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ABSTRACT

In this paper, we introduce an extension to the random
walker image registration method designed to increase the
speed at which a registration is performed. Our method in-
volves precomputing data from one of the images being reg-
istered while anticipating the acquisition of the second image,
and then using this precomputed data to approximate the fi-
nal transformation once the second image becomes available.
The precomputation scheme incorporates a parameter con-
trolling the trade-off between registration speed and accuracy
that can be tuned when the registration is being performed.
Our results show that with precomputation, random walker
image registration runs 3 to 10 times faster on volumetric im-
ages with only 3% to 20% loss in registration accuracy.

Index Terms— Discrete Registration, Precomputation

1. INTRODUCTION

Deformable image registration (DIR) is a fundamental task in
medical image analysis, and a key step in many clinical ap-
plications [1]. A few of the prominent clinical uses of image
registration include fusing information from multiple imaging
modalities, tracking the progression of a medical condition by
registering images taken at different times, and constructing
anatomical atlases for use in segmentation [2].

Recently, several registration techniques have moved to-
wards performing registration in the discrete domain [3–6],
where voxels are assigned labels from a predefined set of dis-
placement vectors. The discrete approach allows the use of
powerful discrete optimization techniques that avoid prob-
lems often encountered in continuous registration formula-
tions, such as becoming stuck in local minima. In this paper
we focus on the random walker image registration (RWIR) al-
gorithm proposed by Cobzas and Sen [4], which uses a Gaus-
sian MRF energy that can be globally minimized to provide
competitive results for dense registration [7].

One trade-off of discrete techniques is that the predefined
set of displacement vectors needs to be quite large, particu-
larly in 3D tasks, in order to achieve adequate spatial resolu-
tion, leading to high computational costs. The requirement
for a large label set has been mitigated by iterative approaches
designed to incrementally update an initially sparse label set

[4, 6, 7], though such iterative approaches often sacrifice
global optimality. Alternatively, a sparser, image-adaptive
discretization of the image domain can be used [8, 9] instead
of the standard uniform voxel-based discretization, so fewer
spatial locations need to be solved for.

In this paper, we propose a technique for increasing the
efficiency of RWIR that is complimentary to the methods
described above. Our technique is based on precomputing
data using only one of the images, resulting in a significant
speedup to the registration with a minimal loss in accuracy.
This precomputation technique is motivated by the fact that
one of the two images is often available before the second,
e.g. when registering images taken of the same patient months
apart or when registering a new image to an existing atlas.
Our precomputation technique has a parameter that controls
the trade-off between speed and accuracy, allowing very fast
registrations to accommodate time-sensitive tasks. Our work
is based on similar techniques used to increase the efficiency
of random walker segmentation tasks [10, 11], which have
proven to be successful. While some registration parameters
must be chosen before precomputation, several important
parameters (e.g. image similarity, regularization strength)
can be set afterwards, allowing multiple registrations with
different parameter settings to be evaluated quickly.

The remainder of the paper is organized as follows: in
Sec. 2.1 we review the RWIR method. In Sec. 2.2 we in-
troduce our precomputation technique. In Sec. 2.3 we dis-
cuss adjusting registration parameters after precomputation.
In Sec. 3 we present results illustrating the increase in effi-
ciency our method provides.

2. FAST RANDOM WALKER FOR IMAGE
REGISTRATION

2.1. Random Walker Registration Review

To register two images, J1, J2 : Ω→ R, where Ω ⊂ RD and
D is the dimensionality of the images, we find a spatial trans-
formation T : Ω→ Ω such that J1 ◦ T (that is, J1 composed
with T ) is aligned to J2. Not all transformations are equally
likely, however, so some regularization is imposed on T to
ensure a feasible transformation.

In RWIR, we work in the discrete image domain, denoted



Ω̂, with |Ω̂| = n pixels, and we represent transformations
using a discrete set of K displacements, {v1, . . . , vK}, where
vk ∈ RD. Registration is formulated as a labeling problem,
where each pixel x ∈ Ω̂ is assigned a fuzzy labeling of the
displacement vectors, ux = [u1x, . . . , u

K
x ] ∈ PK . PK ⊂ RK

is the unit simplex of positive unit-sum vectors.
RWIR consists of two steps. The first step is to construct

a prior term pk : Ω̂→ R for each label k ∈ {1, . . . ,K} based
on an image similarity function:

pk =
1

Zx
D(x, vk, J1, J2) . (1)

Here, Zx is a normalization function ensuring the prior la-
bels sum to one at each pixel. D can include various image
features or user input, and is largely application dependent.

The second step is to construct a weighted graph based on
the moving image, J1, and use it to spatially regularize the
displacement labels. The image graph consists of a node for
each pixel and weighted edges between neighboring pixels,
with weights chosen inversely proportional to the difference
in intensities between the incident pixels. Specifically, for
an edge with incident pixels x and y, we assign edge weight
wx,y = exp (−β|J1(x)− J1(y)|), where β is a scalar pa-
rameter. Defining W as the n × n sparse matrix with entries
corresponding to these edge weights and D as the n×n diag-
onal matrix with entries corresponding to the row sums ofW ,
then L = D−W is known as the combinatorial Laplacian of
the image graph.

The fuzzy labels uk : Ω̂ → R are calculated by minimiz-
ing, for each k ∈ {1, . . . ,K}, the Gaussian MRF energy

ERW (uk) = uk>Luk +
(
uk − pk

)>
Γ
(
uk − pk

)
, (2)

where Γ is an n × n diagonal matrix of spatially dependent
regularization weights. Γ is useful for increasing regulariza-
tion strength in homogeneous regions, where the prior labels
pk are not very informative.

Denoting U = [u1, . . . ,uK ] and P = [p1, . . . ,pK ] as n×
K matrices, the minimum of ERW is calculated by solving
for U in the system of linear equations:

(L+ Γ)U = ΓP . (3)

Solving (3) gives a fuzzy labeling for the displacement vec-
tors at each pixel. Since the rows of P sum to one, so do the
rows of U , and thus can be interpreted as fuzzy labels.

Once the fuzzy labels have been calculated, they are used
to construct a dense displacement field over the image; e.g. by
taking the displacement corresponding to the maximum prob-
ability [4]. This results in a globally optimal dense displace-
ment field that can represent a wide range of transformations.

2.2. Random Walker Precomputation

A major drawback of RWIR is that it is computationally ex-
pensive. The main bottleneck is solving the system of equa-
tions in (3), which is time consuming since it must be solved

for each of the K displacement labels. To achieve adequate
resolution, particularly for 3D registration, K must be very
large. As detailed above, several techniques have been pro-
posed to increase the efficiency of RWIR by iteratively run-
ning the algorithm, starting with a sparse displacement label
set and updating the label set after each iteration. These ap-
proaches have proven effective, but the iterative approach sac-
rifices global optimality, and there is no guarantee that the
optimal displacements will be added to the label set.

In this section, we propose an alternative, complimentary
approach to improve RWIR efficiency. We take advantage of
the fact that in medical applications, one of the images be-
ing registered, J1, is often available for analysis before the
second image, J2 (e.g. registration to an existing atlas). By
performing precomputation on J1, we can greatly increase the
speed at which (3) is solved. The resulting algorithm will be
referred to as fastRWIR.

Rearranging (3) gives

U = (L+ Γ)−1ΓP . (4)

In (4), L and Γ are derived from J1, and only the similar-
ity term P involves J2, so in theory we could precompute
(L + Γ)−1Γ and then calculate U from P using a single ma-
trix multiplication. Unfortunately, this technique is not effec-
tive because L and Γ are sparse matrices with O(n) non-zero
entries, but the inverse (L + Γ)−1 is not sparse, and work-
ing with a matrix with O(n2) non-zero entries is infeasible in
terms of computational time and memory.

We address this problem by utilizing a technique similar
to the one proposed for random walker image segmentation
[10,11]. Given J1, we calculate L and Γ and then perform an
eigenvector decomposition of (L + Γ) to obtain the smallest
k � n eigenvalues, λ1 ≤ · · · ≤ λk, and their corresponding
eigenvectors, Q = [q1, . . . ,qk]. This gives:

(L+ Γ)−1 ≈ QΛ−1Q> (5)

U ≈ QΛ−1Q>ΓP . (6)

Note that all of the λ’s are real (since L and Γ are symmetric)
and positive (since the eigenvalues of a Laplacian are non-
negative and the eigenvalues of the positive diagonal matrix
Γ are positive), so Λ is always invertible. Since U is approx-
imated using the inverse of Λ, the smallest eigenvalues pro-
vide the best approximation. k controls the trade-off between
accuracy and speed; for small enough k (6) is much more ef-
ficient to compute than (3).

2.3. Parameter Tuning

Properly chosen parameters are key to the success of many
registration algorithms. The speedup provided by fastRWIR
allows more registrations to be performed with different pa-
rameter settings in a given amount of time, increasing the
robustness of the results to parameter tuning. However,



Fig. 1. The average distance between the displacements gen-
erated by RWIR and fastRWIR for different values of k and
the average times taken for both RWIR and fastRWIR. For
reference, the average distance between the RWIR and the
ground truth displacements was 2.24± 0.05 mm.

fastRWIR requires certain parameter values be set at pre-
computation time, so it is important to note what parameters
can be updated without affecting the precomputed matrices.

Clearly, the similarity term P can be updated online, al-
lowing for multiple similarity functions to be tested quickly.
Another important parameter that can be set after precompu-
tation is the strength of the regularization. If the matrix Γ is
updated to Γ̂ = Γ + αI , for a scalar α, (4) becomes

U = (L+ Γ + αI)−1(Γ + αI)P (7)

≈ Q(Λ + αI)−1Q>(Γ + αI)P . (8)

Here, the only inverse is of a k × k diagonal matrix, which
is a very efficient operation. fastRWIR can be performed
quickly with various regularization strengths α, ensuring that
the final transformation is not under-regularized (e.g. if the
transformation is irregular) or over-regularized (e.g. if the im-
ages are too dissimilar).

3. RESULTS

In this section, we provide results comparing our method,
fastRWIR, to the original RWIR algorithm, demonstrating
the considerable speedup it provides with minimal loss in ac-
curacy. Our experiments are performed on 40 T1-MR volu-
metric brain images from the LONI dataset [12] using unop-
timized MATLAB code run on a machine with 2 Quad Core
Intel Xeon 2.33 GHz CPUs. More efficient implementations
would provide faster run times for both algorithms, but we are
focused on the speedup provided by fastRWIR over RWIR.

Fig. 2. The DSCs of the 56 segmented brain regions change
after registration, averaged across all pairs of images. RWIR
took 2716 ± 1783 secs. to perform the registrations, while
fastRWIR took only 830± 478 secs.

3.1. Synthetic Misalignment

In our first experiment, we applied known warps to the im-
ages and then attempted to recover these warps using RWIR
and fastRWIR. We generated 10 warps for each image by
randomly displacing B-spline control points, spaced 18 mm
apart, where the displacements were sampled uniformly from
vectors up to 6 mm in magnitude.

We registered each image and its warped version using
RWIR and fastRWIR with k ∈ {100, 200, . . . , 1000} pre-
computed eigenvectors. In Fig. 1, we evaluated the accu-
racy of fastRWIR by calculating the mean distance between
the displacements generated at each voxel by RWIR and by
fastRWIR. We compared these distances to the mean dis-
tance between the RWIR displacements and the ground truth
displacements (i.e. the registration error) of 2.24± 0.05 mm.
For k = 1000, fastRWIR generated similar results to RWIR,
with an average distance between displacements of 0.07 ±
0.06 mm, only 3% of the registration error. For k = 300, the
average distance between fastRWIR and RWIR is still only
0.46± 0.10, about one fifth of the error.

Fig. 1 also compares the time taken by RWIR and
fastRWIR for different values of k. For k = 1000, fast-
RWIR achieved a roughly 3 times speedup, and for k = 300 it
achieved a roughly 10 times speedup. As long as a sufficient
number of eigenvectors are precomputed, the exact value of
k can be chosen at run time to meet any speed requirements.

3.2. Real Data

In our next experiment, we performed registration between
each pair in the 40 images (randomly choosing which one to
use as the moving image) using both RWIR and fastRWIR
with k = 1000. Each image has 56 anatomical brain regions
segmented, and we evaluated the accuracy of the registrations



Fig. 3. The increase in DSC of each of the 56 segmented brain
regions when registering with RWIR instead of fastRWIR
with k = 1000. Some outliers above and below the current
bounds have been excluded for readability.

by comparing the Dice similarity coefficients (DSCs) between
each of these regions in the pair of images before and after the
registration is performed.

Fig. 2 shows a comparison of the DSCs for each of the
brain regions before registration and after registration using
RWIR and fastRWIR. Both registration methods typically
increase the DSCs, indicating they improve the correspon-
dence between anatomical regions significantly. As expected,
fastRWIR performs slightly worse than RWIR on average,
though the improvement in DSC when using RWIR instead of
fastRWIR is small (0.013±0.005) compared to the improve-
ment in DSC before and after registration (0.074 ± 0.041).
Thus, the approximations introduced by fastRWIR reduce
the increase in DSC from registration by less than a fifth. De-
spite only a small drop in accuracy, fastRWIR ran more than
3 times faster than RWIR (830± 478 seconds for fastRWIR
vs. 2716± 1783 seconds for RWIR).

Fig. 3 provides a more detailed comparison of the algo-
rithms, showing the increase in DSC when using RWIR in-
stead of fastRWIR for each of the image pairs. For most re-
gions, the difference in DSC is consistently close to 0, though
a few regions appear to give fastRWIR trouble. This is likely
due to the eigenvector approximation of the Laplacian of the
image graph being poor in the neighborhood of these regions.

4. CONCLUSION

We have introduced a method for increasing the speed of the
RWIR algorithm using a precomputation technique. We have
shown that our fastRWIR technique greatly increases the
efficiency of RWIR without a significant drop in registration
quality. fastRWIR provides a powerful tool for aligning
large volumetric images quickly and accurately.

Our future work will involve combining our precomputa-

tion method with existing improvements to RWIR (e.g. itera-
tively updating a sparse displacement label set) and with stan-
dard methods for increasing performance (such as GPU com-
puting) to achieve a real-time, accurate registration method.
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