 1.0724 1.0724 1.0724 1.0724 1.0724 1.4318 1.1278 2.1431 1.2899
7 1.6094 0.91629 1.6094 1.6094 1.6094 0.69315 0 1.4318 1.7889 1.5811 1.2649 1.5811 1.2649 1.5811 1.2649 1.5166 1.7889 1.3042 2.5749 2.0082
8 0.91629 0.91629 1.6094 0.91629 1.6094 0.91629 1.6094 0 0.5 1.0724 1.4318 1.0724 1.4318 1.0724 1.0724 1.0724 1.0724 1.0367 3.1335 0.65854
9 1.6094 0.91629 1.6094 1.6094 1.6094 1.6094 1.6094 0.69315 0 1.5166 1.7889 1.5166 1.7889 1.5811 1.2649 1.5811 1.2649 1.1617 4.504 1.0679
10 0.91629 1.6094 2.3026 1.2726 1.8312 1.2726 1.8312 0.91629 1.6094 0 0.70711 1.7889 2.1213 1.2247 1.5492 1.2247 1.5492 1.4825 2.0792 1.0515
11 1.6094 0.91629 1.6094 1.2726 1.138 1.2726 1.138 1.6094 1.6094 0.69315 0 2.1213 1.7889 1.5492 1.5492 1.5492 1.5492 1.1151 2.4178 1.5882
12 0.91629 1.6094 2.3026 1.2726 1.8312 1.2726 1.8312 0.91629 1.6094 1.6094 2.3026 0 0.70711 1.2247 1.5492 1.2247 1.5492 1.5146 2.1464 1.1649
13 1.6094 0.91629 1.6094 1.2726 1.138 1.2726 1.138 1.6094 1.6094 2.3026 1.6094 0.69315 0 1.5492 1.5492 1.5492 1.5492 1.1507 2.5041 1.6988
14 0.91629 1.6094 2.3026 0.91629 1.6094 1.2726 1.8312 1.2726 1.8312 1.1435 1.7376 1.1435 1.7376 0 0.70711 1.2247 1.5492 1.2921 2.9232 0.9518
15 1.6094 0.91629 1.6094 1.6094 1.6094 1.2726 1.138 1.2726 1.138 1.7376 1.3938 1.7376 1.3938 0.69315 0 1.5492 1.5492 1.0462 4.2263 1.4578
16 0.91629 1.6094 2.3026 1.2726 1.8312 0.91629 1.6094 1.2726 1.8312 1.1435 1.7376 1.1435 1.7376 1.1435 1.7376 0 0.70711 1.4736 2.4758 1.0302
17 1.6094 0.91629 1.6094 1.2726 1.138 1.6094 1.6094 1.2726 1.138 1.7376 1.3938 1.7376 1.3938 1.7376 1.3938 0.69315 0 1.0186 3.6085 1.1404
18 1.1647 0.37774 1.0709 1.0559 1.0557 1.1643 1.1642 1.1605 1.1602 1.6729 1.0997 1.6934 1.07 1.2777 1.162 1.7221 1.0804 0 3.5633 1.2765
19 2.1999 3.1162 3.8094 2.2002 2.2009 2.3168 2.5227 3.0641 3.7345 2.2347 2.3739 2.2503 2.4183 2.8926 3.5856 2.5758 3.2385 3.2186 0 2.4753
20 0.67991 1.5962 2.2893 0.72319 1.3448 1.5825 2.2715 0.76587 1.2579 1.1886 1.8769 1.2951 1.9853 1.0659 1.7578 1.0717 1.31 1.3616 2.6114 0

Fig. 4. Diffusion Tensor Distances. (top row) A variety of DTs visualized
using the common 3D ellipsoidal glyph whose orientations are given by the
eigenvectors and the length of their semi-axes by the eigenvalues of the DT.
(second row) dTLE

and dTJ
(lower and upper triangle respectively) distances

between pairs of ellipsoids. The first three DTs (1, 2, 3) are isotropic with
λ = 1, 2.5, 5. The next three pairs (4-5, 6-7, 8-9) have λ1 = 5 or 2.5, and
λ2 = λ3 = 1, and are oriented along x, y, and z, respectively. The next four
pairs (10-11, to 16-17) are 45-rotated versions of tensors 4 to 9. The last three
tensors are randomly selected real DTMRI tensors.

III. EXPERIMENTS AND RESULTS

The proposed DT bilateral filtering is developed as an
integral preprocessing step for segmentation and analysis of
DTMRI data related to two long term clinical applications.
Firstly, we are investigating the effect of disease progres-
sion and treatment in multiple sclerosis patients on inter-
hemispheric fiber connectivity and diffusion properties within
different regions of the callosum (CC) bridge [27], [28].
Secondly, we are studying the properties of the laminar cardiac
fiber sheet in the myocardium from DTMRI.

In this section we present qualitative and quantitative

smoothing and interpolation results of synthetic tensor fields
as well as real cardiac and brain DTMRI data.

For validating our work as shown in subsections III-A and
III-B, we made use of two synthetic data sets. The first data set
contains a homogeneous DT field whereas the other contains
a clear interface between two regions with different diffusion
properties (Fig. 1). Noisy DTMRI images were produced by
adding random Gaussian noise independently to the three
eigen values (as in [3]), in addition to random rotation (in
azimuth and elevation) perturbing the three eigen vectors by
the same amount to retain orthogonality.

Error calculations are obtained by creating 10 noisy im-
ages, smoothing them with different values of α or over
several iterations, and estimating the mean error and standard
derivation of the difference between the smoothed DT field
to the (known) noise-free original. This is done for three
different tensor measures. The error difference is calculated
by averaging all the tensor distances between corresponding
pixels in the denoised image and the original image.

A. Effect of Alpha on Bilateral DT-Smoothing

The noisy images are smoothed using α ranging from 0.0
to 1.0 in increments of 0.1 (Fig. 2). This was done for all
distance measures and both mapping functions. Similar results
are obtained when using different tensor distance measures for
error calculations. The different mapping functions f1 and f2

investigated, linear and logarithmic, had little impact on the
results. The overall observation is a decrease in the error for
all values of α, compared to the error of the noisy tensor field.

The bilateral DT smoothing algorithm reduced the noise
significantly and returned an output close (visually) to the
original noise-free image. Fig. 2 presents quantitative analysis
of noise reduction by measuring the average tensor distance
between the noise-free data and the filtered image. To interpret
these results it is insightful to provide an intuitive means of
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(a) (b)

(c) (d)

Fig. 5. Bilateral smoothing of the corpus callosum in brain DTMRI. Original
and smoothed corpus callosum shown in a) and c) respectively. b) and d) show
scaled up regions of the original and smoothed data respectively.

(a) (b)

(c) (d)

Fig. 6. Bilateral smoothing of the myocardium in cardiac DTMRI. Original
and smoothed heart wall shown in a) and b) respectively. c) and d) show
scaled up regions of the original and smoothed data respectively.

relating error values to DT differences (Fig. 4). Examples of
cardiac and brain DTMRI smoothing results are presented in
Fig. 5 and Fig. 6.

B. Effect of Number of Iterations on Bilateral DT-Smoothing

For a given α, the images were repeatedly smoothed (Fig.
3). Note the tendency of the error to decrease as the number of
iterations is increased when smoothing the DT field without
the interface. Also note the significant drop in error within
the first 5 iterations. For the interface data, we also note
a significant drop the first few iterations. However, a small
gradual increase in error is observed as excessive iterations
are performed. This is attributed to how smoothing will, to
some small extent, blur the boundary (Fig. 3).

C. Interpolation

Interpolation of cardiac and brain DTMRI data is presented
in Fig. 7. To quantitatively assess the interpolation, we com-
pared the original data with the result of interpolation using a
sub-sampled version of the original data. The error, calculated
as the average tensor distance, dTJ

, over all voxels, was about
0.7 when every second DT was used to interpolate, compared
to 1.41 with every sixth voxel. The corresponding values for
dTLE

were 0.8 and 1.34.

IV. CONCLUSION

We aspire that the medical image analysis community
will have access to accurate and practical diffusion tensor
processing, analysis, and visualization tools at par with what
is available for scalar fields. In this work we extend bilateral
image filtering to diffusion tensor field data. We define diffu-
sion tensor interpolation as a special case of bilateral tensor
field filtering. Based on the proposed techniques, we provided
encouraging quantitative and qualitative smoothing and inter-
polation results on simulated as well as real cardiac and brain
DTMRI data. More extensive error analysis and validation,
providing publicly available software implementation of these
techniques, as well as extending other classical scalar image
processing and analysis algorithms, are left for future work.
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